• Keine Ergebnisse gefunden

Analyzing XploRe Download Profiles with Intelligent Miner

N/A
N/A
Protected

Academic year: 2022

Aktie "Analyzing XploRe Download Profiles with Intelligent Miner"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

telligent Miner

HizirSofyanand Axel Werwatz 1

1

InstitutefurStatistikund



Okonometrie,HumboldtUniversitat

zu Berlin,Spandauer Str. 1, 10178,Berlin

Summary

This paper is anexample of data mining in action. Thedatabase we are

miningcontains1085prolesofindividuals whohavedownloadedthesta-

tistical softwareXploRe. Each prole contains theresponses to an online

questionnairecomprised of questions about such thingsas anindividuals'

computing preferences (operating system, favourite statistics software) or

professionalaÆliation. After formatting and cleaning the rawdata using

MS Excel,weuseIBM'sIntelligent Minerto perform aclusteranalysis

ofthedownloadproles.

Wetrytoidentifyasmallnumberof\types"ofusersbyemployingacluster-

ingalgorithmbasedontheNewCondorcetCriterion, which isparticularly

well-suited for our all-categorical data. We identify three clusters in the

mining run: Academia,Unix/Linux users and Researchers. The three

variabelsthataremostimportantinidentifyingtheclustersareanindivid-

ual'skindofwork,thewayheorshegottoknowXploReandtheoperating

systemofhis orhercomputer.

(2)

Recently,thecapabilitytobothgenerateandcollectdatahasbeenexpanded

enormouslyand providesus with hugeamountsof datathat are often rou-

tinely collected during daily operations. To store, organize and access the

data powerful and aordable database management systems are available

(Ha,1998).

Theaimofdataminingisto-intelligentlyandautomatically-extractuse-

fulinformationfrom these databases. It triesto discoverpatterns andrela-

tionshipshiddeninthedatausingsuitablestatisticalmodelsandtechniques.

Thus,dataminingmayyieldprotableresultsforalmosteveryorganization

thatcollectsdataonitscustomers,markets,productsorprocesses.

Thispaperisanexampleofdatamininginaction. Thedatabaseweare

miningcontainstheprolesofindividualswhohavedownloadedthestatisti-

calsoftwareXploRe. XploReisaimedatsophisticateduserswhoarelooking

for a exible, programmable statistics package with an emphasis on more

advanced procedures (Hardle, 1999). It is thereforeparticularly important

for the makersof XploReto get to know those who are interested in their

product.

BeforeafreetrialversionofXploRecanbe downloaded, customersare

askedinanonline questionnairetoprovideinformation, forinstance,about

their identity, occupation and computing preferences. The raw data thus

consistsof1085multivariateprolesofindividualswhodownloadedXploRe

betweenNovember1,1999andOctober31,2000.

Ourminingrunconsistsofthefollowingsteps:

organizeandcleantheASCII rawdatawithMS Excel

transferthedatatoIBM'sIntelligent Miner

performaclusteranalysisof thedownloadproles

In the cluster analysis, we try to identify a small number of "types"

of users. We identify three clusters: Academia, Unix/Linux users and

Researchers. Thethreevariabelsthataremostimportantinidentifyingthe

clustersareanindividual'skindofwork,thewayshegottoknowXploReand

theoperatingsystem(Windows,Unix,..) forwhich shedownloadedXploRe.

Theremainderof thepaperis organizedasfollows. Inthenextsection,

we describe the online questionnaire used to collect the data and how the

rawdatawasorganizedandcleaned. Beforeweturnto thecluster analysis,

wesummarizethedata andexplainourchoiceof miningsoftwareandclus-

teringalgorithm. Thisisfollowedbyadiscussionoftheresultsofthecluster

analysis. Thenal sectionconcludes.

(3)

Figure1: Personal Questions

2 The data

2.1 Getting the data

ThoseinterestedinthestatisticalcomputingenvironmentXploRecandown-

loadafreetrial versionfrom its homepage. All versions of XploRe(except

for the Linux local version) are demo-versions that expire after about two

months,arelimitedto 1000observations anddonotinclude allofXploRe's

featuresandcommands. TheLinuxlocalversionhasnoexpirationdateand

nolimitonthesizeofthedata.

Beforetheactualdownloadisstarted,customersareaskedtointeractively

provideinformationabouttheiridentity,computingpreferences,etc.

TherstpartoftheonlinequestionnaireisshowninFigure1. Customers

arepromptedtotypeintheirname,aÆliationandaddress. Alloftheseitems,

exceptfortheaÆliation,mustbeansweredto beableto downloadXploRe.

