• Keine Ergebnisse gefunden

Dithranol, Glucose-6-phosphate Dehydrogenase Inhibition and Active Oxygen Species

N/A
N/A
Protected

Academic year: 2022

Aktie "Dithranol, Glucose-6-phosphate Dehydrogenase Inhibition and Active Oxygen Species "

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Sonderdruck I Reprint

Arzneimittel-Forschung/Drug Research

Arzneim.-Forsch./Drug Res. 41 (II), 11, 1176-1181 (1991) EDITIO CANTOR • D-7960 AULENDORF

Dithranol, Glucose-6-phosphate Dehydrogenase Inhibition and Active Oxygen Species

K . M ü l l e r , M . Seidel, C . B r a u n , K . Ziereis, a n d W. Wiegrebe

D e d i c a t e d to Professor D r . D r . Ernst M u t s c h i e r o n the occasion o f his 60th birthday

Summary

Inhibition of glucose-6-phosphate dehydrogenase (G6- PDH) by dithranpl (anthralin, CAS 480-22-8) has been studied in the presence of catalase, superoxide dismutase (SOD) and various scavengers of active oxygen species.

Most scavengers were found to be either inhibitors of G6- PDH by themselves or simply without effect. The com- bined addition of catalase and SOD as well as the heat- denatured enzymes and the oxygen radical scavengers a- tocopherol and salicylic acid markedly reduced the inhi- bitory effect of dithranol. The direct exposure of G6-PDH to active oxygen species led to different results. When lib- erated from a water-soluble naphthalene endoperoxide, singlet oxygen was without effect whereas photosensiti- zation with methylene blue resulted in a total loss of en- zyme activity. Experiments under anaerobic conditions revealed that this inhibition was accomplished by the tri- plet state of the sensitizer. Superoxide anion radical was highly effective at concentrations corresponding to the amount of that produced by a 10 nmol/l dithranol solu- tion. In contrast, hydroxyl, alkylperoxyl and alkoxyl rad- icals were all less efficient. H

2

0

2

and alkylhydroperoxides did not alter the enzyme activity. The results suggest that

Of is the potent species towards G6-PDH, if dithranol acts through formation of active oxygen species.

Zusammenfassung

Dithranol, Glucose-6-phosphat-Dehydrogenase-Hemmung und aktive Sauerstoffspezies

Glucose-6-phosphat-Dehydrogenase (Gö-PDH)-Hem- mung durch Dithranol (Anthralin, CAS 480-22-8) wurde in Gegenwart von Catalase, Superoxid-Dismutase (SOD) und verschiedenen Fängern für aktive Sauerstoffspezies untersucht. Die meisten Fänger waren entweder selbst Hemmstoffe der G6-PDH oder wirkungslos. Sowohl die kombinierte Zugabe von Catalase und SOD als auch die denaturierten Enzyme, ebenso die Sauerstoffradikalfän- ger a-Tocopherol und Salicylsäure zeigten eine deutliche Reduzierung der durch Dithranol verursachten Hemmefi fekte. Die direkte Einwirkung von aktiven Sauerstoffspe- zies auf G6-PDH führte zu unterschiedlichen Resultaten.

Freisetzung von Singulett-Sauerstoff aus einem wasser- löslichen Endoperoxid war ohne Effekt, hingegen führte die Photosensibilisierung mit Methylenblau zum vollstän- digen Verlust der Enzymaktivität. Experimente unter an- aeroben Bedingungen zeigten jedoch, daß diese Hem- mung durch den Triplett-Zustand des Sensibilisators ver- ursacht wurde. Superoxid-Anion-Radikal erwies sich in Konzentrationen, die von einer 10 jumol/l Dithranol-Lö- sung produziert werden, als hochwirksam. Hydroxyl-, Alkylperoxyl- und Alkoxyl-Radikale waren hingegen we-

niger wirksam. H

2

0

2

und Alkylhydroperoxide führten zu keiner Beeinträchtigung der Enzymaktivität. Die Resul- tate deuten darauf hin, daß Oy die potente Spezies der G6-PDH-Hemmung durch Dithranol ist, wenn diese über die aktiven Sauerstoffspezies erfolgt.

Key words: Anthralin, in vitro studies • Antipsoriatic drugs • CAS 480-22-8 • Dithranol • Free radicals • Glucose-6-phosphate dehydrogenase, inhibition

1. Introduction Hl- ^

ne m

° d e o f action o f the drug at the molecular level is still not k n o w n i n detail, but it may act, at least i n part, D i t h r a n o l (anthralin, l a ; C A S 480-22-8) has been used as o n m a i n l y four cellular targets: a) interaction w i t h D N A an effective topical antipsoriatic drug for over 70 years [2—6], b) alteration o f m i t o c h o n d r i a l functions [7—10],

c) i n h i b i t i o n o f the 5- a n d 12-lipoxygenase pathways o f

arachidonic a c i d m e t a b o l i s m [11 — 13], a n d d) i n h i b i t o r y

action o n cytosolic enzymes o f the glycolytic pathway,

such as glucose-6-phosphate dehydrogenase ( G 6 - P D H )

Institute of Pharmacy, University of Regensburg [14—18]. T h i s key enzyme o f the hexose monophosphate

(Fed. Rep. of Germany) shunt is elevated i n psoriatic skin [19, 20]. In view o f the

(2)

instability o f d i t h r a n o l i n weakly basic aqueous solution [18], it is u n l i k e l y that the molecule itself is responsible for the b i o l o g i c a l properties. Consequently, the i n h i b i - tory effects might be related to d e c o m p o s i t i o n products formed d u r i n g the a u t o x i d a t i o n o f d i t h r a n o l [18]. Since the o n l y two k n o w n o x i d a t i o n products, the d i m e r b i a n - throne a n d the anthraquinone d a n t h r o n (3), are o n l y moderate i n h i b i t o r s o f G 6 - P D H , it has been suggested that other b r e a k d o w n products must be the most active species towards G 6 - P D H [18].

T h e free r a d i c a l m e c h a n i s m o f d i t h r a n o l o x i d a t i o n starts w i t h d e p r o t o n a t i o n followed by electron abstraction to give l,8-dihydroxy-9-anthrone-10-yl-radical (2) [21, 22].

