• Keine Ergebnisse gefunden

krill respiration effects on rates Euphausiid model respiration revamped: Latitudinal and seasonalshaping Ecological Modelling

N/A
N/A
Protected

Academic year: 2022

Aktie "krill respiration effects on rates Euphausiid model respiration revamped: Latitudinal and seasonalshaping Ecological Modelling"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Ecological Modelling

j o u r n al ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l m o d e l

Euphausiid respiration model revamped: Latitudinal and seasonal shaping effects on krill respiration rates

Nelly Tremblay

a,∗

, Thorsten Werner

a

, Kim Huenerlage

a

, Friedrich Buchholz

a

, Doris Abele

a

, Bettina Meyer

b

, Thomas Brey

a

aFunctionalEcology,Alfred-Wegener-InstitutHelmholtz-ZentrumfürPolar-undMeeresforschung,AmHandelshafen,27570Bremerhaven,Germany

bPolarBiologicalOceanography,Alfred-Wegener-InstitutHelmholtz-ZentrumfürPolar-undMeeresforschung,AmHandelshafen,27570Bremerhaven, Germany

a r t i c l e i n f o

Articlehistory:

Received11April2014

Receivedinrevisedform26July2014 Accepted28July2014

Availableonline28August2014

Keywords:

Euphausiasuperba Euphausiapacifica Meganyctiphanesnorvegica Artificialneuralnetwork Generaladditivemodel Respirationdatasets

a b s t r a c t

Euphausiidsconstituteamajorbiomasscomponentinshelfecosystemsandplayafundamentalrolein therapidverticaltransportofcarbonfromtheoceansurfacetothedeeperlayersduringtheirdailyvertical migration(DVM).DVMdepthandmigrationpatternsdependonoceanographicconditionswithrespect totemperature,lightandoxygenavailabilityatdepth,factorsthatarehighlydependentonseasonin mostmarineregions.HereweintroduceaglobalkrillrespirationANN(artificialneuralnetwork)model includingtheeffectoflatitude(LAT),thedayoftheyear(DoY),andthenumberofdaylighthours(DLh),in additiontothebasalvariablesthatdetermineectothermaloxygenconsumption(temperature,bodymass anddepth).Thenewlyimplementedparameterslinkspaceandtimeintermsofseasonandphotoperiod tokrillrespiration.TheANNmodelshowedabetterfit(r2=0.780)whenDLhandLATwereincluded, indicatingadecreaseinrespirationwithincreasingLATanddecreasingDLh.WethereforeproposeDLh asapotentialvariabletoconsiderwhenbuildingphysiologicalmodelsforbothhemispheres.Forsingle EuphausiidspeciesinvestigatedinalargerangeofDLhandDoY,wealsotestedthestandardrespiration rateforseasonalitywithMultipleLinearRegression(MLR)andGeneralAdditivemodel(GAM).GAM successfullyintegratedDLh(r2=0.563)andDoY(r2=0.572)effectsonrespirationratesoftheAntarctic krill,Euphausiasuperba,yieldingtheminimummetabolicactivityinmid-Juneandthemaximumatthe endofDecember.WecouldnotdetectDLhorDoYeffectsintheNorthPacifickrillEuphausiapacifica, andourfindingsfortheNorthAtlantickrillMeganyctiphanesnorvegicaremainedinconclusivebecause ofinsufficientseasonaldatacoverage.Westronglyencouragecomparativerespirationmeasurementsof worldwideEuphausiidkeyspeciesatdifferentseasonstoimproveaccuracyinecosystemmodeling.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Knowledgeofmetabolicrates underdifferentenvironmental conditionsandfromlatitudinalandseasonallydifferingscenarios iscentralinformationincomparativemodelingoftrophiccarbon transportandecosystemenergeticcycling.Euphausiidsconstitute a significantcomponent in many marineecosystemsand often

Abbreviations:O2,oxygen;DVM,dielverticalmigration;LAT,latitude;LON,lon- gitude;D,samplingwaterdepth;DoY,dayofyear(1–365);DLh,numberofdaylight hours;T,measurementtemperature(K);M,bodymass(J);RR,specificrespiration rate(JJ−1day−1);MLR,multipleregressionmodel;ANN,artificialneuralnetwork;

GAM,generaladditivemodel.

Correspondingauthor.Tel.:+4947148311567;fax:+4947148311149.

E-mailaddresses:nellytremblay@gmail.com,nelly.tremblay@awi.de (N.Tremblay).

several or even a single krill species connect primary produc- tiontoapexpredatortrophiclevels.Dataonrespirationratesof krillspecieshavebeencollectedsincethe1960sasindicatorsfor aerobicenergyturnover.RecentlyIkeda(2012)presentedastep- wisemultipleregressionmodel(basedon39sourcesofdatasets composedof24speciesfromvarioustypesofecosystems)describ- ing a significant dependence of krill respiration rates on body mass,habitattemperature,and watersamplingdepth. Thisfirst attempttoincludewaterdepthinageneralEuphausiidsrespira- tionmodelindicatedrespirationratestodeclinewithwaterdepth.

