• Keine Ergebnisse gefunden

Web calculi in representation theory

N/A
N/A
Protected

Academic year: 2022

Aktie "Web calculi in representation theory"

Copied!
29
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Web calculi in representation theory

Or: the diagrammatic presentation machine Daniel Tubbenhauer

5 2 6 1 7

6 6 7 2

5

7 1 8

2 3

5

1 6

Joint work with David Rose, Antonio Sartori, Pedro Vaz and Paul Wedrich

October 2015

Daniel Tubbenhauer October 2015 1 / 28

(2)

History of diagrammatic presentations in a nutshell

Rumer, Teller, Weyl (1932), Temperley-Lieb, Jones, Kauffman, Lickorish, Masbaum-Vogel, ... (≥1971):

Uq(sl2)-tensor category generated byC2q. Kuperberg (1995):

Uq(sl3)-tensor category generated byV1qC3q∼=C3q andV2qC3q. Cautis-Kamnitzer-Morrison (2012):

Uq(slN)-tensor category generated by VkqCNq. Sartori (2013),Grant (2014):

Uq(gl1|1)-tensor category generated by VkqC1|1q . Rose-T. (2015):

Uq(sl2)-tensor category generated bySymkqC2q.Thus,Uq(sl2)-Mod.

Link polynomials:Queffelec-Sartori (2015); “algebraic”:Grant (2015):

Uq(glN|M)-tensor category generated by VkqCN|Mq . T.-Vaz-Wedrich (2015):

Uq(glN|M)-tensor category generated by VkqCN|Mq andSymkqCN|Mq . Sartori-T. (maybe! 2015):

Uq(so2N+1,sp2N,so2N)-tensor categories generated by VkqC2N(+1)q .

Daniel Tubbenhauer October 2015 2 / 28

(3)

1 Some of the first diagrammatic algebras Classical Schur-Weyl duality

Graphical calculus via Temperley-Lieb diagrams The diagrammatic presentation machine

2 The whole story forsl2

Symmetricsl2-webs

Proof? Symmetric Howe duality!

Some cousins

3 Applications

Link invariants `a la Reshetikhin-Turaev Colored Jones and HOMFLY-PT polynomials

Promise: no moreq’s till the very end. But you can insert them everywhere.

Daniel Tubbenhauer October 2015 3 / 28

(4)

The question we want to solve

The symmetric groupSm inmletters is:

Smis the the group of automorphisms of the set{1, . . . ,m}, Sm=hσ1, . . . , σm−1|Ri,R=





σ2i = 1, i= 1, . . . ,m−1 σiσjσijσiσj, |i−j|= 1.

σiσjjσi, |i−j|>1.

The first description is given “by nature” and explains whySm is interesting. The second is a theorem and a “working horse”.

Given a Lie algebrag, we canask the same:

g-Mod category of finite-dimensionalU(g)-modules, g-Mod=h?|??i.

The first description is given “by nature” and explains whyg-Modis interesting.

So, we want the second as well!

Daniel Tubbenhauer Classical Schur-Weyl duality October 2015 4 / 28

(5)

The symmetric group - diagrammatically

The symmetric groupSm can be described as:

Sm=

*

· · · · · · = 1, = , · · · = · ··

+

Similarly forC[Sm].

LetCnwith basisv1, . . . ,vn. ThenC[Sm] acts on (Cn)⊗m by permuting entries:

· · · · vj1 vji−1 vji vji+1vji+2 vjm

vj1 vji−1vji+1 vji vji+2 vjm

: (Cn)⊗m→(Cn)⊗m.

This is a well-defined action (check relations!).

Daniel Tubbenhauer Classical Schur-Weyl duality October 2015 5 / 28

(6)

The algebra U(gl

n

)

LetU(gln) be the universal enveloping algebra of the Lie algebragln.U(gln) is given viagenerators and relations:

U(gln) =hEi,Fi,Hj|i= 1, . . . ,n−1; j= 1, . . . ,ni/some relations, (the relations are lifts of the relations among the matrices ofgln).

Example

Recall thatgl2is generated by E =

0 1 0 0

, F=

0 0 1 0

, H1=

1 0 0 0

, H2=

0 0 0 1

.