Because o f its stability a n d inertness towards oxygen this r a d i c a l was d i s c o u n t e d as an i m p o r t a n t intermediate [23]. In the presence o f oxygen, the univalent reduction o f oxygen by d i t h r a n o l a n i o n results i n the f o r m a t i o n o f superoxide a n i o n ('0

2

") [24, 25] (Scheme 1 (1)), d i s m u - tation o f this species generates hydrogen peroxide [24], a n d by the iron-catalyzed Haber-Weiss-reaction the far more reactive h y d r o x y l radical ( O H ) is p r o d u c e d [26].

P h o t o c h e m i c a l l y , electronically excited m o l e c u l a r oxy- gen (singlet oxygen,

!

0

2

) is p r o d u c e d by the d i t h r a n o l a n i o n ( l b ) [27, 28], w h i c h i n t u r n is o x i d i z e d to d a n t h r o n

(3, Scheme 1 (2)) i n a self-sensitized process most prob-

ably v i a an endoperoxide [27].

OH O OH

3 Scheme 1

A l t h o u g h this p r o d u c t i o n o f active oxygen species i n v i t r o by d i t h r a n o l is well documented, it has not yet been es- tablished whether this property is relevant to the mech- a n i s m o f action o f a n t h r a l i n o n b i o l o g i c a l targets. D i t h - r a n o l interacts irreversibly w i t h G 6 - P D H [18]. Irrevers- ible i n h i b i t i o n may be d e r i v e d from an u n d e t e r m i n e d re- dox pathway i n v o l v i n g oxygen radicals generated by d i t h r a n o l , resulting i n an inactive enzyme through de- struction o f specific a m i n o acids, p a r t i c u l a r l y h i s t i d i n e a n d t r y p t o p h a n [29]. Studies not related to d i t h r a n o l showed that the m e m b r a n e - b o u n d S H enzyme glyceral- dehyde-3-phosphate dehydrogenase was i n h i b i t e d by ox- i d a t i o n o f the S H groups by active oxygen species [30].

T h e objective o f the present study was to assess the role o f active oxygen species i n the i n h i b i t o r y action o n G 6 - P D H by d i t h r a n o l . T h i s i n h i b i t i o n is u t i l i z e d for a first screening for antipsoriatic a c t i v i t y to date [31, 32]. D i s - regarding the question whether G 6 - P D H i n h i b i t i o n is a significant m e c h a n i s m for the mode o f action or not we f i n d this test a useful t o o l i n our efforts to o b t a i n more insight into the nature o f the i n h i b i t o r y species. I f d i t h -

ranol acts through active oxygen f o r m a t i o n , a d d i t i o n o f catalase, superoxide dismutase ( S O D ) , a n d various oxy- gen radical scavengers to the reaction system should can- cel or d i m i n i s h the rate o f i n a c t i v a t i o n o f G 6 - P D H by d i t h r a n o l . A n o t h e r approach w h i c h w o u l d allow us to un- derstand the influence o f oxygen derivatives on this re- action system is to test the effects o f active oxygen species

— generated independently o f d i t h r a n o l — o n G 6 - P D H activity.

Abbreviations

B A S — b o v i n e serum a l b u m i n

D A B C O - l,4-diazabicyclo[2.2.2] octane D T P A — diethylenetriaminepentaacetic a c i d E D T A — ethylenediaminetetraacetic a c i d G 6 - P — glucose-6-phosphate d i s o d i u m salt

G 6 - P D H — glucose-6-phosphate dehydrogenase ( E C . 1.1.1.49) H S A — h u m a n serum a l b u m i n

N A D P + — n i c o t i n a m i d e adenine d i n u c l e o t i d e phosphate diso- d i u m salt

N B T — n i t r o blue t e t r a z o l i u m

N D P 02 — endoperoxide o f 3,3,-(l,4-naphthylene)dipropionate N D G A — n o r d i h y d r o g u a i a r e t i c a c i d

S O D — superoxide dismutase ( E C . 1.15.1.1) X O — xanthine oxidase ( E C . 1.1.3.22)

2. Materials and methods 2.1. Chemicals

D i t h r a n o l (anthralin, l,8-dihydroxy-9(10H)-anthracenone) was prepared by r e d u c t i o n o f d a n t h r o n [33] a n d p u r i f i e d by c o l u m n chromatography ( S i 02/ C H2C 12) ; N D P 02 was prepared accord- ing to the m e t h o d o f X u b r y [34]; B S A , ß - c a r o t e n e , catalase from b o v i n e l i v e r ( E . C 1.11.1.6; 20000 U / m g protein), chelating resin ( s o d i u m form), deferoxamine mesylate, 2 , 2 ' - d i p y r i d y l , D T P A , G 6 - P , glutathione, H S A , N A D P ^ , N D G A , p r o p y l gallate, pyro- gallol, S O D from b o v i n e erythrocytes (2800 U / m g protein), x a n - thine, X O (Sigma, M u n i c h , F R G ) , cumene hydroperoxide, E D T A , F e C l3 • 6 H20 , F e S 04 • H20 , hydrogen peroxide (30 %), m a n n i t o l , methylene blue, N B T , s o d i u m citrate, a-tocopherol ( E . M e r c k , D a r m s t a d t , F R G ) , ß - a l a n i n e , ascorbic a c i d , L-cysteine, D A B C O , glycine, rose bengal, salicylic a c i d , L-serine, s o d i u m benzoate, thiourea ( A l d r i c h , S t e i n h e i m , F R G ) . G 6 - P D H (350 U / m g p r o t e i n ; Boehringer M a n n h e i m G m b H , M a n n h e i m , F R G ) , tert-butyl h y d r o p e r o x i d e (Janssen, N e t t e d a l , F R G ) .