Thenegativedeptheffectonkrillmetabolicrateswasattributed tolowertemperaturesanddiminishingoxygenconcentrationsat depth,affectingtheEuphausiidswhentheymigratedownatdusk (Enright, 1977). Further,Ikeda (2012) attributed the metabolic slowdowntoareduction oftheenergetic costsofswimmingin theabsenceofvisualpredatorsindeepanddarkoceaniclayers.

http://dx.doi.org/10.1016/j.ecolmodel.2014.07.031 0304-3800/©2014ElsevierB.V.Allrightsreserved.

(2)

Fig.1.GeographicalvisualizationofEuphausiiddatausedinthisanalysis.Thedatabaseconsistsof2542respirationdatasetsreferringto31speciescollectedfrom51 differentsources(Tremblayetal.,2014).

Identificationof“depth”asafactormodulatingrespirationrates raisestheneedtounderstandwhichenvironmentalfactorsdeter- mine the vertical distribution range of krill species and the time spanduring which theyremainin thedeep water layers.

Indeed,importantdifferencesintimingand depthrangeof diel verticalmigration(DVM)amongseasonsorunderdifferentoceano- graphicregimes(upwelling/downwelling)havebeenreportedfor Euphausiidspeciesfromdifferentareas(Gatenetal.,2008;Taki, 2008;Tremblayetal.,2010;Satoetal.,2013;WernerandBuchholz, 2013;HaraldssonandSiegel,2014).Hencewepresumethat,next towaterdepth,otherfactorsrelatedtoseasonandphotoperiodwill affectEuphausiidrespirationonaglobalscaleandmostlikelyatthe specieslevel,too.

Hereweanalyzeaglobalrespirationdatacompilationcompris- ing2479respirationdatasetsfrom23speciesthatincludesthe factors“latitude”,the“dayoftheyear”,andthe“numberofdaylight hours”asproxiesforseasonandphotoperiod.Weintendtoestab- lishacorrespondinggeneralEuphausiidrespirationmodelandto analyzeseasonalpatternsofrespirationwithinsingleEuphausiid species.

2. Materialsandmethods

2.1. Initialdata

Followingthesamecriteriaofdataacquisitionandcondition- ing of Brey (2010), we searched the literature for Euphausiid respiration data and added recent unpublished data provided by several colleagues. The database consists of 2542 respira- tiondatasetsreferringto31speciescollectedfrom51different sources (see Tremblay et al., 2014 for complete data base in PANGAEA;Fig.1).Inthisexcelfile,theinformationabouttheset- ting(closed,semi-closed,or intermittentflow)andthemethod of measurement (chem for chemical, micro-optodes, polar for polarographic electrodes, manom for manometer, or gas for gasanalyser)arealsosummarized.For statisticalreasons,some data sets were excluded from further analysis (refer to Sec- tion2.2), leaving us with2479data sets relating to23 species (Figs.2and3).Insomecases,thepublicdomainsoftwareImageJ (http://rsbweb.nih.gov/ij/) was used to extract respiration data fromfigures.

Eachdatasetincludedthefollowingparameters:

•SamplingsitelatitudeLATandlongitudeLON;

•SamplingwaterdepthD(m;in 261casesthereporteddepth was<5m,thesenumbersweresettoD=5minordertoavoid

Fig.2. Distributionofthe2479respirationdatasetswithrespecttowatertemper- ature(Kelvin),waterdepth(meters),andmeanbodymass(Joule).

(3)

Fig.3. Distributionofthe2479respirationdatasetswithrespecttodaylighthours andgeographicallatitude.

disproportionateeffectsofverysmalldepthvalues.In311cases withunknownsamplingdepthwesetD=80m,i.e.averagedepth inalldatasets;inafurther14caseswherediverssampledthe animalswesetD=5m);

•DayoftheyearDoY(dayofyearbetween1and365);ifarangeof timewasprovidedbytheoriginalsource,wesetDoY=middayof thisrange.WhenDLhwassetto12h(seebelow),DoYwassetto 264(whichcorrespondtoequinoxofSeptember21thwhenthe sunspendsequalamountoftimeaboveandbelowthehorizonat everylocationontheEarth,sonightanddayareaboutthesame length),accordingly;

•Number of daylight hours DLh, calculated from LAT and DoY by the sunrise-sunset calculator (aa.usno.navy.mil/data/

docs/RSOneDay.php).Afewpublicationssummarizeddataover atimeperiodofmorethanoneyear;herewesetDLhto12h;

•MeasurementtemperatureT(K);

•BodymassM(J),convertedfromoriginalbodymassunitsusing factorsprovidedasforBrey(2010),andothersourceswhennec- essary;

•SpecificrespirationrateRR(JJ−1day−1);

•Taxonomicinformation(species,genus,family).