TheC-algebraU(gl2) consists of words in the symbolsE,F,H1,H2modulo EF−FE =H1−H2

(plus a few other relations).

Daniel Tubbenhauer Classical Schur-Weyl duality October 2015 6 / 28

(7)

C [ S

m

] is “dual” to U(gl

n

)

SinceU(gln) acts “as matrices” onCn, we can extend it to (Cn)⊗m via

∆(Ei) = 1⊗Ei+Ei⊗1, ∆(Fi) = 1⊗Fi+Fi⊗1, ∆(Hi) =Hi⊗Hi.

Theorem (Schur 1901)

The actions ofC[Sm] andU(gln) on (Cn)⊗m commute and they generate each other commutant. In particular, they induce an algebra homomorphism

ΦmSW:C[Sm]։EndU(gln)((Cn)⊗m), ΦmSW:C[Sm]−=→EndU(gln)((Cn)⊗m), ifn≥m, (and of course a “dual version” which we do not need).

In words: Schuralmostgave a diagrammatic generators and relations description of the full subcategorygl2-Mode ofgln-Modtensor generated by the vector representationCn ofU(gln).

Daniel Tubbenhauer Classical Schur-Weyl duality October 2015 7 / 28

(8)

The 2-web space

Definition(Rumer-Teller-Weyl 1932)

The 2-web spaceHom2-Web(b,t) is the freeC-vector spacegeneratedby non-intersecting arc diagrams withb,t bottom/top boundary points modulo:

Circle

removal: 1 =−2.

Isotopy relations:

1 1

=

1 1

=

1 1

Daniel Tubbenhauer Graphical calculus via Temperley-Lieb diagrams October 2015 8 / 28

(9)

The 2-web category

Definition(Kuperberg 1995)

The2-web category 2-Webis the (braided) monoidal,C-linear category with:

Objects are vectors~k = (1, . . . ,1) and morphisms areHom2-Web(~k,~l).

Composition◦:

1 1

1 1

= 1 ,

1 1

1 1

=

1 1

1 1

Tensoring⊗:

1 1

1 1

1 1

=

1 1

1 1 1

1

Daniel Tubbenhauer Graphical calculus via Temperley-Lieb diagrams October 2015 9 / 28

(10)

Diagrams for intertwiners

Observe that there are(up to scalars)uniqueU(sl2)-intertwiners cap: C2⊗C2։C, cup:C֒→C2⊗C2, projectingC2⊗C2 ontoCrespectivelyembeddingCintoC2⊗C2.

Letsl2-Mode be the (braided) monoidal,C-linear category whose objects are tensor generated byC2. Define a functor Γ : 2-Web→sl2-Mode:

~k = (1, . . . ,1)7→C2⊗ · · · ⊗C2,

1 1

7→cap ,

1 1

7→cup

Theorem(Folklore, Rumer-Teller-Weyl 1932)

Γ : 2-Web→sl2-Mode is an equivalence of (braided) monoidal categories.

Daniel Tubbenhauer Graphical calculus via Temperley-Lieb diagrams October 2015 10 / 28

(11)

The diagrammatic presentation machine

ConsiderC[Sm] as aC-linear category. By Schur-Weyl duality there is afull functor ΦmSW:C[Sm]→gl2-Mode.

Theorem

Define2-Websuch there is a commutative diagram C[Sm] Φ

m

SW //

Υ■■Sm■■■■■■$$

gl2-Mode

2-Web

Γ

99

rr rr rr rr r

with

ΥSm

7→

1 1

1 1

+

1 1

1 1

ΥSm circle relation, isotopy relations, ker(ΦmSW) isotopy relations

Daniel Tubbenhauer The diagrammatic presentation machine October 2015 11 / 28

(12)

From gl

2

to sl

2

Restricting fromgl2 tosl2 could increase the number of intertwiners:

U(sl2)⊂U(gl2) ⇒ HomU(sl2)(M,M)⊃HomU(gl2)(M,M).

Note thatC2 is self-dual as aU(sl2)-module, butnotas aU(gl2)-module. We obtain extra diagrams:

1 1

:C2⊗C2→C,

1 1

:C→C2⊗C2.