Wewill refertothis groupofquestionsas"personalquestions".

The nextset ofquestions isshownin Figure 2. Users areaskedto pro-

videinformation onthe kind of worktheyneed XploRefor, the waythey

learnedaboutXploRe(get information)and thestatistical software

theycurrentlyuse. Allthesequestions areansweredbyselectingitemsfrom

alistofpossibleresponses. Answeringthemisnotrequiredfordownloading

(4)

Figure2: SubstantiveQuestions

XploRebuttheiroptionalcharacterisnotexplicitlyrevealed. Theresponses

tothese questionswillplayaprominentrolewhenwetrytoform groupsof

homogeneoususers. Thisis thereasonforreferringtothemas\substantive

questions".

Thelastpartofthequestionnaire,notshownheretosavespace,contains

rather "technical" questions. Users have to select the version of XploRe

they would like to download. They can choose from a list of operating

systems (Windows, Linux, etc.) and between the local version of XploRe

and the Java-Client-only version. They also can opt to subscribe to the

XploRemailinglist.

As partof thedownloadprocedure,thedateandIP-addressareauto-

matically recorded. The raw data thus consists of multivariateproles for

1085individualswhodownloadedXploRefromNovember1,1999toOctober

31,2000.

2.2 Cleaning the data

Eventhemostsophisticatedstatisticalmethodswilldelivererroneousresults

ifthedataareofpoorqualityorsimplywrong: "garbagein,garbageout",as

thesayinggoes. Wethereforethoroughlycleanedtherawdatabeforeusing

(5)

Those that download XploReclearly would like to complete the down-

loading process as swiftly as possible and probably prefer to be asked no

questionsatall. Ifaskedtoomany,toocomplicated,ortoocuriousquestions

people mightgetannoyedandgivewrongorincompleteanswers.

InthecaseofXploRe,thereareonlyafew\substantive"questionsand,as

showninFigure2,theyarealleasytoanswer.Buttheyarepreceededbythe

mandatoryquestionsonauser'sidentitytowhichquiteafewpersonsgavean

intentionallywronganswer. Wetookobviouslyfalseanswerstothe"personal

questions"asindicatorsthattheanswerstothe"substantivequestions"may

alsobewronglyanswered. Suspiciousobservationswereinspectedone-by-one

anddroppedaccordingtoaset ofcriteria.

It should be pointedout, that this part of thedata mining process can

hardlybemadefullyautomatic. Therearesimplymorewaystosupplyfalse

informationthananycomputerprogramcanidentify.

2.3 Summary of the data

Beforeturningtotheclusteranalysis,wewillgiveasummaryofthevariables

thatcomprisethedownloadproles.

All ofourvariables arecategorical(whichwill be reectedin ourchoice

ofclusteringmethod). Hence,itmakessense tousethemodalcategoriesof

each variable to createthe \typical"person whodownloadedXploRe. This

person works at an Europeanuniversity, hasheard of XploRe on the web,

usesMS Exceltodostatistics,andhasdownloadedthelocalWindowsversion

ofXploRe.

Turningtothevariablesone-by-one,about80%oftheusersworkeitherat

auniversity(46%)oraresearchinstitution(34%)whileonlyasmallfraction

of the downloadsare initiated by people working for private, non-research

companies.

Figure 3 shows that information about XploRe has been disseminated

throughvariouschannels,withtheworldwidewebalreadyplayingthemost

importantrole.

Two-thirdsofalldownloadsrequesttheWindowsversionofXploRe,with

Linux comingin secondat about30%. Thepopularityof theLinuxversion

issurely boosted byits relativeattractiveness (noexpiration date, nolimit

onsize ofdatasets). Allotheroperatingsystemsplayaveryminorrole.

Wewerequitesurprisedto learnthatwhenpeoplewereaskedaboutthe

statistical software they currently use, the most frequent response was MS

Excel. XploReisacommanddrivensoftwarewithacomparativeadvantage

inratheradvancedstatisticalmethods,particularlysmoothing. Weexpected

programssimilarindesignandscopetoXploResuchasS-PlusorGAUSStobe

themostfrequentchoicesinthiscategory. Whiletherearesubstantialshares

of S-Plusand GAUSSusers (both account for about 7% of all downloads),

Figure 4 shows that most downloads are made by users of more standard

(6)

fr ac tio n

get information

0 .1 .2 .3 .4 .5 .6 .8 1

WWW or newsgroups Colleagues Journals

Other Conference

Figure3: Get Information

fra cti on

statistical software

0 .05 .1 .15 .2 .3

Excel SPSS SAS

MatLab GAUSS S/S-Plus

All others have less than 5%

Figure4: StatisticalSoftware

(7)

may befacing astatistical problem that requires aprogrammable, matrix-

orientedtoollikeXploRe.