2.2. Datatransformation&pre-analysis

Wedecidedtoeliminateapriorifourdatasetswithextreme waterdepthbelow700m.Subsequently,specificrespirationrate RR, body mass M, temperature T and water depth D were transformedbyapproximatinglinearrelationshipsbetweeninde- pendentvariablesandRRaccordingtotheoreticalconsiderations (e.g.,Schmidt-Nielsen,1984;Brownetal.,2004)andtoempiri- calevidence(e.g.SeibelandDrazen,2007;Brey,2010)regarding thescalingofmetabolicactivity(seeBrey,2010forafulldiscus- sionofthis issue).These transformations–log(RR),log(M),1/T, log(D)–alsofacilitateamoreevendistributionofdataandvari- anceinthe[M,T,D]space.Multivariateoutliersinthesamplespace [log(RR),log(M),1/T,log(D)]wereidentifiedbyHotelling’sT2statis- tic(the squareof theMahalanobisdistance;Barnett and Lewis, 1994;Prokhorov,2001).Data setswithT2 abovethe97.5%per- centilewereexcludedfromfurtheranalysis,thusproviding2479 datasetsreferringto23speciesforstatisticalanalysis(Figs.2and3).

2.3. GeneralEuphausiidrespirationmodel

Weappliedfullyfactorialmultipleregressionmodels(MLR)as wellasartificialneuralnetwork(ANN).MLRsmaynotappropriately

Fig.4.Schemeoftheartificialneuralnetwork(ANN)usedtopredictmassspecific respirationrateRRinEuphausiidsfromfivecontinuousparameters(temperature, waterdepth,bodymass,daylighthours,latitude)andthreetaxonomiccategories.

describe the existing relationships despite linearizing transfor- mations (see above)and are quite sensitiveto intercorrelation betweenindependentparameters(DraperandSmith,1998).This isthereasonwhyweappliedANNof thebackpropagationtype (Hagan et al., 1996). ANN “learned” the relationship between dependentandindependentvariablesfromtrainingdataandwas testedforitsgeneralizationcapacitybycomparingpredictionaccu- racywithtraining (2/3)andtest (1/3)dataasmeasuredbythe correlationbetweenmeasuredRRmandpredictedRRann.Anensem- bleoffiveANN,eachtrainedonabootstrappedrandomsubsample, werepooledintoacompositepredictionmodel(seee.g.,Boucher et al.,2010,Brey, 2010,2012).Trial-runswithdifferentsets of parametersindicatedsignificanteffectsofDoY,DLhandabs(LAT).

WepreferredDLhoverDoYformodelbuildingasbothparameters arestronglycorrelated,butDLhshoweddistinctlybetterperfor- mance.TaxonomiceffectsonRRwereevidentatthegenuslevel andwerecoveredbythreegroups,(A)Euphausia,(B)Nyctiphanes&

Thysanopoda,(C)remaininggenera(Meganyctiphanes,Nematoscelis, Thysanoessa).Accordingly,theMLRmodelhadeightinputparam- eters:

log(RR)=a+b1×1

T +b2×log(D)+b3×log(M)+b4×DLh+b5

×abs(LAT)+b6×genus.A+b7×genus.C +interactionterms

Theinteractiontermsparameterswereadjustedtomean=zero inordertorenderthetestforthemaineffectsindependentofthe testforinteractions(“centeredpolynomials”).TheANNconsistedof 8inputnodes,threehiddennodes(H),andoneoutputnode(Fig.4).

TrialrunsindicatedthatthreehiddennodesenabledtheANNsto learnproperlywithoutover-fitting.Thenetworkwasparameter- izedasfollows:

log(RR)=a0+a1×H1+a2×H2+a3×H3

with

H1=tanH(b0+b1×1/T+b2×log(D)+b3×log(M)+...b8×genus.C) H2=tanH(c0+c1×1/T+c2×log(D)+c3×log(M)+...c8×genus.C) H3=tanH(d0+d1×1/T+d2×log(D)+d3×log(M)+...d8×genus.C) Note that internallythe inputdata werenormalized (mean=0, S.D.=1) and that the network parameter values were adjusted accordingly.Inordertoseewhetherornotcertaininputparam- etersenhancedANN’spredictivepower,wecomparedgoodnessof

(4)

log(RR)=a+b1×1

T +b2×log(D)+b3×log(M) +interactionterms

Subsequently,wecheckedtheresidualsoftheMLRforeffects ofDoYandDLhonRR.Wepresumedthatseasonaleffectsshould manifestinalinearrelationshipbetweenDLhandRR,andinacorre- spondingsinusoidalrelationshipbetweenDoYandRR.Whenthose relationshipswerepresent,weusedgeneraladditivemodels(GAM;

HastieandTibshirani,1990)togainabetterunderstandingofthe seasonalpatternsinrespirationrate.Weaddedatermf(X)tothe MLRabovethatdescribedtherelationshipbetweenRRandDLhor DoY,respectively.TheGAMequationtakesthegeneralform(MLR interactiontermsneglectedforclarityinthisdisplay)

log(RR)=a1+b1×1

T +b2×log(D)+b3×log(M)+b4×f(X) with f(X)=a2+b5×DLh

or f(X)=a2+b6×sin

2× DoY 365−a3

3. Results

3.1. GeneralEuphausiidrespirationmodel

The MLR approach resulted in a very complex model with seven interaction terms (r2=0.680, all terms significant at P<0.05, model not shown). The corresponding ANN model showed a distinctly better fit (r2=0.780, Table 1, Fig. 5; see spreadsheet “Respir EuphausiaceaANN.xlsx” downloadable at http://www.thomas-brey/science/virtualhandbook).ANNpredic- tiveperformanceincreasedsignificantly(P<0.05)withincreasing numberofinputparametersfromthree(1/T,log(D),log(M)),tofive (DLhand LATincluded)toeight parameters(three genusterms included).The correspondingoverall correlationbetweenmean ANNpredictionRRannandmeasuredRRmwasr2=0.732,0.760,and 0.780,respectively.ANOVAfurtherindicatedthattherewereno differencesingoodnessoffitbetweentestandtrainingdatasets.