2.2. G6-PDH assay

I n c u b a t i o n experiments were performed i n a R i n g e r buffer c o m - posed o f 140 mmol/1 N a C l , 2.7 mmol/1 K C l , 5 mmol/1 N a H C 03,

1.8 mmol/1 C a C l2 a n d 1.1 mmol/1 M g C l2 at p H 7.5. T h e c o m - m e r c i a l enzyme suspension (350 U / m g ) was d i l u t e d 1:2000 i n the buffer a n d kept i n an ice bath (at t i m e zero the c o n t r o l ac- t i v i t y was 70 U / l ) . D i t h r a n o l stock solutions (4.4 mmol/1 i n ac- etone) were kept i n the dark under N2. In t y p i c a l runs G 6 - P D H a c t i v i t y was d e t e r m i n e d i n four different i n c u b a t i o n sets (final v o l u m e - 5 m l ) consisting o f (a) 4.48 m l o f R i n g e r buffer, 0.5 m l o f enzyme s o l u t i o n a n d 0.02 m l acetone, (b) 4.48 m l o f R i n g e r buffer, 0.5 m l o f enzyme s o l u t i o n a n d 0.02 m l o f d i t h r a n o l stock s o l u t i o n , (c) 3.98 m l o f R i n g e r buffer, 0.5 m l o f enzyme solution, 0.5 m l o f oxygen scavenger s o l u t i o n a n d 0.02 m l acetone, and (d) 3.98 m l o f R i n g e r buffer, 0.5 m l o f enzyme s o l u t i o n , 0.5 m l o f oxygen scavenger s o l u t i o n a n d 0.02 m l o f d i t h r a n o l stock so- l u t i o n . Test solutions were incubated for 1 h at 37 °C i n a shaking thermostat bath i n the dark. After i n c u b a t i o n , 0.5 m l o f the test s o l u t i o n was pipetted i n a 3.0 m l cell, 2.4 m l o f R i n g e r buffer a n d 0.05 m l o f a 0.03 mmol/1 N A D P+ solution were added, m i x e d a n d kept for 5 m i n at 25 °C. After a d d i t i o n o f 0.05 m l o f a 0.04 mmol/1 G 6 - P s o l u t i o n the rate o f increase i n absorbance at 339 n m was measured over a p e r i o d o f 5 m i n o n a U v i k o n 810 spectrophotometer ( K o n t r o n Instruments, E c h i n g , F R G ) .

2.3. Catalase assay

Catalase a c t i v i t y was measured f o l l o w i n g the d e c o m p o s i t i o n o f H202 at 240 n m [35]. R e a c t i o n mixtures contained 1.98 m l o f phosphate buffer, 1 m l o f 0.03 mmol/1 H202 a n d 0.02 m l o f en- z y m e d i l u t i o n (2 U / m g protein). I n c u b a t i o n experiments for the d e t e r m i n a t i o n o f catalase i n h i b i t i o n by d i t h r a n o l were per- f o r m e d for 30 m i n at 37 °C i n a shaking thermostat bath under light p r o t e c t i o n . C o n t r o l : acetone.

(3)

2.4. SOD assay

S O D a c t i v i t y was d e t e r m i n e d by measuring the i n h i b i t i o n o f py- rogallol a u t o x i d a t i o n , m o n i t o r e d s p e c t r o p h o t o m e t r i c a l l y at 420 n m [36]. I n c u b a t i o n experiments for the d e t e r m i n a t i o n o f S O D i n h i b i t i o n by d i t h r a n o l were performed for 60 m i n at 37 °C i n a shaking thermostat bath i n the dark. C o n t r o l : acetone.

2.5. Active oxygen species generating systems

A l l i n c u b a t i o n experiments for G 6 - P D H i n h i b i t i o n by active ox- ygen species were performed aerobically i n a phosphate buffer c o m p o s e d o f 50 mmol/1 K2H P 04 • 3 H20 a n d 5 mmol/1 K H2P 04 at p H 7.8 under shaking. I n c u b a t i o n mixtures c o n t a i n e d 4.47 or 4.48 m l o f phosphate buffer, 0.5 m l o f enzyme s o l u t i o n a n d 0.02 or 0.03 m l o f an active oxygen generating system. I n c u b a t i o n t i m e was 30 m i n .

' 02 was p r o d u c e d either by means o f a dye-sensitized photo- c h e m i c a l m e t h o d or w i t h a c h e m i c a l source. In the case o f pho- tosensitized o x i d a t i o n s the i n c u b a t i o n mixtures were i r r a d i a t e d w i t h a c o o l e d halogen l a m p ( O s r a m Halostar, 100 W ) i n the pres- ence o f rose bengal or methylene blue ( 1 05 mmol/1), respectively.

A 1 % s o l u t i o n o f K2C r207 i n H20 was used as a cutoff filter (550 nm). C o n t r o l s : A r / i n the dark. A s a c h e m i c a l source the d e c o m - p o s i t i o n o f the water-soluble N D P 02 [34, 37] (Scheme 2) was used.

COONa 37°C

COONa

COONa

COONa '02

NDP02 Scheme 2

T h e d e c o m p o s i t i o n o f the e n d o p e r o x i d e was e x a m i n e d at 37 °C i n the phosphate buffer described above. T h e disappearance o f N D P 02 (10 umol/1 i n the i n c u b a t i o n m i x t u r e o f 5 m l ) was m o n - i t o r e d by H P L C ( K o n t r o n 420, c o l u m n : N u c l e o s i l - 1 0 0 R P 18;

methanol/water/acetic a c i d (77:23:0.1); U V detection at 232 n m , K o n t r o n U v i k o n 735 L C ) . T h e first order rate constant was 4.2

± 0.2 • 1 04 s"1 w h i c h corresponds to a half-life o f 28 m i n . In order to produce a flux o f 02" a system o f X O a n d xanthine was used [38, 39]. G e n e r a t i o n o f 02 was ascertained spectro- p h o t o m e t r i c a l l y by m o n i t o r i n g the r e d u c t i o n o f N B T at 560 n m [40]. T h e amounts o f X O (0.02 U / m l ) a n d xanthine (30 umol/1) used were chosen o n the basis o f an I C5 0 o f d i t h r a n o l for G 6 - P D H o f about 10 umol/1. T h u s , the system was adjusted i n such a m a n n e r that the r e d u c t i o n rate o f N B T corresponded to 55 % [24] o f that caused by a 10 umol/1 d i t h r a n o l s o l u t i o n (45 % o f N B T r e d u c t i o n are due to direct electron transfer from d i t h r a n o l to N B T , for details o n 02" p r o d u c t i o n d u r i n g d i t h r a n o l a u t o x i - d a t i o n see [24]). X O was a d d e d last to initiate the reaction. T h e phosphate buffer s o l u t i o n was passed through a c o l u m n o f che- lating resin to remove traces o f i r o n [41]. D T P A [42, 43] (0.1 mmol/1) or deferoxamine mesylate [44] (0.1 mmol/1) was a d d e d to prevent O H f o r m a t i o n .

O H was generated f r o m the x a n t h i n e / X O system either by ad- d i t i o n o f F e3 + - E D T A [42, 45] ( i r o n - c a t a l y z e d Haber-Weiss re- action) or F e2+ - D T P A [46] (superoxide d r i v e n F e n t o n reaction).