Finally,themajorityofthedownloadsaremadebyresidentsofGermany

(22.5%), the U.S. (almost 18.8%), and Italy, France, and the UK (which

combinefor17.51%). About10%ofthedownloadsaremadefromAsiawhile

AustralianandAfricandownloadsareveryrare.

3 Mining Technology

3.1 Mining Software

Theprimarygoalofourminingrunistoidentify asmallnumberof\types"

ofusersbyperformingacluster analysisofthedownloadproles. Wechose

Intelligent Minertodotheclusteranalysisforseveralreasons.

Firstly,theclusteringalgorithmofIntelligent MineremploystheNew

Condorcet Criterion (NCC), which is particularlywell-suitedfor adata set

like ours that consists entirely of discrete (categorical) variables. We will

discussNCCinmoredetailinthefollowingsection.

Secondly,Intelligent Minercomeswithaclustervisualizationtoolthat

greatlyhelpsinsolvingoneofthemainproblemsofclusteranalysis:guring

out what the clusters mean and translating those insights into meaningful

customersegments. An exampleisshown inFigure 5of section4wherewe

willexplainandutilizeIntelligent Miner'sgraphicaloutput.

Finally,thewelltestedparallelalgorithmofIntelligent Mineriscom-

putationallyeÆcient.

3.2 Clustering Method

Clusteranalysis partitions theobservations into disjointgroups (synonyms

are \classes"and \clusters") such that observations belonging to the same

class are very similar while observations belonging to dierent classes are

verydierent. Thesimilarityofobservationsismeasuredbysomedistance

function (such as the Euclidean distance for continuous variables). Once

a rule for computing the distance between any two observations has been

determined, one can compute for a given partition the distances between

observationsofthesameclass(within-grouporintraclassdistances)andob-

servationsofdierentclasses(between-grouporinterclassdistances). These

individualdistancesarecombinedbyapartitioncriterionthatcanbeused

tocomparedierentpartitions. Sinceitis ingeneralimpossibleto consider

allpossiblepartitionsoftheobservations,aclustering algorithmalsohasto

haveastrategyforsearchingfortheoptimalpartition.

Various choices exist for all aspects of this problem: the distance, the

partition criterion and the optimization strategy. We will not attempt to

provide acomprehensivediscussion herebut rather focus onthe algorithm

(8)

CondorcetCriterion

Theclusteringalgorithm usedin thispaperis basedontheNewCondorcet

Criterion(NCC)ofMichaud(1997). ItisinspiredbyCondorcet(1743-1794)'s

workonndingadesirablewaytoaggregatevotes(rankings)in anelection.

TheNCC combines intraclass agreement as well as interclassdisagreement

such that \good" partitions, i.e. those with small intraclass distances and

largeinterclassdistances,gethighervaluesofthecriterionfunction.

Specically,foragivenpartition P, thegoodnesscriterionis

G(P)= p

X

k =1 X

i2L

k 0

@ X

j2L

k

;j6=i (m d

ij )+

X

j62L

k d

ij 1

A

: (1)

Theindexoftheleftmostsumisoverthepclasses(clusters)whiletheinner

sumsrunovertheobservationsthatarewithinandoutsidesomeclusterL

k :

Thesummandsarethedistancesd

ij :

Forcategorical variables,the distanced betweentwoobservationsi and

j isthenumberofvariablesforwhichthetwoobservationstakeondierent

values,i.e. thenumberofdisagreementsbetweenthetwoobservations. Ifm

variables are measuredfor each observation then it follows that m d

ij is

just the opposite of d

ij

: the number of agreementsbetween observations i

andj.

