• Keine Ergebnisse gefunden

Initial Data (T=0.0)

N/A
N/A
Protected

Academic year: 2022

Aktie "Initial Data (T=0.0) "

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

two-dimensional wave equation system

M. Lukacova-Medvid'ova 1 2

, G.Warnecke 1

and Y. Zahaykah 1

Abstract

Thesubjectofthepaperisthestudyofsomenonreectingandreectingboundarycondi-

tionsfortheevolutionGalerkinmethods(EG)whichareappliedforthetwo-dimensional

wave equation system. Dierent known tools are used to achieve this aim. Namely,

the method of characteristics,the method of extrapolation, theLaplace transformation

method, and the perfectly matched layer(PML) method. We show that the absorbing

boundaryconditionswhicharebasedontheuseoftheLaplacetransformationleadtothe

Engquist-Majdarst andsecond order absorbingboundaryconditions, see[3]. Further,

following Berenger[1] we consider the PML method. We discretize the wave equation

system withthe leap-frogschemeinside the PML whilethe evolutionGalerkin schemes

areusedinsidethecomputationaldomain. Numericaltestsdemonstratethatthismethod

producesmuch lessunphysical reectedwavesaswellasthe best resultsin comparison

withothertechniquesstudiedin thepaper.

Keywords: hyperbolicsystems,waveequation,evolutionGalerkinschemes,absorbingbound-

aryconditions,reectingboundaryconditions,perfectlymatchedlayer, Laplace transforma-

tion.

1 Introduction

It is well known that to solve a dierential equation numerically in an unbounded domain,

it is necessary to restrict the computations to a bounded domain . Therefore we need to

introduceboundaryconditionson articialboundaries. Asaconsequencethequestionarises

\is there a boundary condition such that the solution of the problem in together with

thisboundaryconditioncoincides exactlywiththerestrictionto of thesolutionintheun-

boundeddomain". Suchboundaryconditionsarecallednonreecting boundaryconditions

orabsorbing boundaryconditions.

On the other hand in the case of a physical boundary it is necessary to reect the solu-

tion(wave) fromtheboundarycompletely. Theseboundaryconditionsare calledreecting

boundaryconditions.

Regarding the above question, many techniques were developed either for the scalar wave

equationorforlinearsystemsofhyperbolicequations,see, e.g.GroteandKeller[5 ,6,7],En-

gquistandMajda[3 ],Higdon[9 ],Thompson[19 ,20 ]andBradly,GreengardandHagstrom[2].

Moreoversuch absorbingboundaryconditionsappearofteninelectromagneticcomputations

where many such conditions were developed, see e.g. the matched layer [10 ] which is based

1

Institut fur Analysis und Numerik, Otto-von-Guericke-Universitat Magdeburg, Univer-

sitatsplatz 2, 39106 Magdeburg, Germany, emails: Gerald.Warnecke@mathematik.uni-magdeburg.de,

Yousef.Zahaykah@mathematik.uni-magdeburg.de

2

TU Hamburg-Harburg, Arbeitsbereich Mathematik, Schwarzenbergstrasse 95, 21073 Hamburg

email:lukacova@tu-harburg.de

(2)

impedance matches that of the free space. Others are the Mur conditions [16 ], a perfectly

matchedlayerfortheabsorptionof electromagneticwaves [1 ]and manyothers.

In this paper known nonreecting and reecting boundary conditions for the two dimen-

sional wave equation system are considered and applied for the evolution Galekin methods

(EG). The EG methods were studied by Lukacova, Morton and Warnecke in [12 ], [13 ] for

the multidimensional hyperbolic systems. These methods belong to the class of genuinely

multidimensionalschemes. TypicallythedimensionalsplittingFVmethodsapproximateso-

lutiononlyinnormaldirectionstocellinterfaces. OntheotherhandtheEGmethodsusethe

approximateevolutionGalerkinoperators,whicharebasedontheuseofthebicharacteristics

of multi-dimensionalhyperbolicsystems,suchthatalloftheinnitelymanydirectionsofthe

wave propagationare taken into account, see Section 2. Until now, EG methods had been

applied to easy testcases with periodicorother simpleboundarydata. Forrealy interesting

physicalapplicationsitisnecessarytodemonstratethattheEGschemesarecompatiblewith

more sophisticatednumerical boundarytreatments.

The outline of thepaperwillbe asfollows: inthe nextsection wegive a briefdescriptionof

EG methods. For moredetailson these schemesthereaderisreferred to [12 ],[13 ], [14 ],[15 ],

[17 ]. Inthe secondsection we followThompson[19 ], [20]and usethemethod of characteris-

ticsto derivenonreectingboundaryconditionsaswellasreectingboundaryconditionsfor

thewave equationsystem. We alsoapplydirectlyextrapolationtothewave equationsystem

to producean absorbingboundarycondition. Thisdoesnotalways producesatisfactory nu-

merical results, seee.g. [14]. Thereforewe considerother numerical techniques. Moreoverin

Section 3we linktheLaplacetransformation andFourierseriesto thetwo-dimensionalwave

equation system andderive Engquist-Majda,[3 ], absorbingboundaryconditions. Inthelast

part ofSection 3webriey considerthe absorbingboundaryconditionsbased ona perfectly

matchedlayer(PML)whichdevelpedbyBerenger [1 ]. Inthethirdsectionwepresentresults

of numerical experiments. The above boundary conditions will be combined with the EG

methods inside the computational domain. We use particularly the EG3, EG4 rst order

schemesand theFVEG3second order scheme,see Section2. Finally,we emphasizethatthe

best resultswereobtained whenthe PMLis used.