These satisfy the isotopy relations and “fill up the missing” hom-spaces:

HomU(gl2)(C2⊗C2,C) = 0, but HomU(sl2)(C2⊗C2,C) =

*

1 1

+

, etc.

Daniel Tubbenhauer The diagrammatic presentation machine October 2015 12 / 28

(13)

The symmetric story

Aredsl2-web is a labeled trivalent graph locallygeneratedby

capk =

k k

, cupk =

k k

, mk+lk,l =

k+l

k l

, sk,lk+l=

k+l

k l

Herek,l,k+l∈ {0,1, . . .}.

Example

5 2 6 1 7

6 6 7 2

5

7 1 8

2 3

5

1 6

Daniel Tubbenhauer Symmetricsl2 -webs October 2015 13 / 28

(14)

Let us form a category again

Define the (braided) monoidal,C-linear category 2-Webrby using:

Definition

Thered 2-web space Hom2-Webr(~k,~l) is the freeC-vector space generated byred 2-webs modulo the circle removal, isotopies and:

glm “ladder”

relations, e.g.:

l k

l k

l+1 k−1

1 1

k l

k l

k+1 l−1

1 1

= (k−l)

l k

l k

Dumbbell

relation : 2

1 1

1 1

=−

1 1

1 1

+

1 1

1 1

2

Daniel Tubbenhauer Symmetricsl2 -webs October 2015 14 / 28

(15)

Diagrams for intertwiners

Observe that there are(up to scalars)uniqueU(sl2)-intertwiners

capk:SymkC2⊗SymkC2։C, cupk:C֒→SymkC2⊗SymkC2,

mkk+l,l :SymkC2⊗SymlC2։Symk+lC2, skk,l+l: Symk+lC2֒→SymkC2⊗SymlC2 given byprojectionandinclusion.

Letsl2-Mods be the (braided) monoidal,C-linear category whose objects are tensor generated bySymkC2. Define a functor Γ : 2-Webr→sl2-Mods:

~k= (k1, . . . ,km)7→Symk1C2⊗ · · · ⊗SymkmC2,

k k

7→capk ,

k k

7→cupk ,

k+l

k l

7→mkk+l,l ,

k+l

k l

7→skk,l+l

Theorem

Γ : 2-Webr →sl2-Mods is an equivalence of (braided) monoidal categories.

Daniel Tubbenhauer Symmetricsl2 -webs October 2015 15 / 28

(16)

“Howe” to prove this?

Howe: the commuting actions ofU(glm) andU(glN) on SymK(Cm⊗CN)∼= M

k1+···+km=K

(Symk1CN⊗ · · · ⊗SymkmCN)

introduce anU(glm)-actionf on the right term with~k-weight space Sym~kCN. In particular, there is a functorial action

Φmsym: ˙U(glm)→glN-Mods,

~k 7→Sym~kCN, X ∈1~lU(glm)1~k 7→f(X)∈HomglN-Mods(Sym~kCN,Sym~lCN).

Howe: Φmsym isfull. Or in words:

relations in ˙U(glm) + kernel of Φmsym relations inglN-Mods.

Daniel Tubbenhauer Proof? Symmetric Howe duality! October 2015 16 / 28

(17)

The diagrammatic presentation machine

Theorem

Define2-Webrsuch there is a commutative diagram U(gl˙ m) Φ

m

sym //

Υm

$$

❏❏

❏❏

❏❏

❏❏

gl2-Mods

2-Webr Γ

99

ss ss ss ss ss

with

Υm(Ei1~k)7→

ki ki+1

ki+1−1 ki+1

1 , Υm(Fi1~k)7→

ki ki+1

ki−1 ki+1 +1 1

Υm glm “ladder” relations, ker(Φmsym) dumbbell relation.