G(P)calculatesforagivenpartitionP thesumofallintraclusteragree-

mentsand all intercluster disagreements. Dierent partitions may then be

ranked accordingto their valueof G(P){ the higherG(P); the betterthe

partition. Indeed, if we interpret intracluster agreements and intercluster

disagreementsas"votes" foragivenpartition,then theconnectionto Con-

dorcet'sworkbecomesapparent: thewinneramong allcandidates(i.e. par-

titions)oftheelection(i.e. theclusteranalysis)istheonereceivingthemost

votes(i.e. thehighestvalueofG(P)):

It remains to explainIntelligent Miner'sstrategyfor nding theop-

timalpartition (i.e. theonewiththehighestvalueof G(P)). Intelligent

Minerconsidersallpartitionswhosenumberofclusterspissmallerthanthe

maximumnumberofclustersspeciedbytheuser. Thatis,iftheuserwants

tondthebestpartitionamong thosewith, say,atmostthreeclustersthen

Intelligent Minerwill calculate G(P)for all partitions with one, two or

threeclusters.

4 Results and Discussions

Theclustering algorithm described in the previoussection requires two in-

(9)

maximum number of clusters per partition. We have tried various combi-

nationsofvariables andmaximumnumberofclusters, basically following a

heuristic"backwardselection"strategy. Thatis,westartedwitharelatively

largenumberof variablesand maximumnumberof clusters, aimingto nd

asmaller,moreparsimoniouspartition.

Inthispaper,wewillshowtwostages alongthispath. First,wepresent

the results of a partition based on ve variables and a maximum of ve

clusters per partition. Then we present a more parsimonious, \optimal"

partition,basedonthree variablesandamaximumnumberofthree cluster.

N=1085

Global CondorcetValue=0.4722

Id ClusterSize ClusterSize Condorcet

(Absolut) (Relative) Value

0 324 29.86 0.4923

1 220 20.28 0.5121

2 191 17.60 0.4584

3 203 18.71 0.4402

4 147 13.55 0.3690

Table1: ClusterCharacteristics

Tables1,2and3summarizetheresultsof thecluster analysiswith ve

variables and amaximumof ve clusters. The ve"active" variable (that

wereactuallyusedinformingtheclusters)arekind of work,statistical

software,get information,country,and operating system. There are

alsotwosupplemental variables(get on mailing list,kind of server).

SimilarityFilter: 0.30

Cluster1 Cluster2 Similarity

1 4 0.30

2 3 0.31

Table2: SimilarityBetweenClusters

Table1 gives the value of the overall goodness criterion G(P) of equa-

tion (1) ("Global Condorcet Value = 0.4722"), as well as the intracluster

agreements(column"CondorcetValue")foreachoftheveclusters. Table2

reportsinterclusteragreementsfor selectedclusters. All measuresare stan-

dardizedtofallbetween0and1. Aperfectpartitionwouldattainavalueof

(10)

of0foreachinterclusteragreement.

Theglobalcondorcetvalueandallintraclusteragreementsobviouslyleave

roomfor improvement. Thereportedinterclustersimilarities betweenclus-

ters1and4(0.30)andclusters2and3(0.31)arebothrelativelyhigh. This

suggeststo merge these pairs of clusters to arriveat a moreparsimonious

partition.

Id Name Modal Modal Noof Condorcet

Value Freq. Values Value

1 OSPlatform 5 65.53 5 0.5342

2 KindofWork 1 45.90 5 0.3488

3 GetInfo 2 44.15 6 0.2960

4 SoftwareStat. Excel 15.76 16 0.1004

5 Country Germany 22.49 68 0.1026

6 [MailList] 0 80.65 2 -

7 [Server] 1 96.77 2 -

Table3: VariableCharacteristics

Regarding the role of the variables in forming the clusters, Table 3 re-

ports {additional to somesummary statistics{ a 2

-typevalue (also called

\Condorcet Value") that reects how much the distribution of each vari-

able varies across clusters. The distribution of the operating system (OS

Platform)showsthegreatestvariation acrossthe veclusters. Hence,this

variableplayed thegreatestrole in seperatingtheobservationsinto theob-

servedpartition. kind of workand get infoarethe onlyother variables

withcondorcetvalueofmorethan0.30. Wethereforechose tocontinuethe

analysiswiththesethree variablesonlyanddonotgiveaninterpretationof

theve-clusterpartition.