T h e final concentrations i n the reaction m i x t u r e s were 0.1 m m o l / 1 for F e C l3 • 6 H20 or F e S 04 • H20 , respectively. C o n t r o l s were p e r f o r m e d w i t h the ferrous salt, H202, xanthine, and the chela- tors alone. A d d i t i o n a l l y , h y d r o x y l radicals were produced i n a F e n t o n reaction w i t h hydrogen peroxide a n d F e2 +- D T P A [46].

H202 was a d d e d last i n three p o r t i o n s (final concentration 0.18 mmol/1) to initiate the reaction.

A l k o x y l radicals were generated by the catalytic d e c o m p o s i t i o n o f tert-butyl h y d r o p e r o x i d e [47] a n d cumene h y d r o p e r o x i d e by F e2 + - d i p y r i d y l [48], whereas F e3 + as a catalyst was e m p l o y e d to p r e d o m i n a n t l y generate a l k y l p e r o x y l radicals [49, 50]. Incuba- t i o n experiments c o n t a i n e d 0.1 mmol/1 o f the a l k y l h y d r o p e r o x - ide, 0.1 mmol/1 ferrous d i p y r i d y l or i r o n D T P A , respectively.

3. Results and discussion 3.1. Effects of catalase and SOD on the system G6-PDH/dithranol

Since d i t h r a n o l was reported to l o w e r the activities o f b o t h the enzymes [51], we e x a m i n e d the activities o f cat- alase a n d S O D as a function o f d i t h r a n o l c o n c e n t r a t i o n . The I C5 0 o f d i t h r a n o l for catalase was found to be 5 u m o l / 1 ( F i g . 1). W i t h a d i t h r a n o l c o n c e n t r a t i o n o f 1.7 • 1 05

mol/1 catalase activity decreased to about 70 % o f i n i t i a l a c t i v i t y after 30 m i n o f i n c u b a t i o n ( F i g . 2). A l t h o u g h this i n h i b i t i o n o f catalase by d i t h r a n o l has to be considered, there s t i l l r e m a i n s sufficient a c t i v i t y for studying the ef- fect o f catalase o n G 6 - P D H i n h i b i t i o n by d i t h r a n o l under these c o n d i t i o n s .

C o n t r a r y to catalase the m a x i m a l degree o f i n h i b i t i o n o f S O D that c o u l d be a c h i e v e d was 35 % ( F i g . 3), even at higher concentrations o f d i t h r a n o l .

.1 100-

hibil

80-

a

60- 40- 20"

o -

.1 1 10 100 [uM]

Fig. 1: Inhibition of catalase as a function of dithranol concentration (ab- scissa). Incubation mixtures contained catalase (5 ug/ml) and indicated concentrations of dithranol in a final volume of 1 ml phosphate buffer for 30 min at 37 °C in a shaking water bath. Results are the average of 3 ex- periments (SD < 5 %).

Fig. 2: Time course of inhibition of catalase by dithranol. Incubation mixtures contained catalase (5 ug/ml) and 1.7 x 105 mol/1 dithranol in a final volume of 1 ml phosphate buffer for 30 min at 37 °C. Results are the average of 3 experiments (SD < 5 %).

S 40n

•a

0

1

30.

20-

10

0 20 40 60 80

[»iM]

Fig. 3: Inhibition of S O D as a function of dithranol concentration (ab- scissa). Incubation mixtures contained S O D (10 ug/ml) and indicated con- centrations of dithranol in a final volume of 2 ml phosphate buffer for 1 h at 37 °C in a shaking water bath. Results are the average of 3 experiments (SD < 5 %).

(4)

D a t a from Table 1 reveal that neither catalase nor S O D show significant changes i n d i t h r a n o l efficacy towards G 6 - P D H w h e n added to the i n c u b a t i o n sets. O n the other hand, c o m b i n e d treatment w i t h catalase a n d S O D at high concentrations m a r k e d l y lowered i n h i b i t o r y action o n G 6 - P D H by d i t h r a n o l . T h e c o m b i n e d a d d i t i o n o f the en- zymes to the system removes b o t h H

2

0

2

(catalase) a n d

0

2

" ( S O D ) , a n d — by interaction o f these two species — O H as a secondary reaction product, as previously shown for d i t h r a n o l [26]. H o w e v e r , the denatured en- zymes were effective, too. M o r e o v e r , a d d i t i o n o f the pro- teins B S A or H S A led to a total loss o f i n h i b i t o r y action.

S i m i l a r although weaker effects were obtained w i t h a m i n o acids.

These results allow two possible explanations for the de- crease o f G 6 - P D H i n h i b i t i o n by d i t h r a n o l . F i r s t l y , they suggest an interaction o f d i t h r a n o l w i t h proteins or a m i n o acids. Observations f r o m other studies that d i t h - ranol is partially b o u n d or inactivated by serum proteins [17, 52—54] are i n agreement w i t h this interpretation.

Secondly, it is k n o w n that even catalase a n d S O D pro-

Table 1: Effects of catalase, S O D , proteins and amino acids on G 6 - P D H inhibition by dithranol.

Scavenger added % Inhibition

None 6 8 ± 4a>

Catalase (2 U/ml) 66 + 2

Catalase (300 U/ml) 52 + 4

Superoxide dismutase (28 U/ml) 6 5 ± 6

Superoxide dismutase (175 U/ml) 5 5 ± 2

Catalase (300 U/ml) + superoxide dismutase (175 U/ml) 1 4 ± 1 Heated catalase (300 U/ml) + heated superoxide

dismutase (175 U/ml) 1 7 ± 3

BSA (30 ug/ml) 0

H S A (30 jig/ml) 0

ß - A l a n i n e ( 1 . 6 x 1 04 mol/1) L-Cysteine (1.6 x 10"4 mol/1) Glutathione (1.6 x 1 04 mol/1)

6 0 ± 3 ß - A l a n i n e ( 1 . 6 x 1 04 mol/1)

L-Cysteine (1.6 x 10"4 mol/1) Glutathione (1.6 x 1 04 mol/1)

31 ± 4 ß - A l a n i n e ( 1 . 6 x 1 04 mol/1)

L-Cysteine (1.6 x 10"4 mol/1)

Glutathione (1.6 x 1 04 mol/1) 4 4 ± 5

Glycine (1.6 x 1 04 mol/1) 5 0 ± 1

L-Serine(1.6 x 1 04 mol/1) 3 8 ± 5

Incubation mixtures contained 7 m U / m l G 6 - P D H , 1.7 x 1 05 mol/1 dith- ranol and indicated concentrations of scavengers at 37 °C in Ringer buffer (30 min). % Inhibition is expressed as mean ± SD; n > 3. All scavengers added did not impair the enzyme activity (controls without dithranol). a )

n = 22.

teins (e.g. the inactive enzymes) react w i t h active oxygen derivatives [55]. T h e same is true for other proteins i n - c l u d i n g heat-denatured S O D a n d catalase [55]. A m i n o acids are highly reactive w i t h O H radicals [56]. T h u s , scavenging o f active oxygen species p r o d u c e d by d i t h - ranol may be responsible for the observed decline o f G D 6 - P D H i n h i b i t i o n i n the presence o f catalase, S O D a n d proteins.