ThecontourplotinFig.6demonstratestheeffectofDLhandofLAT onRRann.

3.2. SeasonalrespirationmodelforsingleEuphausiidspecies 3.2.1. Euphausiasuperba

Ofthetotal2479Euphausiiddatasets,875setscollectedfrom 20sourcesreferredtoE.superba(Fig.7).Wedetectedsignificant effects(P<0.001)ofDLhandDoYonRR(Fig.8).Thecorresponding GAM(Table2,Fig.9)fittedthedatadistinctlybetterthanthebasic MLR(r2=0.561and0.572comparedto0.440).Furthermore,depth DdidnotcontributesignificantlytoGAMpredictivepowerandwas thereforeremovedfromtheGAMequations.Fig.9indicatesthatthe

Fig.5. RelationshipbetweenmeasuredRRmandANNpredictedRRann(below)and correspondingresidualplot(above).SeeTable1forANNmodelparameters.Stippled linesindicate95%confidencerangeofpredictions.

GAMtermfullyaccountedforseasonaleffectsinRR.Theseeffects werevisualizedinthecontourplotsinFig.10.

3.2.2. Euphausiapacifica

Of the498 E.pacifica data sets (11 sources),one proved to beaconsistentanddistinctoutlierinallmodelsandwasthere- foreexcludedfromfurtheranalysis.AfullyfactorialMLRanalysis indicatedsignificanteffectsofT,D,andMonRRaswellassignifi- cantinteractionsbetweenindependentparameters(Table3).There wasaweakalbeitsignificantsinusoidalrelationshipbetweenthe residualsoftheMLRmodelandDoY(r2=0.099,P<0.001),anda significantnegativerelationshipbetweenMLRresidualsandDLh (r2=0.137,P<0.001).Wecheckedwhetherornottheserelation- shipswereartificiallycaused byonesinglesourcebymeansof excludingonesource(with≥10datasets)inturnfromtheresid- ualanalysis.TheremovalofthedatapublishedbyParanjape(1967) renderedtheeffectsofDoYandDLhinsignificant(seeFig.11).Hence

Fig.6.ContourplotofRRannpredictedbytheEuphausiidglobalrespirationmodel (ANN)inthedaylighthoursDLhversusgeographicallatitudeLAT(northandsouth combined)space.DLh(aswellastemperature)hasbeenrestrictedtotherange definedbygeographicallatitude.RRannrepresentsanaverageforbodymass0.1,1, 10,100,and1000J.

(5)

Table1

Euphausiidglobalrespirationmodel.genus.A:Euphausia,genus.B:Nyctiphanes&Thysanopoda,genus.C:remaininggenera.r2train,rtest2 ,r2ann:correlationbetweenmeasured andpredictedRRintraining(N=1652)andtestdata(N=826);rann2 :correlationbetweenmeasuredRRandaveragepredictionofthe5ANN.

log(RR)=a0+a1×H1+a2×H2+a3×H3

H1=tanH(b0+b1×1/T+b2×log(D)+b3×log(M)+b4×DLh+b5×abs(LAT)+b6×genus.A+b7×genus.B+b8×genus.C) H2=tanH(c0+c1×1/T+c2×log(D)+c3×log(M)+···c8×genus.C)

H3=tanH(d0+d1×1/T+d2×log(D)+d3×log(M)+···d8×genus.C)