N=1085

Global CondorcetValue=0.6166

Id ClusterSize ClusterSize Condorcet

(Absolut) (Relative) Value

0 420 38.71 0.6355

1 352 32.44 0.5977

2 313 28.85 0.6063

Table4: ClusterCharacteristicswiththreeclusters

(11)

Clustering using the three most influential variables

39

0

32

1

29

2

kind of work

1 (80%) 4 (20%)

OS platform

5 (97%) 3 (>0%)

1 (1%) 2 (1%)

get info

3 (3%) 5 (10%) 1 (19%) 4 (32%) 2 (37%)

Other (>0%)

OS platform

4 (<100%) 3 (>0%)

get info

3 (>0%) 4 (9%) 5 (11%) 1 (17%) 2 (62%)

kind of work

1 (46%)

2 (35%) 4 (16%) 3 (1%) 5 (1%)

kind of work

2 (78%) 4 (5%)

3 (12%) 5 (4%)

OS platform

5 (96%) 3 (1%)

1 (2%) 2 (1%)

get info

3 (4%) 1 (15%) 5 (20%) 4 (27%)

2 (34%)

Figure5: Threeclusters(clusterI(39%ofallobservations);cluster

II (32%) ;cluster III 29%

Theresultsofthecluster analysiswiththreevariablesandatmostthree

clusters per partition are presented in Tables 4 and 5 and Figure 5. The

globalcondorcetvalue(seeTable4)fortheoptimalpartitionin thissetting

is 0:62 which is a substantial improvement from the partition of Table 1.

Notethatthecondorcetvaluesoftheintraclassagreementsallexceed0.5.

TheinterpretationoftheclustersismadeeasierbytheoutputofIntelligent

Miner'sclustervisualizationtoolshowninFigure5. Therearethreerowsof

graphs,onerowfor each cluster. Eachrowhaspie charts foreach variable,

ordered from left to right according to decreasing inuence in forming the

clusters. Eachpiechartspresentsthedistribution oftherespectivevariable

amongtheobservationsinthecluster(innerpie)andthedistributionamong

allobservationsintheentiresample(outerpie).

For instance,theleftmostpiechartintherstrowofFigure5showsthe

distributionofthevariablekind of workamongtheobservationsintherst

cluster(innerpie)andamongallobservations(outerring). Intherstcluster

(whichcontains39%ofallobservations),80%oftheproleshaveavalueof

\1"(university)forkind of work(turquoiseslice),whiletheremaining20%

(12)

theouter ringof thepie chart,wecansee that thecorrespondingfractions

(representedbyturquoise and purplesegmentsoftheouter ring)amongall

observationsofthe datasetareconsiderably smaller(46%downloadXploRe

forworkattheuniversityand14.5%forprivateuse).

Inthesecondrow(clusterII),thepiechartforkind of workistheright-

mostpiechart,indicatingthatkind of workistheleastinuentialvariable

forallocatingobservationstoclusterII.Ifwecomparetheinnerpiewiththe

outerringofthispiechart,itiseasytosaywhy: thedistributionofkind of

workin clusterIIandintheentiresampleareverysimilar.

Bystudyingallpiechartsinthisway,onecanarriveatthecharaterization

ofthethree clusterssummarizedinTable5.

TypeCluster Variables Attributes Percentage

kind of work university 80%

ClusterI OS platform Windows 98/NT 97%

(Academia) publication,journal 19%

get info friends,colleagues 32%

WWW,newsgroups 37%

ClusterII OS platform Unix/Linux 99%

(Unix/Linux users) get Info WWW,newsgroups 62%

kind of work university 46%

kind of work research 78%

ClusterIII OS platform Windows 98/NT 96%

(Researchers) others 20%

get info friends,colleagues 27%

WWW,newsgroups 34%

Table5: Threeclusters

ClustersIandIIIarebestcharacterizedbytheirdominantvalueofkind

of work (university and research, respectively), leading to our choice of

names for these clusters (Academia and Researchers, respectively). Re-

garding the other two variables, OS platform and get info, the observa-

tionsin both clustersare quitesimilar: Windows is thedominantopertaing

system and the world wide web the most prevalent source of information

aboutXploRe.

(13)

of the individuals in this cluster downloaded the Linuxor Unixversionof

XploRe. Comparedto the Academia and Researchersclusters, the World

WideWebplaysanevenmoreimportantroleasasourceofinformation: 62%

ofthemembersofcluster II learnedaboutXploRefrom theweb. Regarding

kind of work,wehavealreadynotedabovethatmembersoftheLinux/Unix

clusterclosely mimicthedistribution among allobservations. Hence,usage

ofLinux/Unixusageappearsto beindependentfrom kind of workinthe

statisticalsense.

SinceinstallingandusingsoftwareunderLinuxorUnixstillrequiresmore

sophisticationonthepartoftheuser,onemayconcludethat this clusteris

madeupof\computerexperts",whoalsotendtointeractwithothers\elec-

tronically". Membersof clustersI and III,to thecontrary, overwhelmingly

use some(typically preinstalled)versionof Windows. While thelatter also

increasinglyrelyonthewebforinformationpurposes,theystillalsousemore

traditionalwaysofcommunicatingwiththeirpeers,suchas scienticpubli-

cationsor conferences.