Daniel Tubbenhauer Proof? Symmetric Howe duality! October 2015 17 / 28

(18)

Exempli gratia

Theglm “ladder” relations come up as follows:

EF1~

k−FE1~

k= (k −l)1~

k

l k

l k

l+1 k−1

1 1

k l

k l

k+1 l−1

1 1

= (k−l)

l k

l k

The dumbbell relation comes up as follows:

C2⊗C2∼=V2C2⊕Sym2C2∼=C⊕Sym2C2

2

1 1

1 1

=−

1 1

1 1

+

1 1

1 1

2

Daniel Tubbenhauer Proof? Symmetric Howe duality! October 2015 18 / 28

(19)

No fancy stuff like Karoubi completions needed

Fact:all irreducibleU(sl2)-modules are of the formSymkC2for somek. Thus, sl2-Mods contains all finite-dimensional representations.

In particular, the Jones-Wenzl projectors of the TL algebra (RTW algebra)

· · ·

· · ·

JWk = 1

k!

1 k−1

1 k−1

k 1 k−2

1 k−2

.. .

.. .

are encoded (and alsoall their relations!).

Daniel Tubbenhauer Proof? Symmetric Howe duality! October 2015 19 / 28

(20)

As far as we can go in type A

We could also considerslN instead ofsl2(diagram categoryN-Webr). And VkCN instead ofSymkCN (diagram categoryN-Webg). Or both together (diagram categoryN-Webgr). The graphical calculi for these arevery similar.

Example

5 2 6 1 7

6 6 7 2

5

7 1 8

2 3

5

1 6

greenk!VkCN, redk !SymkCN,

black 1!V1CN ∼=Sym1CN∼=CN.

Daniel Tubbenhauer Some cousins October 2015 20 / 28

(21)

The machine in action again

They are look the same because they are spit out by our machine, e.g.:

Theorem

DefineN-Webgr such there is a commutative diagram U˙q(glm|n) Φ

m|n

su //

Υm|nsu▲▲▲▲▲▲▲%%

▲▲

glN-Modes

N-Webgr Γ

88

rr rr rr rr rr r

with

Υm|nsu (Em1~k)7→

km+1 km

km+1−1 km+1

1 , Υm|nsu (Fm1~k)7→

km km+1

km−1 km+1 +1 1

Υm|nsu “glm|n ladder” relations, ker(Φm|nsu ) the exterior relation.

Daniel Tubbenhauer Some cousins October 2015 21 / 28

(22)

Link invariants via representation theory

Color link components withUq(g)-modules. Put the links into a Morse position.

V1

V2

C(q)

C(q)⊗V1⊗V1⊗C(q) V1⊗C(q)⊗V1⊗C(q) V1⊗C(q)⊗C(q)⊗V1

V1⊗V2⊗V2⊗V1

V2⊗V1⊗V2⊗V1

V1⊗V2⊗V2⊗V1

V1⊗C(q)⊗C(q)⊗V1 V1⊗C(q)⊗V1⊗C(q) C(q)⊗V1⊗V1⊗C(q)

C(q) εV1

shift shift εV2

RV2⊗V1

RV1⊗V2

ιV2

shift shift ιV1

Theorem (Reshetikhin-Turaev 1990)

The compositeP~q

V(1)∈Q(q) is an invariant of(framed, oriented)links.

Daniel Tubbenhauer Link invariants `a la Reshetikhin-Turaev October 2015 22 / 28

(23)

Wait: we have a diagrammatic calculus

Recall that there was an action ofC[Sm] on 2-Web. Thisquantizes:

ΥSm

7→

1 1

1 1

+

1 1

1 1

ΥHm

7→ q12

|{z}

normalization1

1

1 1

+q−1

1 1

1

1!

Similarly, our diagrammatic calculusquantizes. The difference is

1 =−2 1 =−[2] =−q−q−1.

Theorem (Kauffman 1987)

Using these in the Reshetikhin-Turaev set-up withg=sl2and onlyC2qas colors gives a combinatorial way to compute the Jones polynomial.

There is a framing shift which I hide, but never mind.

Daniel Tubbenhauer Colored Jones and HOMFLY-PT polynomials October 2015 23 / 28

(24)

Exempli gratia

C2q

C2q 1 1

+q−1·

1 1

+q−1·

1 1

+q−2·

1 1

PCq2

q,C2q(L) =q((−q−q−1)2+q−1(−q−q−1) +q−1(−q−q−1) +q−2(−q−q−1)2)

=q(q+q−1)(q+q−3).