Table 2: Effects of singlet oxygen quenchers and oxygen radical scavengers on G 6 - P D H inhibition by dithranol.

Scavenger added % Inhibition without

dithranol % Inhibition

None 0 6 8 ± 4a )

Ascorbic acid (1.6 x 1 04 mol/1) 28 ± 1 8 4 ± 4 ß-Carotene (8 x 106 mol/1) 4 4 ± 6 81 ± 5

D A B C O (1.6 x 10-3 mol/1) 0 9 3 ± 1

Mannitol (1.6 x 1 03 mol/1) 0 7 8 ± 3

N D G A (1.6 x 10-5 mol/1) 100 100

Propyl gallate (1.6 x 1 06 mol/1) 100 100 Pyrogallol (1.6 x 1 06 mol/1)

Salicylic acid (1.6 x 10*4 mol/1) Sodium benzoate (1.6 x 1 03 mol/1)

100 100

Pyrogallol (1.6 x 1 06 mol/1) Salicylic acid (1.6 x 10*4 mol/1) Sodium benzoate (1.6 x 1 03 mol/1)

0 5 6 ± 1

Pyrogallol (1.6 x 1 06 mol/1) Salicylic acid (1.6 x 10*4 mol/1)

Sodium benzoate (1.6 x 1 03 mol/1) 0 7 6 ± 2 Sodium citrate (1.6 x 1 04 mol/1) 0 7 2 ± 3

Thiourea (1.6 x 1 03 mol/1) 0 84 + 2

a-Tocopherol (3.2 x 105 mol/1) 2 9 ± 6 5 0 ± 6 Incubation mixtures contained 7 m U / m l G 6 - P D H , 1.7 • 1 05 mol/1 dith- ranol and indicated concentrations of scavengers at 37 °C in Ringer buffer (30 min). % Inhibition is expressed as mean ± SD; n > 3 .a ) n = 22.

O u r results demonstrate that most o f the oxygen radical scavengers were G 6 - P D H i n h i b i t o r s by themselves at concentrations necessary for the i n a c t i v a t i o n o f oxygen free radicals p r o d u c e d by d i t h r a n o l . T h i s indicates that experiments w i t h the system G 6 - P D H / d i t h r a n o l / s c a v - enger are not m u c h o f an appropriate tool i n search o f the active intermediate towards G 6 - P D H .

3.3. Effects of active oxygen species on G6-PDH activity

If the toxic effects o f d i t h r a n o l o n G 6 - P D H occurred by oxygen free radicals or singlet oxygen, a direct exposure o f the enzyme to these species s h o u l d lead to loss o f ac- tivity. Since d i t h r a n o l i n h i b i t e d this enzyme at an I C

5 0

value o f about 10 umol/1 ( F i g . 4), the effects o f active oxygen species o n G 6 - P D H activity were tested at con- centrations corresponding a p p r o x i m a t e l y to the amount o f active oxygen species generated by a 10 umol/1 d i t h - ranol s o l u t i o n .

3.3.1. Singlet oxygen

' 0

2

causes damage to a variety o f biological targets [59].

D e s t r u c t i o n o f key active-site a m i n o acids leads to inac- t i v a t i o n o f m a n y enzymes. Indeed, studies o n G 6 - P D H p h o t o o x i d a t i o n by rose bengal resulted i n a specific de- struction o f h i s t i d i n e residues [60]. In this study we made use o f two different

1

0

2

- s o u r c e s . P h o t o s e n s i t i z a t i o n w i t h rose bengal leading to a total loss o f a c t i v i t y (Table 3, entry 1) was consistent w i t h a previous report [60]. H o w - ever, pertinent experiments i n the dark revealed that even ground-state rose bengal is an i n h i b i t o r o f G 6 - P D H . C o n t r a r y , the ^ - s e n s i t i z e r methylene blue d i d not i n - h i b i t the enzyme i n the dark. A l t h o u g h photosensitiza-

3.2. Effects of singlet oxygen quenchers and oxygen radical scavengers on the system G6-PDH/dithranol

W i t h the exception o f the singlet oxygen quenchers ß- carotene [57] a n d ascorbic a c i d [58], scavengers o f oxy- gen radicals, such as m a n n i t o l , s o d i u m benzoate, s o d i u m citrate, salicylic a c i d , a n d thiourea d i d not influence G 6 - P D H a c t i v i t y o f controls (no d i t h r a n o l ) to an appreciable a m o u n t (Table 2). H i g h e r concentrations o f scavengers d i d i n h i b i t G 6 - P D H activity. In a d d i t i o n , the free r a d i c a l scavengers N D G A , p r o p y l gallate a n d pyrogallol are stronger inactivators o f G 6 - P D H than d i t h r a n o l . P e r t i - nent experiments revealed that a d d i t i o n o f o n l y s m a l l amounts o f these scavengers resulted i n a total loss o f enzyme activity. O f all tested c o m p o u n d s o n l y a-tocoph- erol, although an i n h i b i t o r by itself, a n d salicylic a c i d d i d weaken the i n h i b i t o r y effect o f d i t h r a n o l .

O H ' ' — 1 ' —

1 10 100 [uM]

Fig. 4: Inhibition of G 6 - P D H as a function of dithranol concentration (ab- scissa). Incubation mixtures contained 7 m U / m l G 6 - P D H and indicated concentrations of dithranol in a final volume of 5 ml phosphate buffer at 37 °C in a shaking water bath (30 min). Results are the average of three experiments (SD < 5 %).

(5)

Table 3: Effects of active oxygen species on G 6 - P D H .