ANN1 ANN2 ANN3 ANN4 ANN5

a0= −1.57197 −1.51099 −1.57066 −1.64152 −1.57065

a1= 0.38857 −0.21050 0.17855 0.38984 −0.45136

a2= −1.37002 0.38061 −1.04624 −0.47103 0.21583

a3= −0.42258 −0.19251 0.42496 −1.01710 −0.13727

b0= −86.77930 −194.63700 −125.32500 33.20542 −47.94690

b1= 27,854.45 57,230.88 14,617.81 −9652.23 16,404.96

b2= 2.59290 −0.12465 −18.67730 2.36937 −1.00100

b3= 1.04828 −0.49462 9.78115 0.15848 0.96578

b4= −0.39650 −0.02417 2.91508 0.19465 −0.05447

b5= −0.12200 −0.14740 0.62981 −0.07905 −0.04532

b6= −0.67903 0.75253 −2.30198 −3.28122 0.94072

b7= −5.14599 −0.37181 10.78545 −0.46730 −8.10712

b8= 1.10279 −1.23824 2.61575 −2.55901 −0.08386

c0= −9.85757 2.09214 −18.65530 35.89489 95.61789

c1= 2298.77 2022.25 4485.97 −4279.08 −12,644.40

c2= 0.82025 −1.20340 0.13205 −4.02182 −0.43695

c3= 0.36519 −1.70364 0.68528 −2.99786 −5.58249

c4= 0.00655 −0.03503 0.11844 0.01114 −1.05142

c5= 0.00417 −0.09131 −0.00873 −0.15218 −0.29912

c6= −0.25620 0.32410 0.57758 −1.74016 5.36206

c7= −0.41454 1.35509 0.36973 0.78609 −9.49179

c8= 0.32634 −2.09254 0.73716 −2.36783 −5.76894

d0= −92.03570 −84.04100 32.26541 −22.47070 −110.62100

d1= 28,677.77 25,377.93 −7718.31 4158.86 −23,008.00

d2= −2.10915 −0.20977 0.56556 2.17255 128.19910

d3= 0.12831 3.43577 0.76223 1.27308 0.39724

d4= −0.18612 −0.35817 0.26208 0.07651 0.22187

d5= −0.11352 −0.22685 −0.14171 0.02428 0.23487

d6= 1.00402 4.27923 −0.75113 −0.72823 −4.39197

d7= 0.95282 5.95089 −0.63204 −1.12687 −54.49430

d8= −1.12534 −3.35537 −0.38697 −0.34093 5.77147

r2train= 0.756 0.746 0.740 0.744 0.746

r2test= 0.751 0.746 0.741 0.740 0.760

r2ann= 0.780

N= 2479

theavailabledatadidnotprovidesufficientevidenceforaclear effectofseasonalityonRRinE.pacifica.

3.2.3. Meganyctiphanesnorvegica

A fully factorial MLR analysis of the 132 M. norvegica data sets(7sources)indicatedsignificanteffectsofT,D,andMonRR

(Table3).Therewasnosignificantsinusoidalrelationshipbetween theresidualsoftheMLRmodelandDoY(P=0.941).However,MLR residualscorrelatednegativelywithDLh(slope=−0.012,r2=0.186, P<0.001,Fig.12).AstherewerenodataavailableforDLh<8h, theseasonalpattern in M.norvegica metabolicactivityremains inconclusive.

Table2

Euphausiasuperbarespirationmodels.Onlysignificantterms(P<0.05)areshown.Notetheadjustmenttomean=zeroforlog(M),1/TandDLh.

MultipleLinearRegression(MLR) GeneralAdditiveModel(GAM)with DLh

GeneralAdditiveModel(GAM)with DoY

log(RR)=a+b1×1/T+b2×log(D)+b3×log(M)+b4

×(1/T0.00366)×log(M2.6409)+b5

×(1/T0.00366)×log(D1.4751)

log(RR)=a1+b1×1/T+b2×log(M) +b3×(1/T0.00366)×log(M2.6409) +b4×f(DLh)

f(DLh)=a2+b5×(DLh14.1929)

log(RR)=a1+b1×1/T+b2×log(M) +b3×(1/T0.00366)×log(M2.6409) +b4×f(DoY)

f(DoY)=a2+b5×sin(2×(DoY/365b6))

a=14.4498 a1=14.9328 a1=11.0246

b1=−4301.6310 a2=257.2753 a2=91.2073

b2=−0.1298 b1=−4501.6350 b1=−3387.1049

b3=−0.1196 b2=−0.1688 b2=−0.1684

b4=−1105.8590 b3=−835.8796 b3=−1300.6526

b5=2804.0944 b4=0.00068 b4=−0.000084

b5=33.4871 b5=185.3023

b6=0.2650

N=875 N=875 N=875

r2=0.440 r2=0.563 r2=0.572

(6)

Fig.7.Euphausiasuperba:Distributionofthe875datasetsusedformodelbuilding withrespecttowatertemperature(Kelvin),waterdepth(meters),andmeanbody mass(Joule).

4. Discussion

4.1. GeneralEuphausiidrespirationmodel

TheANN model confirms that geography (LAT) and seasons (DLh) should be considered in a global Euphausiid respiration model,additionallytothemainparameters presented byIkeda (2012;biomass,depthandtemperature).TheANNmodelalsohigh- lightsa taxonomicinfluenceontherespiration rates.The good modelfit(r2=0.780)isconfirmedbyanacceptableresidualvari- ance, that is narrower than in a previous aquatic invertebrate respirationANNinwhichEuphausiidsrepresentedonly3%ofthe datasets(Brey,2010).Thethreetaxonomicgroupsidentifiedmay, tosomeextent,relatetothegeographicaldistributionofthecor- respondinggenera.MeganyctiphanesandThysanoessaaremainly presentbeyond50N,whileNematoscelisarefoundaround40in

Fig.8. Euphausiasuperba:ResidualsofMultipleLinearRegression(MLR)(seeTable2 formodelparameters)plottedversusDaylighthours(DLh)andDayofYearDoY.

ThereisasignificantlinearrelationshipbetweenresidualsandDLh(r2=0.179, P<0.001)anda significantsinusoidalrelationship betweenresidualsandDoY (r2=0.176,P<0.001).Colorsindicatetemperatureatmeasurementrangingfrom 271K(blue)to278K(red).

bothhemispheres.NyctiphanesandThysanopodaspeciespredomi- natearound30latitudeinthedatasources.