2 Evolution Galerkin methods

EvolutionGalerkinmethods,EG-methods, wereproposedto approximatehyperbolicconser-

vation laws. An important featureof such methodsisthat they take into account better the

innitelymanydirectionsofpropagationofwavesinmultidimensionalcases. Itiswell-known,

see [12 ], [13 ], [14 ], [15], [17 ], that a basic tool to derive these schemes is the general theory

of bicharacteristics of linear hyperbolic systems. This theory is used to derive the system

of integral equations which is equivalent to the concerned rst order system, e.g. the wave

equation system. Using certain types of quadratures, these integral equations lead to the

approximateevolution operatorthatbuildup theevolution Galerkinscheme.

Let thegeneralform of linearhyperbolicsystembe givenas

U

t +

d

X

j=1 A

j U

x

j

=0; x=(x

1

;:::;x

d )

T

2R d

(2.1)

(3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . .

. . . . . . . .

. . . . .

. . . . . .

. . . . .

. . . .

. . . .

. . . .

. . .

. . .

. . .

. .

. .

. .

. .

. .

. .

. .

.

. .

. .

.

. .

..

. .

. ..

. .

. ..

...

. ..

....

....

. ...

. ....

. ...

...

...

. ...

. ...

. ...

... . ...

... ...

... ...

... . ... ... . .. . ... . .. ... . . . ... .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. ...

. . . . . . . . . .

. . . . ... ... . .. .... ... . ... ... . .. ... . ...

. . . .. ... . . . .

. . . . . . . . . . . .

.

. .

. .

.

.

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. .

.

. .

..

. .

..

. .

..

.

. .

. .

..

. .

..

.

. .

..

. .

. .

.

..

. .

..

. .

..

. .

.

. .

. .

. .

..

. .

.

..

. .

..

. .

. .

. .

.

. .

..

. .

..

. .

..

.

. .

. .

. .

.

. .

..

. .

..

. .

..

.

. .

. .

..

. .

. .

. .

.

. .

. .

. .

. .

. .

. .

.

. .

..

. .

..

. .

.

. .

. .

. .

. .

.

. .

. .

. .

..

. .

. .

.

..

. .

. ... ... ...

. .... . .... .... . .... ...

... .... ...

... . .... . .... .... . .... ..

x y t

P 0

Q

i (n)

Figure 1: Bicharacteristicsalong theMach conethroughP and Q

i (n)

wherethecoeÆcientmatricesA

j

;j=1;:::;dareelementsofR pp

andthedependentvariables

are U = (u

1

;:::;u

p )

T

2 R p

. Let A(n) = P

d

j=1 n

j A

j

be the pencil matrix with n =

(n

1

;:::;n

d )

T

being a directional vector in R d

. Then using the eigenvectors of A(n) system

(2.1) can be rewritten in a characteristic form via the substitution W = R 1

U, where the

columns of the matrix R are the linearly independent right eigenvectors of A(n). Since

the coeÆcients of the original system are constants, the bicharacteristics of the resulting

characteristicsystemarestraightlinesPQ

i

andPP 0

generatingthemantleoftheMachcone,

seeFigure1. Diagonalizingthissystemandintegratingalongthebicharacteristicsleadtothe

followingsystemof integralequations

U(P)= 1

jOj Z

O R(n)

2

6

4 W

1 (Q

1 (n);n)

.

.

.

W

p (Q

p (n);n)

3

7

5 dO+

1

jOj Z

O Z

t

0

R(n)S(t+;n)ddO:

Where O is the unit sphere inR d

, jOj its surface measure and S is a nontrivialterm which

we callthesourceterm. Formore detailssee[13].

Nextwegivetheapproximateevolutionoperatorsforthetwo-dimensionalwaveequation

system (3.1) oftwoEG schemes, namely theEG3and theEG4 schemes.

Approximate evolution operators:

EG3 scheme:

P

= 1

2 Z

2

0 (

Q 2u

Q

cos 2v

Q

sin)d+O(t 2

);

u

P

= 1

2 u

P 0+

1

2 Z

2

0

( 2

Q

cos+u

Q (3cos

2

1)+3v

Q

sincos)d

+O(t 2

);

v

P

= 1

2 v

P 0

+ 1

2 Z

2

0

( 2

Q

sin+3u

Q

sincos+v

Q (3sin

2

1))d

+O(t 2

): (2.2)

(4)

P

= 1

2 Z

2

0 (

Q 2u

Q

cos 2v

Q

sin)d+O(t 2

);

u

P

= 1

2 Z

2

0

( 2

Q

cos+2u

Q cos

2

+2v

Q

sincos)d+O(t 2

);

v

P

= 1

2 Z

2

0

( 2

Q

sin+2u

Q

sincos+2v

Q sin

2

)d+O(t 2

):

(2.3)

Evoution Galerkin schemes:

Forsimplicityletustaked=2. Considerh>0to bethemeshsizeparameter. We construct

a meshforR 2

,which consistsof thesquaremeshcells

kl

=

(k 1

2

)h;(k+ 1

2 )h

(l 1

2

)h;(l+ 1

2 )h

=

x

k h

2

;x

k +

h

2

y

l h

2

;y

l +

h

2

;

wherek;l2Z. Letusdenote byH

(R 2

) the Sobolevspace of distributionswith derivatives

up to order in L 2

space, where 2 N. Consider the general hyperbolic system given by

the equation (2.1). Let us denote by E(s) : (H

(R 2

)) p

! (H

(R 2

)) p

the exact evolution

operator forthesystem(2.1), i.e.