Entry Active oxygen species-generating

system % Inhibition

1 2 3 4 5 6

•o

2 rose bengal (10 umol/l)/O2/100 W rose bengal (10 umol/l)/darka )

methylene blue (10 umol/l)/O2/100 W methylene blue (10 umol/l)/Ar/100 Wa>

methylene blue (10 (imol/l)/darka )

N D P 02 (10 umol/1)

100 100 100 100 0 0 7

8 9

o

2

-

xanthine (30 umol/l)/XO (0.02 U / m l / D T P A (100 mmol/1)

xanthine (30 umol/l)/XO (0.02 U/ml)/

E D T A ( 1 0 0 umol/1)

xanthine (30 umol/l)/XO (0.02 U/ml)/

deferoxamine (100 umol/1)

6 0 ± 3 6 2 ± 5 5 9 ± 4 10

11

02/ O H xanthine (30 umol/l)/XO (0.02 U/ml)/

D T P A (100 umol/l)/Fe2+ (100 umol/1) xanthine (30 umol/l)/XO (0.02 U/ml)/

E D T A (100 umol/l)/Fe3 + (100 umol/1)

5 9 ± 4 5 9 ± 4 12

13 14

' O H F e S 04 (100 u m o l / l ) / H202 (180 umol/1)/

D T P A (100 umol/1) FeSO4(100 umol/l)a )

F e S 04 (100 umol/l)/DTPA (100 umol/

l)a )

1 6 ± 1 1 7 ± 1 2 ± 0

15 H202 H2O2( 1 0 0 umol/1) 0

16 17

R O O H tert-butyl hydroperoxide (100 umol/1) cumene hydroperoxide (100 umol/1)

0 0 18

19

R O ' tert-butyl hydroperoxide (100 umol/1)/

dipyridyl-Fe2 + (100 umol/1)

cumene hydroperoxide (100 umol/l)/di- pyridyl-Fe2 + (100 umol/1)

1 4 ± 1 1 2 ± 1 20 R O O ' cumene hydroperoxide (100 umol/1)/

D T P A (100 umol/l)/Fe3 + (100 umol/1)

1 7 ± 1

Incubation was performed for 30 min at 37 ' C in phosphate buffer. Incu- bation mixtures contained 7 m U / m l G 6 - P D H and indicated concentra- tions of active oxygen generating systems (% inhibition is expressed as mean ± SD; n > 3). Controls with xanthine, X O or the chelators alone did not impair the enzyme activity.a ) Control.

t i o n w i t h methylene blue completely inactivated G 6 - P D H , experiments performed under anaerobic c o n d i - tions (argon) led to s i m i l a r results demonstrating that en- z y m e i n a c t i v a t i o n was caused by the triplet state o f meth- ylene blue, i.e. i n a ^ - i n d e p e n d e n t fashion. Since pho- t o s e n s i t i z e s m a y also interact directly w i t h the substrate resulting i n hydrogen a t o m or electron transfer to pro- duce radicals [59], reactions that are not

l

0

2

mediated are likely. O n the other hand, preparation o f

l

0

2

from naphthalene endoperoxides (Table 3, entry 6) [61] seems to be a clean source, since no side reactions have yet been reported.

l

0

2

generated by the thermal d e c o m p o s i t i o n o f the water-soluble N D P 0

2

was completely ineffective.

T h i s result clearly rules out any effectiveness o f

l

0

2

to- wards G 6 - P D H .

3.3.2. Hydrogen and alkyl peroxides, hydroxy!, alkoxyl and alkylperoxyl radicals

Beside electronically excited m o l e c u l a r oxygen, reactive species include H

2

0

2

a n d ' 0

2

\ Furthermore, there are stronger oxidants d e r i v e d from these oxygen i n t e r m e d i - ates, such as ' O H radicals [42, 45, 62]. Results from o u r w o r k do not p o i n t to deleterious effects o f H

2

0

2

, O H , R O O H , R O * a n d R O O * towards G 6 - P D H (Table 3, en- tries 12—20). T h e enzyme a c t i v i t y was only slightly i n - h i b i t e d by O H generated by the F e n t o n reaction (Table 3, entry 12). Surprisingly, F e

2

+ alone showed the same effectiveness. T h i s observation can be explained by o x i - d a t i o n o f F e

2

+ to F e

3

+ a n d *0

2

-, d i s m u t a t i o n o f the latter w o u l d y i e l d H

2

0

2

, w h i c h i n t u r n is o x i d i z e d by F e

2 +

to finally generate O H (Schemes 3 - 5 ) [63].

A d d i t i o n o f the chelator D T P A almost completely can- celled this i n h i b i t i o n , since ferrous D T P A is relatively stable to o x i d a t i o n [63]. T h e effects o f alkylperoxyl a n d

2 F e2 + + 202 *~ 2 F e3- + 2 -02"

Scheme 3

2 -02- + 2H+ *~ H202 + 02 Scheme 4

F e2 + + H202 - F e3 + + «OH + OH"

Scheme 5

a l k o x y l radicals on G 6 - P D H were similar to those o f O H . Incubation with H

2

0

2

a n d alkylhydroperoxides d i d not produce any alteration o f the enzyme activity.

3.3.3. Superoxide anion radical

0

2

(Table 3, entries 7—9), was the most potent inacti- v a t i n g oxygen derivative towards G 6 - P D H at concentra- tions w h i c h caused the same reduction rate o f N B T as d i d 55 % o f a 10 umol/1 d i t h r a n o l solution ( N B T reduc- t i o n by dithranol c o u l d be i n h i b i t e d by S O D to this extent [24], i n d i c a t i n g 55 % o f the reduction to be caused by 0

2

) . G 6 - P D H activity was decreased to 60 %. S i m i l a r effects were achieved by a d d i t i o n o f F e

2

+ - D T P A or F e

3 +

- E D T A (Table 3, entries 10, 11) to the x a n t h i n e / X O - s y s - tem i n order to produce O H as a secondary product. In this case it cannot be differentiated between the effects o f O H a n d 0

2

, but because O H generated by the F e n - t o n reaction (Table 3, entry 12) was only a modest i n h i b - itor, these findings rather suggest that i n this system ' 0

2

"

is the inactivating species exerting the deleterious effects independently o f its iron-catalyzed interaction w i t h H^O^

[64].

O u r experiments w i t h oxygen derivatives, produced i n - dependently o f the drug, demonstrate that G 6 - P D H is inert to H

2

0

2

a n d * 0

2

, but markedly susceptible to * 0

2

. H y d r o x y l radical leads to a modest decrease o f G 6 - P D H activity. In c o n c l u s i o n , i f d i t h r a n o l acts through forma- t i o n o f active oxygen species, ' 0

2

" is the potent species towards G 6 - P D H .