AccordingtothepresentANNmodel,Euphausiidspecificrespi- rationrateRRdecreaseswithhigherlatitudeanddecreasingDLh.

Thelatitudinalinfluenceisrelatedtobothbodymassandtemper- aturechangesandfollowsthepatternobservedbyIkeda(1985a) fromnet zooplanktoncommunity respiration.The DLhor pho- toperiodlengthcorrelateswithhighproductivityevents(spring bloom)athigherlatitudes,whichprobablycauseenhancedfeed- ingactivitiesandhighermetabolicrates.However,theinfluence ofDLh,LATandgenusshouldnotbeover-interpreted.Wecannot besurewhetherweseeatrulygeneralizablepatternofrespira- tion,orwhetherthispatternrepresentsanempiricalbestfitofthe data,forcedbytheunevengeographicalandseasonaldistribution ofspeciesanddatasources.Theonlylatitudeatwhichalmostallday lengths(lighthours)occurthroughouttheyearisat60S,where measurementsareavailableforonlyonespecies,E.superba.

4.2. SeasonalrespirationmodelsforsingleEuphausiidspecies 4.2.1. Euphausiasuperba

E.superba is the best and most extensively studied species both interms ofseasonaldifferences aswellasgeographically, renderingalargeandcomprehensivedatasetavailableforourGAM

(7)

Fig.9.Euphausiasuperba:GoodnessoffitoftheGeneralAdditive(GAM)modelwith DoYterm(seeTable2formodelparameters).PlotofresidualsversusDoYindicates nosignificantrelationship(P>0.1).

Fig.10.Euphausiasuperba:ContourplotofRRgampredictedbytheGeneralAdditive (GAM)modelsinthedayoftheyearDoYversusbodymasslog(M)space.Model withDLhterm(A)andwithDoYterm(B),seeTable2formodelparameters.The relationshipbetweenDoYandDLhusedin(A)refersto62S,i.e.theaveragelatitude inall875datasets.

approach.TheGAMindicatesDLhandDoYtobeexplanatoryvari- ablesforRRwhereasitexcludedD,presumablybecausesampling occurredalmostexclusivelywithintheupper80mofthewatercol- umnandtherewithinanarrowdepthrange.IncludingtheDLhterm inthemodelrevealedminimummetabolicactivityinmid-Juneas opposedtoametabolicmaximumattheendofDecember.Alinear dependencyofRRonphotoperiod(DLh)andtheseasonalsinusoidal trendwithDoYwasfoundbyMeyer(2011),whoreviewedinvesti- gationsonseasonalmetabolicactivityofkrillindifferentregionsof theSouthernOcean.Ourstudyconfirmsthoseearlierfindings,but onabroadbaseofdatafromdifferentstudieslookingatanimals

Fig.11.Euphausiapacifica:ResidualsofMultipleLinearRegression(MLR)(see Table3formodelparameters)plottedversusDaylightHours(DLh)andDayof YearDoY.ThesignificantlinearnegativerelationshipwithDLh(slope=−0.048, r2=0.137,P<0.001)aswellasthesinusoidalrelationshipwithDoY(r2=0.099, P<0.001)becomesinsignificantwhenthedataofParanjape(1967,crosssymbols) areexcluded.

Fig.12.Meganyctiphanesnorvegica:ResidualsofMultipleLinearRegression(MLR) (seeTable3formodelparameters)plottedversusDaylightHours(DLh).Significant linearnegativerelationshipwithDLh(slope=−0.012,r2=0.186,P<0.001).Colors indicatetemperatureatmeasurementrangingfrom273K(blue)to289K(red).

fromregionsacrossthewholeAntarcticOcean.Thispatternshows evidenceforageneralmetabolicstrategyinE.superba,whichhas beeninvestigatedfromthemolecular(Seearetal.,2009;Teschke etal.,2011)totheorganismlevel(Atkinsonetal.,2002;Teschke et al.,2007; Gatenetal., 2008;Pape et al.,2008; Brownetal., 2013).Although,thesignalingcascadethatlinksthephotoperiod cuetothetargetresponsestillremainsunknown,thephotoperi- odiccycleclearlyseemstoactasamajorZeitgeberfortheseasonal cycleofRR,suggestingthatkrillhasevolvedanendogenoustime keepingsystemthatperceivesseasonalvariationsinphotoperiod (Meyer,2011).Teschkeetal.(2011)identifiedanendogenouscir- cadiantimingsysteminAntarctickrillandfoundevidenceforits linktometabolickeyprocessesona24hbasis,whichcouldalso beinvolvedinthecontrolofseasonalevents.Thus,theseasonal cycleofRRinkrillcouldbelinkedtoanendogenoustimingsystem, synchronizedwiththeseasonalcourseofphotoperiodintheenvi- ronment.Inalong-termexperimentalstudylastingseveralyears,

(8)

annualpatternofsynchronizedrespiration.