U(:;t+s)=E(s)U(:;t): (2.4)

We suppose that S m

h

is a nite element space consisting of piecewise polynomials of order

m 0 with respect to the square mesh. Assume constant time step, i.e. t

n

= nt. Let

U n

be an approximation in thespace S m

h

to the exact solutionU(:;t

n

) at time t

n

0. We

considerE

:L

1

l oc (R

2

)!(H

(R 2

)) p

tobeasuitableapproximateevolutionoperatorforE().

In practice we willuse restrictionsofE

to thesubspace S m

h

form0. Then we can dene

the generalclassof evolution Galerkinmethods.

Denition 2.5 StartingfromsomeinitialdataU 0

2S m

h

attimet=0,anevolutionGalerkin

method (EG-method) is recursively dened by means of

U n+1

=P

h E

U

n

; (2.6)

where P

h

is the L 2

projection givenby the integral averages in the following way

P

h U

n

j

k l

= 1

j

kl j

Z

k l

U(x;y;t

n )d xd y:

We denote byR

h :S

m

h

!S r

h

a recovery operator, r m 0 and considerour approximate

evolutionoperatorE

onS

r

h

. Wewilllimitourfurtherconsiderationstothecasewherem=0

and r=1. Takingpiecewiseconstants theresulting schemeswillonlybe of rst order,even

when E

isapproximatedtoa higherorder. Higherorderaccuracy canbeobtainedeitherby

taking m>0,orbyinsertingarecovery stage R

h

beforethe evolutionstep inequation(2.6)

to give

U n+1

=P

h E

R

h U

n

: (2.7)

This approach involves the computation of multiple integrals and becomes quite complex

for higher order recoveries. To avoid this we will consider higher order evolution Galerkin

schemesbasedon thenitevolume formulation instead.

(5)

Denition2.8 StartingfromsomeinitialdataU 2S

h

,thenitevolumeevolutionGalerkin

method (FVEG) isrecursively dened by means of

U n+1

=U n

1

h Z

t

0 2

X

j=1 Æ

xj f

j (

~

U n+

t

)d; (2.9)

where Æ

x

j f

j (

~

U n+

t

) represents an approximation to the edge uxdierenceand Æ

x

is dened

by Æ

x

=v(x+ h

2

) v(x h

2

). Thecellboundaryvalue

~

U n+

t

isevolved using theapproximate

evolution operator E

tot

n

+ and averaged a long the cell boundary, i.e.

~

U n+

t

= X

k;l 2Z

1

j@

kl j

Z

@

k l E

R

h U

n

dS

kl

; (2.10)

where

kl

is the characteristic functionof @

kl .

InthisformulationarstorderapproximationE

totheexactoperatorE()yieldsanoverall

higherorderupdatefromU n

toU n+1

. Toobtainthisapproximationinthediscreteschemeit

isonlynecessarytocarryoutarecoverystageateachleveltogenerateapiecewisepolynomial

approximation

~

U n

= R

h U

n

2 S r

h

from the piecewise constant U n

2 S 0

h

, to feed into the

calculation oftheuxes. ToconstructthesecondorderFVEGschemes, forexample, wetake

the rst order accurate approximate evolution operator and dene a bilinear reconstruction

R

h

. Amongmanypossiblerecoveryschemes,whichcanbeused,wewillchooseadiscontinuous

bilinear recovery usingfourpoint averagesat each vertex. It isgiven as

R

h Uj

k l

= U

kl +

(x x

k )

4h (

0x U

kl +1 +2

0x U

kl +

0x U

kl 1 )

+

(y y

l )

4h (

0y U

k+1l

+2

0y U

kl +

0y U

k 1l )

+

(x x

k )(y y

l )

h 2

0y

0x U

kl

;

where

0z

v(z) = 1

2

(v( z+h) v( z h) ): Note that in the updating step (2.9) some nu-

merical quadratures are used instead of the exact time integration. Similarly, to evaluate

the intermediate value

~

U n+

t

in (2.10) either the two dimensional integrals along the cell-

interfaceand aroundtheMach coneareevaluatedexactlyorbymeansof suitablenumerical

quadratures. Since theapproximateevolution operator E

contains integral a longthe base

cone(circlefrom 0to 2),seeFigure1 andequations(2.2) and (2.3),itisdiÆculttoinvolve

boundary conditions in Denitions 2.5 and 2.8. In the next section we will use well known

techniquesto derive suitableboundaryconditions to be usedwith EG-methods.

3 Boundary conditions

Consider theCauchy problemforc>0 and (x;y)2R 2

@

@t

cr

u

v

= 0;

@

@t

u

v

cr = 0;

(3.1)

(6)

0

u(x;y;0) = u

0 (x;y);

v(x;y;0) = v

0 (x;y):

(3.2)

Letustake thecomputational domainto be =[0;][0;]R 2

. Moreover, assume that

thereis no physicalboundary,i.e. isobtained onlybytruncationof thewholedomain R 2

.

Aswementioned,to derive appropriateboundaryconditionsforthissystemwewillconsider

knowntechniquesasfollows:

3.1 Boundary conditions based on characteristic methods

In this subsection we use the method of characteristics, Thompson [19 ], [20 ], and derive

articial boundary conditions at the articial interfaces x =0; x =; y =0; and y = of

thecomputationaldomain. Now system(3.1) can berewritteninthe matrixform

U

t +A

1 U

x +A

2 U

y

=0; (3.3)

where

U:=

0

@

u

v 1

A

; A

1 :=

0

@

0 c 0

c 0 0

0 0 0

1

A

; A

2 :=

0

@

0 0 c

0 0 0

c 0 0

1

A

:

PutC=A

2 U

y

and denote thematrix ofthe right eigenvectorsof the coeÆcient matrix A

1

byS=[r

1 jr

2 jr

3

]. It holds

S 1

A

1 S=

1

; where

1ij

=

0 if i6=j;

i

if i=j; i;j=1;2;3:

Withthese notations system(3.3) can bewritten as

S 1

@U

@t +

1 S

1

@U

@x +S

1

C=0

orwe can writeit intheform

l T

i

@U

@t +

i l

T

i

@U

@x +l

T

i

C=0; (3.4)

where l T

i

is aleft eigenvector of A

1 and

i

isthecorrespondingeigenvalue. DeneL

i to be

L

i :=

i l

T

i

@U

@x

; (3.5)

then equation (3.4) hastheform

l T

i

@U

@t +L

i +l

T

i

C=0;

orequivalently

@U

@t

+S L+C=0; (3.6)

where L := (L

1

;L

2

;L

3 )

T

. An easy calculation shows that the eigenvalues of the matrix A

1

are c;0; c,andthe corresponding left andright eigenvectorsare

l T

1

=

1

p

2

; 1

p

2

;0

; l T

2

=(0;0;1); l T

3

=

1

p

2

; 1

p

2

;0

;

(7)

r

1

= B

@ 1

p

2

1

p

2

0 C

A

; r

2

= 0

@ 0

0

1 1

A

; r

3

= B

@ 1

p

2

1

p

2

0 C

A

;

respectively. UsingthedenitionofL

i

,equation(3.5),andtheabove lefteigenvectorsweget

L

1

:=

1 l

T

1

@U

@x

= c

p

2

@

@x +

@u

@x

;

L

2

:=

2 l

T

2

@U

@x

=0;

L

3

:=

3 l

T

3

@U

@x

= c

p

2

@

@x +

@u

@x

: (3.7)

Moreoverwehave

S L= 0

B

@ 1

p

2 0

1

p

2

1

p

2 0

1

p

2

0 1 0

1

C

A 0

@ L

1

L

2

L

3 1

A

= 0

B

@ 1

p

2 (L

1 L

3 )

1

p

2 (L

1 +L

3 )

L

2

1

C

A

: (3.8)

Now substitutingfrom (3.8) into (3.6) leadsto thesystem

@

@t +

1

p

2 (L

1 L

3 ) c

@v

@y

= 0; (3.9)

@u

@t +

1

p

2 (L

1 +L

3

) = 0; (3.10)

@v

@t +L

2 c

@

@y

= 0: (3.11)

This system is used forthe updateof the solutionon the interfaces x =0 and x =, while

in the interior domain f(x;y) : (x;y) 2]0;[]0;[g we solve system (3.1) together with

the initial data (3.2). Now the transverse derivatives , i.e. the y derivatives, in (3.9) and

(3.11) are evaluated as usual. The values of the L

i

are determined depending on the sign

of thecorresponding eigenvalues

i

at thecorresponding interface. Namely, at the interface

x=0theeigenvaluesare c; 0; c,whichfrom(3.7) immediatelygivesthatL

2

mustbezero.

The wave corresponding to the eigenvalue

1

= c < 0 is an outgoing one that leaves the

computational domain. Thus L

1

is evaluated directly from its denition (3.7). Since l

3 is

matched with thepositive eigenvalue

3

=c the corresponding wave is an incoming one. It

is this lack of informationthat prevents us from usingthe denitionto evaluate L

3

. Let us

dropthetransversederivativefromequation (3.9),thensubtracting(3.9) from(3.10) we end

withtherelation

@( +u)

@t +

2

p

2 L

3

=0:

Now +uistheone-dimensionalcharacteristicwavethatentersthecomputationaldomain.

Preventingthiswavefromenteringthecomputationaldomainisequivalenttotakingitstime

derivative equal to zero, see [8 ]. This forces L

3

to be equal to zero. A similar argument

forthe interfacex = impliesthat L

1

and L

2

must be zero while L

3

is evaluated from its

denition(3.7).

Forthecasey=0andy=weuseasimilarargumentasabove. Atcornerswecombineboth

(8)

onlyabsorbing boundaryconditions butalso reecting ones. To showthis, assume that the

interfacex=0is a reector. Todene areected boundaryconditionat x=0 thefunction

mustvanishforalltimet>0atx=0. Thenequation(3.9)impliesthatL

3

=L

1 p

2c

@v

@y .

Remark 3.12 One of the simplest absorbing boundary conditions is to extrapolate the data

from the interior domain to the cells that lie on the boundary. Mathematically, for the wave

equation system (3.1), this can be done by taking

@'

@s

= 0, where ' 2 f;u;vg and the

derivativewithrespecttosstands forthedirectionalderivativeinsomedirection parametrized

by the parameter s. We will show however in our numerical experiments that this approach

can lead to considerable unphysical reections in the solution.

3.2 Absorbing boundary conditions based on the Laplace transformation

In thissubsection we recall the use of Fourier seriesand theLaplace transformation to con-

structanabsorbingboundaryconditiontobeused,say,attheboundaryf(;y) :0yg.

We will expand the solution of the wave equation system in a complex Fourier series. Sub-

stituting into the wave equation system and applying the Laplace transformation allows a

derivationof Engquist-Majda [3] absorbingboundaryconditions.