4. References

[1] Shroot, B . , Schaefer, H . , J u h l i n , L . , Greaves, M . W., B r . J . D e r m a t o l . 105 (Suppl. 20), 3 (1981) - [2] Swanbeck, G , B i o c h i m . B i o p h y s . A c t a 123, 630 (1966) - [3] Swanbeck, G , L i n d e n , S., A c t a D e r m . Venereol. (Stockholm) 46, 228 (1966) - [4] G a u d i n , D . , Greggs, R . S., Y i e l d i n g , K . L . , B i o c h e m . B i o p h y s . Res. C o m m u n . 48, 945 (1972) - [5] K u l k a r n i , M . S., Y i e l d i n g , K . L . , B i o c h e m . B i o p h y s . Re s. C o m m u n . 83, 1531 (1978) - [6]

C l a r k , J . M . , H a n a w a l t , P. C . , J . Invest. D e r m a t o l . 79, 18 (1982) _ [7] Verhaeren, E . , P h a r m a c o l o g y 20 ( S u p p l . 1), 43 (1980) - [8] M o r l i e r e , P., Dubertret, L . , Sa e M e l o , T , Salet, C , Fosse, M . , Santus, R . , B r . J . D e r m a t o l . 112, 509 (1985) - [9] Fuchs, J . , Z i m m e r , G , W ö l b u n g , R . H . , M i l b r a d t , R . , A r c h . D e r m a t o l . Res.

279, 59 (1986) - [10] Fuchs, J . , M i l b r a d t , R . , Z i m m e r , G , A r c h . D e r m a t o l . R e s . 282, 47 (1990) - [11] B e d o r d , C . J . , Young, J . M . , Wagner, B . M . , J . Invest. D e r m a t o l . 81, 566 (1983) - [12]

S c h r ö d e r , J . - M . , J . Invest. D e r m a t o l . 87, 624 (1986) - [13] Barr, R . M . , W o n g , E . , C u n n i n g h a m , F. M . , M a l l e t , A . I., Greaves, M . W , A r c h . D e r m a t o l . Res. 280, 474 (1989) - [14] Rassner, G , A r c h . K l i n . E x p . D e r m . 241, 237 (1971) - [ 15] R a a b , W , G m e i - ner, B . , A r c h . D e r m a t o l . Re s. 251, 87 (1974) - [16] R a a b , W. P., G m e i n e r , B . M . , D e r m a t o l o g i c a 150, 267 (1975) - [17] Retzow, A . , P l u m i e r , E . , Wiegrebe, W., P h a r m . Z t g . 126, 2150 (1981) - [18] C a v e y , D . , C a r o n , J . - Q , Shroot, B . , J . P h a r m . Sei. 71, 980 (1982) - [19] H a m m e r , H . , J . Invest. D e r m a t o l . 54, 121 (1970) - [20] Rassner, G . , A r c h . D e r m a t o l . Res. 244, 48 (1972) - [21]

D a v i e s , A . G . , H a w a r i , J . A . - A . , W h i t e f i e l d , M . , Tetrahedron

(6)

Lett. 24, 4465 (1983) - [22] M a r t i n m a a , J . , V a n h a l a , L . , M u s - t a k a l l i o , K . K . , E x p e r i e n t i a 34, 872 (1978) - [23] Bruce, J . M . , G o r m a n , A . A . , H a m b l e t t , I., K e r r , C . W., L a m b e r t , C , M c - Neeney, S. P., i n : Photosensitisation — M o l e c u l a r , C e l l u l a r a n d M e d i c a l Aspects, N A T O A S I Series, Series H : C e l l Biology, V o l . 15, G . M o r e n o , R . H . Pottier, T. G . Truscott (eds.), p. 73, Springer-Verlag, B e r l i n (1988) - [24] M ü l l e r , K . , Wiegrebe, W., Younes, M . , A r c h . P h a r m . ( W e i n h e i m ) 320, 59 (1987) - [25]

Bruce, J . M . , K e r r , C . W , D o d d , N . J . F., J . C h e m . S o c , Faradav Trans. I 83, 85 (1987) - [26] M ü l l e r , K . , K a p p u s , H . , B i o c h e m . P h a r m a c o l . 37, 4277 (1988) - [27] M ü l l e r , K . , Eibler, E . , M a y e r , K . K . , Wiegrebe, W , K l u g , G . , A r c h . P h a r m . ( W e i n h e i m ) 319, 2 (1986) - [28] D a b e s t a n i , R . , H a l l , R . D . , S i k , R . H „ C h i g n e l l , C . F , P h o t o c h e m . P h o t o b i o l . 52, 961 (1990) - [29] Sies, H . , Angew.

C h e m . 98, 1061 (1986) - [30] K o n g , S., D a v i d s o n , A . J . , B i o c h i m . B i o p h y s . A c t a 640, 313 (1981) - [31] Rychener, M . , Steiger, W , P h a r m . A c t a Helv. 64, 8 (1989) - [32] Tanzer, H . , Seidel, M . , Wiegrebe, W , A r c h . P h a r m . ( W e i n h e i m ) 322, 441 (1989) - [33] Auterhoff, H . , Scherff, F. C , A r c h . P h a r m . (Wein- h e i m ) 293, 918 (1960) - [34] A u b r y , J . M . , J . A m . C h e m . Soc.

107, 5844 (1985) - [35] C l a i r b o r n e , A . , i n : C R C H a n d b o o k o f M e t h o d s for O x y g e n R a d i c a l Research, R . A . G r e e n w a l d (ed.), p. 283, C R C Press, Inc., B o c a R a t o n , F l o r i d a (1985) - [36]

M a r k l u n d , S.. M a r k l u n d , G . , Eur. J . B i o c h e m . 47, 469 (1974) - [37] D i M a s c i o , P , Sies, H . , J . A m . C h e m . Soc. I l l , 2909 (1989) - [38] M c C o r d , J . M . , F r i d o v i c h , L , J . B i o l . C h e m . 243, 5753 (1968) - [39] F r i d o v i c h , I., J . B i o l . C h e m . 245, 4053 (1970) - [40] B e a u c h a m p , C , F r i d o v i c h , I., A n a l . B i o c h e m . 44, 276 ( 1971 ) _ [41 ] Poyer, J . L . , M c C a y , P B . , J . B i o l . C h e m . 246, 263 (1971) - [42] H a l l i w e l l , B . , F E B S Lett. 92, 321 (1978) - [43]