4.2.2. EuphausiapacificaandMeganyctiphanesnorvegica

UnfortunatelymuchlessdatasetsareavailableforE.pacifica andM.norvegicathanforE.superba.Thesetwospeciesarewidely distributedoverthenorthPacificandAtlantic(from27.50to65.67 Nand29.94to71.14N,respectively;Brintonetal.,2003,updated 2008),andthedatasetsaregeographicallywidespread,accord- ingly,makingdifficulttodetectsignificantseasonalpatterns.InE.

pacifica,detectionofDoYorDLheffectsdependedexclusivelyon thedatasetofParanjape(1967),datawhichweretreatedasout- lieralsoinearlierstudies,asthereportedRRisconspicuouslylow (Ikedaetal.,2000).Thisisthoughttoreflectthepermanentanoxic conditionsinthedeepwatersofSaanichInlet(Canada;Ikedaetal., 2000).

InM.norvegica,theavailabledataindicateanegativecorrelation betweentheMLRresidualsandDLh(Fig.12),i.e.justtheopposite oftherelationshipfoundintheAntarcticE.superba.However,our databasedoesneitherrepresentthefullrangeofDLhnorthenatu- raltemperaturerangeexperiencedbyM.norvegica.Thereissome evidenceforseasonalpatternsinrespirationofthisspeciesatlower latitudes(43N,Saborowskietal.,2002),butmoredatacoveringa widerrangeofthenaturalconditionsexperiencedbyM.norvegica arerequiredfortheestablishmentofareliablemodel.

5. Conclusion

Thepresent workconfirms theeffect oflatitude, the dayof theyearofmeasurement,and thenumber ofdaylighthourson therespirationof Euphausiids.With thismodel we displaythe currentglobalstateofknowledgewithrespecttometabolicmea- surementsavailableforsomeofthemajorEuphausiids,indicating where(degreeoflatitude)andwhen(timeoftheyear)dataare availableormissing.Manyexistingdatagapswithrespecttoboth, degreeoflatitudeandtiming,callforbettercoveragetoimprove futuremodelingattempts.ThehighestdatacoveragefortheGAM modelwasavailablefortheAntarctickrillE.superba,whichhelped tosimulateand put numbersto thestrong seasonalmetabolic adjustmentsobservedinthisspecies.

Acknowledgements

Thisstudyisbasedonthecarefulrespirationmeasurementsof manyeuphausiidandzooplanktonexpertsoftheworld.N.Trem- blayhadadoctoralscholarshipfromtheFondsderecherchesurla NatureetlesTechnologiesduQuébec(Canada).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, in the online version, at http://dx.doi.org/10.1016/j.ecolmodel.

2014.07.031.

Brown,J.H.,Gillooly,J.F.,Allen,A.P., Savage,V.M.,West,G.B.,2004.Towarda metabolictheoryofecology.Ecology85,1771–1789.

Brown,M.,Kawaguchi,S.,King, R.,Virtue,P., Nicol,S.,2011.Flexibleadapta- tionoftheseasonalkrillmaturitycycleinthelaboratory.J.PlanktonRes.33, 821–826.

Brown,M.,Kawaguchi,S.,Candy,S.,Yoshida,T.,Virtue,P.,Nicol,S.,2013.Long-term effectofphotoperiod,temperatureandfeedingregimesontherespirationrates ofAntarctickrill(Euphausiasuperba).OpenJ.Mar.Sci.03,40–51.

Draper,N.R.,Smith,H.,1998.AppliedRegressionAnalysis.Wiley-Interscience.

Enright,J.T.,1977.Diurnalverticalmigration:adaptivesignificanceandtiming.Part 1.Selectiveadvantage:ametabolicmodel.Limnol.Oceanogr.22,856–872.

Gaten,E.,Tarling,G.,Dowse,H.,Kyriacou,C.,Rosato,E.,2008.Isverticalmigra- tioninAntarctickrill(Euphausiasuperba)influencedbyanunderlyingcircadian rhythm?J.Genet.87,473–483.

Hagan,M.T.,Demuth,H.B.,Beale,M.H.,1996.NeuralNetworkDesign.PWSPublish- ing.

Haraldsson,M.,Siegel,V.,2014.SeasonaldistributionandlifehistoryofThysanoessa macrura(Euphausiacea,Crustacea)inhighlatitudewatersoftheLazarevSea, Antarctica.Mar.Ecol.Prog.Ser.495,105–118.

Hastie,T.,Tibshirani,R.,1990.GeneralizedAdditiveModels.Chapman&Hall.

Ikeda,T.,1985a.Metabolicratesofepipelagicmarinezooplanktonasafunctionof bodymassandtemperature.Mar.Biol.85,1–11.

Ikeda,T.,2012.RespirationandammoniaexcretionofEuphausiidcrustaceans:syn- thesistowardaglobal-bathymetricmodel.Mar.Biol.160,251–262.

Ikeda,T.,Torres,J.,Hernández-León,S.,Geiger,S.,2000.Metabolism.In:Harris,R., Wiebe,P.,Lenz,J.,Skjoldal,H.,Huntley,M.(Eds.),ICESZooplanktonMethodology Manual.AcademicPress,pp.455–532.