Considerthewave equationsystem(3.1)together withtheinitialcondition(3.2) inR 2

. Sup-

posethattheinitialfunctions

0

( x;y),u

0

( x;y)andv

0

(x;y)areallsmoothandvanishoutside

thedomain=[0;][0;] . Welookforaboundaryconditionthatholdsattheboundaryof

thedomain@suchthatthesolutionofsystem(3.1) accompaniedwiththeinitialdata(3.2)

on the domain together withthisconditioncoincides withthesolutionon theunbounded

domain. The Laplace transformation of a function f(t) will be denoted by

^

f(s) = L(f(t)),

and its inversebyf(t)=L 1

(

^

f(s)). Theyare denedasfollows

^

f(s):=L(f(t))= Z

1

0

f(t)exp( st) dt;

f(t):=L 1

(

^

f(s))= 1

2i Z

a+i1

a i1

^

f(s)exp(st) dt:

To produceanexact absorbingboundaryconditionusingtheLaplace transformationweuse

the Fourier series and expand the solution U(x;y;t) at the points to the right of the line

x= as

U(x;y;t)= 1

X

k= 1 U

k

(x;t)expi(k

y) (3.12)

Substituting(3.12) into thewave equation system(3.3) yields

U k

t +A

1 U

k

x +ik

A

2 U

k

=0: (3.13)

ApplyingtheLaplacetransformationto(3.13)andusingthepropertiesL(f 0

(t))=sL(f(t))

f 0

(0) and L

@f

@x

=

@

@x

( L(f)) as well as the assumption that the initial data vanishin the

exteriorof ,we get

s

^

U k

( x;s)+A

1

^

U k

x

(x;s)+ik

A

2

^

U k

(x;s)=0: (3.14)

(9)

Expressing u^ and ^v in terms of

^

we end with the following second order dierential

equation

^

k

xx

"

s 2

c 2

ik

2

#

^

k

=0: (3.15)

The boundednessof thesolutionforx!1 impliesthat thesolutionof(3.15) is

^

k

(x;s)=A( s;y)exp 0

@ s

c s

1

ick

s

2

x 1

A

: (3.16)

The valuesofu^ k

and ^v k

read

^ u k

(x;s) = s

1

ick

s

2

A(s;y)exp 0

@ s

c s

1

ick

s

2

x 1

A

; (3.17)

^ v k

(x;s) = ick

s

A(s;y)exp 0

@ s

c s

1

ick

s

2

x 1

A

: (3.18)

Ifweapplythe operator

L= 0

@

@

@x +

s

c s

1

ick

s

2 1

A

(3.19)

to thefunctions

^

k

; u^ k

and ^v k

we getL

^

k

=0,L^u k

=0 and L^v k

=0. Hence,at x=,we

have thefollowing boundaryconditionforeach component u k

(x;t)

L 1

n

L

^

k

o

=0; L 1

n

L^u k

o

=0; L 1

n

L^v k

o

=0: (3.20)

Let g(t) = L 1

s q

1 a

2

s 2

, where a = ick

, then at x = condition (3.20) can be

rewrittenas

k

x

(x;t)+ 1

c Z

t

0

g(t ) k

(x;)d =0;

u k

x

(x;t)+ 1

c Z

t

0

g(t )u k

(x;)d =0;

v k

x

(x;t)+ 1

c Z

t

0

g(t )v k

(x;)d =0: (3.21)

It is clear from equations (3.21) that this boundary condition is local in position but un-

fortunately not local in time. Using q

1 a

2

x 2

= 1+O 1

x 2

we approximate the operator

L as L =

@

@x +

s

c

: Hence (3.20) gives the following local in timeEngquist-Majda rst order

absorbingboundaryconditionforthefunctionat theinterfacex=.

@

@x +

1

c

@

@t

=0: (3.22)

(10)

Using 1 a

2

x 2

=1 a

2

2x 2

+O 1

x 4

we approximatethe operatorL asL=

@

@x +

s

c

1 a

2

2s 2

:

If we substitute sL into (3.20) then we obtain the following Engquist-Majda second order

absorbingboundaryconditionforat x=.

@ 2

@x@t +

1

c

@ 2

@t 2

c

2

@ 2

@y 2

=0: (3.23)

Note thattheabsorbingboundaryconditionsforother interfacescan bederivedinananalo-

gous way. Forthe descritizationof(3.22) and(3.23) we refereto [3].

3.3 Absorbing boundary condition based on a perfectly matched layer

In the previous two subsections absorbing boundary conditions were dened using certain

types of operators. Although such boundary conditions absorb the incoming waves, the

absorption is not complete for some cases, as we will see in the numerical examples in the

next section. By construction, such boundaryconditionsare derived to absorbthe reected

wavesprovidedthattheincidentplanewavesarenormaltotheinterfaces,formoredetailssee

Grote [4 ]. Inthissubsectionwe willapplyboundaryconditionsthat arevalidindependently

of the directionof the incidentwave orits frequency. Thistype ofboundaryconditions was

introduced by Berenger [1 ] for electromagnetic problems. Afterwards many authors have

beenusingsuchtechnique,forexample, Fang [11]and Quanand Geers[18]. Themainpoint

is to surround the computational domain by a layer that has the same impedance, roughly

speakingresistanceto thewave propagation,asthefreedomain, thedomainwhere thewave

equation system(3.1) valid. Thusforplanewaves, atleasttheoretically,Berengerhasshown,

fortheelectromagneticcase, thatthere isno reection. Formore detailsonPMLmethodsee

[1 ], [11 ], [18 ]. To denePML layerswe splitthe functioninto two components x

and y

,

i.e. we write= x

+ y

. Then we dene

Denition 3.24 A layer(R 2

) in which thesystem,damped waveequation system,

@

@t

x

y

+

?

x 0

0

?

y

x

y

c

@u

@x

@v

@y

=0;

@

@t

u

v

+

x 0

0

y

u

v

cr(

x

+ y

)=0: (3.25)

issatisedwhere

x

;

?

x

;

y

;and

?

y

arefunctionsof xandy,dampingparameters,iscalled

a perfectly matchedlayer.