Buettner, G . R . , O b e r l e y , L . W , C h a n Leuthauser, S. W. H . , P h o - t o c h e m . P h o t o b i o l . 28, 693 (1978) - [44] N a g a n o , T , F r i d o v i c h , I., P h o t o c h e m . P h o t o b i o l . 41, 33 (1985) - [45] M c C o r d , J . M . , D a y , E . D . , F E B S L e t t . 86, 139 (1978) - [46] C o h e n , G , Sinet, P. M . , F E B S Lett. 138, 258 (1982) - [47] V a n der Zee, J . , Stev- e n i n c k , J . V., K ö s t e r , J . F , D u b b e l m a n , T. M . A . R . , B i o c h i m . B i o p h y s . A c t a 980, 175 (1989) - [48] W i n s t o n , G . W , H a r v e v , W , B e d , L . , C e d e r b a u m , A . I., B i o c h e m . J . 216, 415 (1983) - [49] K a l y a n a r a m a n , B . , M o t t l e y , C , M a s o n , R . P , J . B i o l . C h e m . 258, 3855 (1983) - [50] D a v i e s , J . D . , B i o c h i m . B i o p h y s . A c t a 964, 28 (1988) - [51] S o l a n k i , V , R a n a , R . S., Slaga, T. J . , C a r -

cinogenesis 2, 1141 (1981) - [52] Sa e M e l o , T., Dubertret, L . . P r o g n o n , P.. G o n d , A . , M a h u z i e r , G . Santus, R . . J . Invest. D e r - m a t o l . 80, 1 (1983) - [53] Reichert, U . , Jacques, Y . . Grangeret.

M . , S c h m i d t . R . . J . Invest. D e r m a t o l . 84, 130 (1985) - [54]

U p a d r a s h t a , S. M . , Wurster. D . E . . Int. J . P h a r m . 49, 103 (1989)

— [55] H a l l i w e l l , B . , G u t t e r i d g e , J . M . C , i n : Free R a d i c a l s in B i o l o g y a n d M e d i c i n e , 2 n d E d . , B . H a l l i w e l l , J . M . C . G u t t e r i d g e (eds.), p. 86, C l a r e n d o n Press, O x f o r d (1989) - [56] B u x t o n . G . V , Greenstock, C . L . , H e l m a n , W. P., Ross. A . B . , Phvs. C h e m . Ref. D a t a 17, 513 (1988) - [57] Foote, C . S.. D e n n v ' R . W , J . A m . C h e m . Soc. 90, 6233 (1968) - [58] K w o n , B . - M . . Foote. C . S., J . A m . C h e m . Soc. 110, 6582 (1988) - [59] Foote. C . S.. i n : Free R a d i c a l s i n B i o l o g y II, W A . P r y o r (ed.), p. 85. A c a d e m i c Press, N e w Y o r k (1976) - [60] D o m s c h k e , W , E n g e l . H . J . , D o m - agk, G F., H o p p e - S e y l e r ' s Z . P h y s i o l . C h e m . 350, 1117 (1969)

— [61] Saito, I., M a t s u u r a , T , Inoue, K . , J . A m . C h e m . Soc. 103, 188 (1981) - [62] Bors, W , Saran, M . , Lengfelder, E . , M i c h e l . C , F u c h s , C , F r e n z e l , C , P h o t o c h e m . P h o t o b i o l . 28, 629 (1978)

— [63] C o h e n , G . i n : H a n d b o o k o f M e t h o d s for O x y g e n R a d i c a l Research, R . A . G r e e n w a l d (ed.), p. 55, C R C Press, Inc. Boca R a t o n , F l o r i d a (1985) — [64] F r i d o v i c h , I., A r c h . B i o c h e m . B i o - phvs. 247, 1 (1986)

C o r r e s p o n d e n c e : D r . K . M ü l l e r , Institut für P h a r m a z i e . U n i v e r s i t ä t Regensburg, Postfach 397. W - 8 4 0 0 Regensburg ( F e d . R e p . o f G e r m a n y )

Editors: Prof. D r . Hans Georg Classen. V i k t o r Schramm. Editorial services: Waltraud Frey. Publisher: Editio Cantor Verlag für Medizin und Naturwissenschaften G m b H . P.O.B. 12 55. W-7960 Aulendorf (Fed. Rep. of Germany), phone: (0 75 25) 20 60. fax: (Ö 75 25) 2 06 80. Printed by Vereinigte Buchdruckereien A . Sandmaier u. Sohn.

W-7952 Bad Buchau (Fed. Rep. of Germany). A l l rights reserved.

Delivery conditions: The journal is published monthly. T w o volumes (I. II) per year. One volume includes 6 issues (supplementary issues free of charge). The journal is supplied by the publisher and by booksellers. Annual subscription rate (minimum 12 issues): 472.— D M plus postage: foreign annual subscription rate: 514.- D M plus postage. Sale per copy: 45.— D M plus postage. V A T always included. Free specimen copies are supplied by the publisher upon request.

Printed in the Federal Republic of Germany I S S N 0004-4172

Referenzen

ÄHNLICHE DOKUMENTE

In the course of this thesis, the conditions at which carbonate minerals and melts form from either graphite or diamond were studied as a function of pressure, temperature and

On the other hand, films prepared with more amorphous Al(OH) 3 based forms of ATH nanoparticles increased the heat capacity of the films up to * 57% compared to the pure MFC at

The severity of disease is determined by the magnitude of enzyme deficiency: Class I variants have severe enzyme deficiency with chronic non-spherocytic haemolytic anaemia

Three categories of risk areas were identified: (i) zones at relatively high malaria risk with high current incidence rates, where malaria control and prevention measures should

concentration was adjusted to values between 0 and 10 μM and the steady state redox states of FTR, TRX-f1, FBPase and 2CysPRX were modelled by kinetic simulation (Fig 1B–1E).. The

The ROS amount is controlled by the activity of generator systems such as photosynthetic and respiratory electron transport chains and oxidases (RBOH: NADPH oxidase; GO:

Adam Smith så ikke at aktiviteter med en sterk arbeidsdeling ville får større markedsmakt enn hans idealiserte jordbruk, selv om han forøvrig klart innså at arbeidsdelingen

&#34;Community Medicine&#34; aufgebaut. Ein Eckpfeiler dieses Schwerpunktes ist die Integration der Problemstellungen der Lehre, Forschung und medizinischen Versorgung.