This is (up tonormalization) the Jones polynomial of the Hopf link.

Daniel Tubbenhauer Colored Jones and HOMFLY-PT polynomials October 2015 24 / 28

(25)

Wait: we have even more diagrammatic calculi

We can quantize the category 2-Webr and obtain a braided monoidal category which enables us to cook up link invariantsdiagrammatically. The braiding is:

k l

=(−1)kq−k−kl2

| {z }

normalization

X

j1,j2≥0 j1−j2=k−l

(−q)j1

l k

l+j1−j2 k−j1 +j2

l+j1 k−j1

j1 j2

Theorem

Using these in the Reshetikhin-Turaev set-up withg=sl2andSymkqC2qas colors gives a new, combinatorial way to compute the colored Jones polynomial.

This workscompletely similarfor the categoriesN-Webg,N-Webr andN-Webgr

giving rise to a new way to compute coloredslN polynomials for all colors (and thus, colored HOMFLY-PT polynomials).

Daniel Tubbenhauer Colored Jones and HOMFLY-PT polynomials October 2015 25 / 28

(26)

Another application: the HOMFLY-PT symmetry

There is also a polynomial calledcolored HOMFLY-PT polynomial

Pλa,q(K)∈C(a,q) (K“=”knot). The colorsλare Young diagrams. The whole framework should be seen as the“N→ ∞”-versionof theslN Reshetikhin-Turaev approach (a qN) withλcorresponding to irreducible highest weight module.

From the diagrammatic calculi we obtain:

Corollary (the HOMFLY-PT symmetry)

The colored HOMFLY-PT polynomial satisfies

Pλa,q(K) =(−1)coPλa,qT−1(K), whereco is some constant. Similar for links.

This is arepresentation theoretical explanationof the the HOMFLY-PT symmetry.

Daniel Tubbenhauer Colored Jones and HOMFLY-PT polynomials October 2015 26 / 28

(27)

I do not have tenure. So I have to bore you a bit more.

Some additional remarks.

Homework: feed the machine with yourfavorite duality.

We are working on thetypeB,CandD-versionsand the diagrams work fine (yet, the quantization is complicated).

Some parts even work in thenon-semisimple case (e.g. at roots of unities).

The whole approach seems to beamenableto categorification.

Relations to categorifications of the Hecke algebra usingSoergel bimodules or categoryO need to be worked out.

This could lead to a categorification ofU˙q(glm|n)(since the “complicated”

super relations are build in the calculus).

A “green-red-foamy” approach could shed additional light on colored Khovanov-Rozansky homologies.

Daniel Tubbenhauer Colored Jones and HOMFLY-PT polynomials October 2015 27 / 28

(28)

There is stillmuchto do...

Daniel Tubbenhauer Colored Jones and HOMFLY-PT polynomials October 2015 28 / 28

(29)

Thanks for your attention!

Daniel Tubbenhauer Colored Jones and HOMFLY-PT polynomials October 2015 28 / 28

Referenzen

ÄHNLICHE DOKUMENTE

(Coxeter=Weyl: ‘Indecomposable projective functors on O 0 .’) Symmetric group: the 2-simples are categorifications of the simples..

• Unfortunately, we do not know how to lift these functorial representations of T e to full-blown 2-representations of trihedral Soergel bimodules in a..

Daniel Tubbenhauer Green-red symmetry and the Hecke algebroid March 2015 28 / 28.. Thanks for

Daniel Tubbenhauer The virtual Khovanov homology July 2013 11 / 29.+. the complex is an invariant up to chain

Theorem 3.11 implies that if V is a finite dimensional representation of a finite group G, then the complex conjugate representation V (i.e., the same space V with the same addition

The author conjectures that the whole construction can be used as a “blueprint” for a cate- gorification of the virtual sl 3 polynomial (as explained in Section 1.3), since

•...in the context of the representation theory of Hopf algebras? Fusion rules i.e. tensor products rules... •...in the context of categories? Morphisms of representations and

In the early 1990s, Soergel constructed an algebraic categorification of the Hecke algebra using certain bimodules, now called Soergel bimodules Soergel conjectured that