LetPML1,characterisedby

x

1

;

?

x

1

;

y

1

;

?

y

1

andPML2,characterisedby

x

2

;

?

x

2

;

y

2

;

?

y

2

,

be two perfectlymatchedlayers. Supposethatx=0 istheinterfacebetweenthetwo layers.

If =

?

and if

y1

=

y2

then Berenger has shown that the two layers PML1 and PML2

producenoreectionfromtheoutgoingwavesattheinterfacex=0. Thedampingparameter

isdenedas()=

m

Æ

2

where

m

isdeterminedbythetheoretical reectionatnormal

incidence, isthedistancefromtheinterfaceandÆ isthethicknessofthelayer, seeBerenger

[1 ]. We implementthe perfectly matchedlayermethod asfollows: intheinteriordomainwe

usedthe evolution Galerkin scheme, i.e. by means of (2.6) in thecase of EG-schemes or by

(2.9), (2.10) in the case of nite volume EG-schemes. In the PML layer we used leap-frog

scheme,seeBerenger[1 ] orQuan and Geers[18 ] forthe discretisationofthe PMLlayer.

(11)

Inthe followingnumerical experimentswe test and compare theabsorbing boundarycondi-

tionsusingthemethodsofcharacteristics, extrapolation,theLaplacetransformationandthe

perfectlymatchedlayer(PML). The initialdata aregiven eitherasplane waves oraspulses

centered at certain pointsinthe calculation domain. Thesenumericaltests indicatethat all

thedevelopedabsorbingboundaryconditionsworkedcorrectlyinthecaseofonedimensional

problems. However it is well known that there are big problems with waves having an inci-

dent angle notnormal to the boundary. Therefore, for multidimensionalproblemsthe PML

methodgivesthebestresults.

Example4.1

Totestthereectingandtheabsorbingboundaryconditionsthatarebasedonthemethodof

characteristicsweconsiderthewaveequation system(3.1) andtakex=y=1,t=0:5,

c=1 and=[0;100][0;100]. InFigure2theinitialincidenthalfsinewavewhichistaken

from the wave

0

=sin(

x

24 ); u

0

=sin(

x

24

) and v

0

=0 is moved to the left and is reected

at the boundaryx =0. In Figure 3 theGaussian wave

0

=0:5exp ( ln(2)(

x 10

3 )

2

); u

0

=

0:5exp ( ln(2)(

x 10

3 )

2

) and v

0

=0 is moved to theright and isabsorbed at the boundary

x = 100. We use the rst order EG4 and the second order FVEG3 schemes, respectively.

In Figure 2 we see that the one-dimensional half sine wave propagates to the left. Upon

arrival at the left wall boundary it is reected back. This happensafter T=75:0 (150 time

steps). The phase of the reected wave is oppositeto that of theincident wave, asrequired

bythereectedboundarycondition. In Figure3theinitialGaussianwave propagates tothe

right. After the arrivalat the right articial boundaryit leaves the domain as we see after

T=62:5 (125timesteps). We have madeseveral other 1Dexamples fordierentinitial data.

All absorbing boundary conditions described above yield analogous results. These results

indicatethat such absorbing boundary conditions are doing wellif the initial data are one-

dimensionaldata. Unfortunately,thisisnotthecase iftwo-dimensionalinitialdataareused

aswe willseeintheExample4.3.

Example4.2

In this test we apply the PML method. We consider the two dimensional wave equation

systeminsidethedomain =[ 1;1][ 1;1]. The initialdataaretaken to be

0

(x;y)= exp( 30((x+0:85) 2

+y 2

)); u

0

(x;y)=0=v

0 (x;y):

Inthesimulationweuse a100100 mesh,the thickness ofthematchedlayeris taken to be

10cellsand

m

is chosen suchthatthetheoretical reectionat thenormalincidenceis10 5

.

Inside the computational domain we update using the rst order EG3 scheme. Inside the

PMLlayerweuseleapfrogscheme. We taketheCourant-Friedrichs-LewynumberCFL=0.4,

we deneit asCFL= ct

h

; whereh=x=y. We considera timesequence, 0.2,0.4, 0.6,

1.0, of absolute times (T). The isolines of the solution are shown in Figure 4. Moreover,

Figure5 shows theresult of thesame problemusingextrapolation forabsolute timesT=0.2

and T=1.0. Figure 5 clearly shows that, in general, using extrapolation as an absorbing

boundaryconditionmayproduced unphysicalreectedwaves. It isclear fromFigure 4 that

thePMLmethodproducesonlyamarginalamountofreectionfromthearticialboundaries.

Thus inthe case of the wave equation system this method is the preferableone in order to

implement absorbing boundaryconditions.

(12)

0 10 20 30 40 50 60 70 80 90 100

−1 0 1

Initial Data (T=0.0)

0 10 20 30 40 50 60 70 80 90 100

−1 0 1

T=12.5

0 10 20 30 40 50 60 70 80 90 100

−1 0 1

T=25.0

0 10 20 30 40 50 60 70 80 90 100

−1 0

1 T=50.0

0 10 20 30 40 50 60 70 80 90 100

−1 0

1 T=75.0

0 10 20 30 40 50 60 70 80 90 100

−1 0

1 T=87.5

Figure2: The numerical solutionof thecomponent usingtheEG4scheme together witha

reectorat x=0. Halfsinewave initialdata.