Kawaguchi,S.,Yoshida,T.,Finley,L.,Cramp,P.,Nicol,S.,2007.Thekrillmaturity cycle:aconceptualmodeloftheseasonalcycleinAntarctickrill.PolarBiol.30, 689–698.

Meyer,B.,2011.TheoverwinteringofAntarctickrill,Euphausiasuperba,froman ecophysiologicalperspective.PolarBiol.35,15–37.

Pape,C.,Teschke,M.,Meyer,B.,2008.Melatoninanditspossibleroleinmedi- atingseasonalmetabolicchangesofAntarctickrill,Euphausiasuperba.Comp.

Biochem.Physiol.A:Mol.Integr.Physiol.149,426–434.

Paranjape,M.A.,1967.MoltingandrespirationofEuphausiids.J.Fish.BoardCan.24, 1229–1240.

Prokhorov,A.V.,2001.Hotelling-T2-distribution.In:Hazewinkel,M.(Ed.),Encyclo- pediaofMathematics.Springer.

Saborowski,R.,Bröhl,S.,Tarling,G.,Buchholz,F.,2002.Metabolicpropertiesof Northernkrill,Meganyctiphanesnorvegica,fromdifferentclimaticzones.I.Res- pirationandexcretion.Mar.Biol.140,547–556.

Sato,M.,Dower,J.,Kunze,E.,Dewey,R.,2013.Second-orderseasonalvariabilityin dielverticalmigrationtimingofEuphausiidsinacoastalinlet.Mar.Ecol.Prog.

Ser.480,39–56.

Schmidt-Nielsen,K.,1984.ScalingWhyisAnimalSizesoImportant?Cambridge UniversityPress.

Seear,P.,Tarling,G.A.,Teschke,M.,Meyer,B.,Thorne,M.A.S.,Clark,M.S.,Gaten, E.,Rosato,E.,2009.Effectsofsimulatedlightregimesongeneexpressionin Antarctickrill(EuphausiasuperbaDana).J.Exp.Mar.Biol.Ecol.381,57–64.

Seibel,B.,Drazen,J.,2007.Therateofmetabolisminmarineanimals:environmental constraints,ecologicaldemandsandenergeticopportunities.Philos.Trans.R.

Soc.B:Biol.Sci.362,2061.

Taki,K.,2008.VerticaldistributionanddielmigrationofEuphausiidsfromOyashio CurrenttoKuroshioareaoffnortheasternJapan.PlanktonBenthosRes.3,27–35.

Teschke,M.,Kawaguchi,S.,Meyer,B.,2007.Simulatedlightregimesaffectfeed- ingandmetabolismofAntarctickrill,Euphausiasuperba.Limnol.Oceanogr.52, 1046–1054.

Teschke,M.,Wendt,S.,Kawaguchi,S.,Kramer,A.,Meyer,B.,2011.Acircadianclockin Antarctickrill:anendogenoustimingsystemgovernsmetabolicoutputrhythms intheeuphausidspeciesEuphausiasuperba.PLoSONE6,e26090.

Tremblay,N.,Gómez-Gutiérrez,J.,Zenteno-Savín,T.,Robinson,C.J.,Sánchez-Velasco, L.,2010.Roleofoxidativestressinseasonalanddailyverticalmigrationofthree krillspeciesintheGulfofCalifornia.Limnol.Oceanogr.55,2570–2584.

Tremblay,N.,Werner,T.,Huenerlage,K.,Buchholz,F.,Abele,D.,Meyer,B.,Brey, T.,2014.EuphausiidRespiration ModelRevamped,Linkto ModelResults., http://dx.doi.org/10.1594/PANGAEA.831413.

Werner,T., Buchholz,F.,2013. Dielverticalmigration behaviourinEuphausi- ids of the northern Benguela current: seasonal adaptations to food

Referenzen

ÄHNLICHE DOKUMENTE

Lacking any evolutionary adaptations, the Kyrgyz response to the problem of chronic hypoxia has been essentially cultural and despite “hypoxia, cold, exposure, and

The cumulating oxy- gen debts and carbon dioxide loads arising from muscular activity are also unlikely to have been re- sponsible for the respiratory rate acceleration

We used t-tests to determine (i) the DVM effect, comparing the epilimnion data from Daphnia “migration” and Daphnia “no migration” treatment groups; (ii) cage effects, comparing

Similarly, the African penguins that we studied were feeding in water that was less than 40 m deep so that in both instances the predators diving capabilities

Artificial neural networks were trained to estimate mass specific respiration of aquatic metazo- ans from 28 parameters: temperature, water depth, 19 taxon categories, body mass and

The higher growth rates of ruffe found by Schleuter and Eckmann (2006) in experi- ments with groups of four as compared to those of F IGURE 6.—Mean 6 SD hourly based routine

Keywords: Zooplankton; Adaptive value; Swimming behaviour; Vertical gradients; Food; Temperature; Fish predation; Deep chlorophyll

The diel vertical distribution of young-of-the-year (YOY) burbot Lota lota in the pelagic zone of Lake Constance was compared to light intensity at the surface and to the