(13)

0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1 0 0.1 0.2 0.3 0.4

0.5 T=2.5

0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1 0 0.1 0.2 0.3 0.4 0.5

T=12.5

0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1 0 0.1 0.2 0.3 0.4

0.5 T=25.0

0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1 0 0.1 0.2 0.3 0.4

0.5 T=37.5

0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1 0 0.1 0.2 0.3 0.4

0.5 T=50.0

0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1 0 0.1 0.2 0.3 0.4

0.5 T=62.5

Figure 3: The initial data(- -), theexact solution(-) and the approximate solution(-.-.) of

thecomponent usingthesecond orderFVEG3scheme. Absorberat x=100. Gaussianpuls

initial data.

(14)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

PML Method; T=0.2; first order EG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

PML Method; T=0.4; first order EG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

PML Method; T=0.6; first order EG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

PML Method; T=1.0; first order EG3 scheme

Figure4: Isolinesof thecomponent of theapproximatesolutionusingthePML absorbing

boundarycondition.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Extrapolation; T=0.2; first order EG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Extrapolation; T=1.0; first order EG3 scheme

Figure5: Isolinesof the component of theapproximatesolution usingextrapolation asan

absorbingboundarycondition.

(15)

In Example 4.1 we used absorbing boundary conditions that based on the methods of ex-

trapolation and characteristics. The initial data were one-dimensional and such boundary

conditions give good results with respect to preventing the outgoing wave from reentering

the computational domain. However if the initial data are not one-dimensional then these

boundaryconditionsproducereectedwavesaswehave alreadyseeninExample4.2. Inthis

examplewe showthatabsorbingboundaryconditionsbasedonthemethodofcharacteristics

and the Laplace transformation can also produce reected waves ingeneral. Again we con-

siderthetwo-dimensionalwaveequation systeminsidethedomain=[ 1;1][ 1;1]. The

initialdataaretaken to be

0

(x;y)= exp( 15((x+0:5) 2

+y 2

)); u

0

(x;y)=0=v

0 (x;y):

WeuserstandsecondorderEG3andFVEG3methodsandcombineitwithdierentbound-

ary conditions. We take the CFL=0.55, the absolute time T=0.825 and consider100100

mesh. Figures 6 top-left and top-right show the isolines of the solution for the absorbing

boundarycondition usingPML and extrapolation methods,respectively. Figures6 bottom-

left and bottom-right show theisolines usingcharacteristics and Engquist-Majda rst order

condition methods, respectively. In Figure 7 we show the isolines of the solution for the

reectingboundaryconditionbasedonthemethodofcharacteristicsatx= 1. Theseresults

demonstrate that theabsorbing boundaryconditionsbased on themethod ofcharacteristics

aswellastheonebasedontheLaplacetransformationcanproducemuchstrongerunphysical

oscillationsandbackwardreections. PicturesatthebottomofFigures6aswellaspictureat

top-right are infactcomparableto thepictureinFigure 7,where theresultof thereecting

boundaryconditionis shown. In Figures8 weusethesecond orderFVEG3 methodtogether

withPML(top-left), extrapolation(top-right)and Engquist-Majdaabsorbingbounderycon-

dition ofsecond order (bottom). The eect ofthe reectionis clearintop-rightaswellasin

bottom pictures. FinallyinFigure9wedrawtheisolinesofforabsolute timesT=0.55 and

T=0.99 when second order FVEG3 method is used together with extrapolation, PML and

Engquist-Majdasecond order conditionmethods, respectively. We see thatless eect of the

boundaryinthecase of PMLmethod.

Conclusions

In this paper we derive some absorbing and reecting boundary conditions for the two-

dimensional wave equation system. These conditions are based on the known methods of

characteristics,extrapolation,Laplacetransformation(Engquist-Majdaconditions)andPML.

We use them with EG-schemes. Inside the computational domain we always used the EG-

schemeswhicharegiven inSection2. The numericalexperimentswhichwe presentedinthis

paper showed clearly thatfor one-dimensionalcases all methodsgive good results. Further,

for two-dimensional problems we noticed that the PML method produced less nonphysical

oscillation and reected waves when used together with EG-methods. In order to compare

computational costs of dierent ABC techniques applying to EG-methods, we have taken

one particular EG-method, e.g. thesecond order FVEG3. We carry out the calculationsin

Example 8 with meshes 100, 200 and 400, respectively. The results are tabulated below in

Table1. Weseethatthecheapestmethodisthemethodofextrapolationwhiletheexpensive

one isclearlythePML method.

(16)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

PML; ABC; T=0.825; first order EG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Extrapolation; ABC; T=0.825; first order EG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Engquist−Majda first order condition; ABC; T=0.825; first order EG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Method of Characteristics; ABC; T=0.825; first order EG3 scheme

Figure6: Isolinesofthecomponentoftheapproximatesolution,absorberbasedatx= 1:

top-left: based on the PML, top-right: based on extrapolation, bottom-left: based on the

methodof characteristics and bottom-right: based onLaplace transform.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Method of Characteristics; Reflecting BC; T=0.825; first order EG3 scheme

Figure 7: Isolines of the component of the approximate solution, reector based on the

methodof characteristics at x= 1.

(17)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

PML; ABC; T=0.825; second order FVEG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Extrapolation; ABC; T=0.825; second order FVEG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Engquist−Majda second order condition; ABC; T=0.825; second order FVEG3 scheme

Figure 8: Isolines of the component of the approximate solution, absorber based on the

PML (top-left), on extrapolation (top-right) and on Engquist-Majda second order condition

(bottom).

(18)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Extrapolation; ABC; T=0.55; second order FVEG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Extrapolation; ABC; T=0.99; second order FVEG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

PML; ABC; T=0.55; second order FVEG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

PML; ABC; T=0.99; second order FVEG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Engquist−Majda second order codition; ABC; T=0.55; second order FVEG3 scheme

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8

Engquist−Majda second order condition; ABC; T=0.99; second order FVEG3 scheme

Figure9: Isolinesofthecomponent oftheapproximatesolutionusingextrapolation,PML

andEngquist-Majda second order conditionmethods.

(19)

100100 cost 0.92s 0.01s 0.43s

200200 cost 6.00s 0.06s 3.26s

400400 cost 44.84s 0.31s 25.82s

Table1: Computational timeresults.

With thispaperwe havedemonstrated that itis feasableto implementboundaryconditions

withinthe framework of evolution Galerkinschemesbased onbicharacteristics.

Acknowledgements

This research wassupportedunder theDFG grant No. Wa 633/6-2 of Deutsche Forschungs-

gemeinschaft, by the grants GACR 201/00/0557 and CZ 39001/2201 of the University of

Technology Brno aswellas by theVolkswagenStiftungand DAAD Agencies. We would like

to thank the referees for a large number of helpful comments which enabled us to improve

the paper.

References

[1] J.-P. Berenger. A perfectly matched layer for the absorbtionof electromagneticwaves.

J. Comput. Phys.,114:185{200, 1994.

[2] A. Bradly, L.Greengard, and T. Hagstrom. Nonreecting boundary conditions for the

time-dependentwave equation. J.Comput. Phys.,180(1):270{296, 2000.

[3] B.EngquistandA.Majda. Absorbingboundaryconditionsforthenumericalsimulation

of waves. Math.Comput., 31(139):629{651, 1977.

[4] M. J. Grote. Nonreecting boundary conditions for time dependent wave propagation.

SeminarfurAngewandteMathematik(SAM),ResearchreportNo.2000-04,Zurich,2000.

[5] M. J. Grote and J. B. Keller. Exact nonreecting boundary conditions for the time

dependentwave equation. SIAM Journal of Appl. Math., 55(2):280{297, 1995.

[6] M. J. Grote and J. B. Keller. Nonreecting boundary conditions for time-dependent

scattering. J.Comput. Phys., 127:52{65, 1996.

[7] M.J.GroteandJ.B.Keller.NonreectingboundaryconditionsforMaxwell'sequations.

J. Comput. Phys.,139:327{342, 1998.

[8] G.W. Hedstrom. Nonreectingboundaryconditionsfornonlinearhyperbolicsytems. J.

Comput. Phys.,30:222{237, 1979.

[9] R. L. Higdon. Numerical absorbing boundaryconditions for the wave equation. Math.

Comput., 49(179):60{90, 1987.

[10] R.Holland and J.W. Williams. Total-eld versusscattered-eld nite-dierencecodes:

A comparativeassessment. IEEE Transaction on Nuclear Science,NS-30(6):4583{4588 ,

1983.

(20)

perfectlymatchedlayer. J.Comput. Phys.,129:201{219, 1996.

[12] M. Lukacova,K.W.Morton,andG. Warnecke. FinitevolumeevolutionGalerkinmeth-

ods for Euler equations of gas dynamics. Int. J. Num. Methods in Fluids, accepted,

2001.

[13] M. Lukacova, K.W.Morton, and G. Warnecke. Evolution Galerkinmethods forhyper-

bolicsystemsintwospace dimensions. Math. Comput., 69(232):1355{13 84 , 2000.

[14] M. Lukacova, J. Saibertova, G. Warnecke, and Y. Zahaykah. On evolution Galerkin

methodsfortheMaxwelland thelinearizedEulerequations. Acceptedto (Appl.Math.),

2003.

[15] M. Lukacova, G. Warnecke, and Y. Zahaykah. Third order nite volume evolution

Galerkin (FVEG) methods for two-dimensional wave equation system. submitted to

East-West J. Numer. Math.,2002.

[16] G. Mur. Absorbingboundaryconditionsfornite-dierenceapproximationof thetime-

domainelectromagneticeldequations. IEEETransactiononElectromagneticCompata-

bility,EMC-23(4):377{382, 1981.

[17] S. Ostkamp. Multidimensional characteristic Galerkinschemes and evolution operators

forhyperbolicsystems. Math. Meth. Appl. Sci., 20:1111{1125, 1997.

[18] Quan Qi and T. L. Geers. Evolution of the perfectlymatched layer for computational

acoustics. J.Comput. Phys.,139:166{183, 1998.

[19] K. W. Thompson. Time dependent boundary conditions for hyperbolic systems. J.

Comput. Phys.,68:1{24, 1987.

[20] K. W. Thompson. Time dependent boundaryconditions for hyperbolic systems, II. J.

Comput. Phys.,89:439{461, 1990.

Referenzen

ÄHNLICHE DOKUMENTE

Abstract Starting from a high-order local nonreflecting boundary condi- tion (NRBC) for single scattering [55], we derive a local NRBC for time- dependent multiple scattering

Key words: hyperbolic systems, wave equation, evolution Galerkin schemes, Maxwell equa- tions, linearized Euler equations, divergence-free, vorticity, dispersion..

In Section 3 we first describe the discontinuous bilinear recovery scheme that is preferred, and give the reasoning for selecting Simpson’s rule for edge integrals of the fluxes;

The exact integral equations as well as the approximate evolution operators for the three-dimensional wave equation system are given in Section 4.. The derivation of the first

Key words: well-balanced schemes, steady states, systems of hyperbolic balance laws, shal- low water equations, evolution Galerkin schemes, finite element schemes,

We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chem- istry on the diurnal evolution of biogenic secondary organic aerosol in

The main goal is to ensure the desired state performance within required state constraints for all admissible perturbations and t o minimize the given (energy type)

As discussed in Sect. 4.3, this low relative information density necessitates a post-treatment of the inter- polated experimental field to ensure that the no-slip condition