1

From a business perspective, these clusters suggest some strategies for

promotingXploRe. Membersof theUniversitycluster will useXplorefor

research and teaching. Hence, members of this group (some of which are

likelytobestudents)willbeinterestedinXploRe'scapabilitiestoteachand

learnstatistics,suchas its\teachware"modules.

Membersof thethird cluster,on theother hand,will primarily wantto

knowhowXploRecanhelpthemwiththeirresearchwork. Addingquestions

totheonlinequestionnaireabouttheeld ofspecialization(economics,epi-

demeology, etc.), the statistical techniques typicallyused or the statistical

methodssearchedforinXploRemayprovidevaluableadditionalinformation

fortargetedmarketingandthefuturedirection ofXploRe.

Regarding a marketing strategy for the members of the Linux cluster,

theyappeartobeatargetgroupforpromotingXploRe'sweb-basedfeatures,

suchastheonlinehelpsystemoritsabilitytodoallcomputations\through"

aninternet browser.

Theirreponses(aswellas,toalesserdegree,thoseofthemembersofthe

otherclusters)alsoshowtheimportanceforastatisticalsoftwarelikeXploRe

tohaveanexcellentWWWappearanceandtoknowhowtogetthe\online"

attention of its (potential) customers. That is, the makersof XploRe(and

mostlikelythoseofanyothersophisticatedstatisticalsoftware)havetomake

surethat people willnd and keepvisiting theXploRehomepageand read

(andnotimmediatelydiscard)XploReemail.

1

Indeed, inan earlieranalysiswithlessrecentproles, the worldwide webwas less

importantinclusters Iand III. Theincreased importanceisprobably dueto both the

generalincreaseininternetusage,aswellastheenhancedinternetrepresentationofXploRe.

(14)

Inwhathasbeencalledthe\informationage"orthe\digitalera",everyday

economic activity continuously produces large amounts of data, stored in

evergrowingdatabases. Thegoal of\datamining" is to -intelligentlyand

automatically-extractusefulinformationfromthesedatabases.

Oneof themain tasks ofdata miningis clustering, i.e. partitioningthe

datainto (a small set of)groupssuchthat membersof thesamegroupare

rathersimilarwhilemembersofdierentgroupsareratherdierent. Sucha

partitionmayhelpinproducingacompanytodesigndierentiatedpromotion

andsalesstrategiesaimedat certain\types"ofcustomers.

Inthispaper,wehavepresentedtheresultsofacluster analysisof1085

prolesofindividuals whohavedownloadedthestatisticalsoftwareXploRe.

Eachproleconsistedofasetofvariablesthataretheresponsestoamanda-

toryonlinequestionnairepreceedingtheactualdownloadingprocess.

Usingaclusteringalgorithm particularlysuitedforourcategoricaldata,

wearrivedatapartitionconsistingofthreeclusters: Academia,Linux/Unix

usersandResearchers. Therstandthird clusterbothconsistofpersons

whoworkunderWindowsandlearnedaboutXploReinvariousways,withthe

worldwidewebplayinganincreasingbutnot(yet)dominantrole. Thesetwo

clustersareseparatedprimarily bythekind of workvariable: membersof

theAcademiaclusterpredominantlyworkatuniversitiesandwilluseXploRe

for research and teaching. Members of the second cluster can be charac-

terizedas sophisticatedcomputeruserswhowork underLinuxorUnixand

makeheavy useofthe internet. Foreach cluster,wehavetriedto sketch a

marketingstartegythatincorporatestheresultsofthisanalysis.

Fromastatisticalpointofview,twopossibleimprovementsalwayscome

totheanalyst'smind: betterdataandbettermethods.

Indeed, we would have liked to have a greater number of substantive

variablesatourdisposal(forinstance,theeldofspecializationorthemost

frequentlyused statisticalmethods). Ontheotherhand,theextensivedata

cleaningjob showed thatalonger online questionnaireneednot necessarily

leadtobetterdata(as well asthat data mining,at leastin thisanalysis,is

notanall-automaticaair).

Regardingthemethods,onemayexperimentbothwithotherdatamining

techniques(suchasassociationruleorsequentialmining)orotherclustering

algorithmstondneworimprovedresults. Weleavethisforfuture work.

References

Chen,M.S.,Han,J.&Yu. P.S. (1996). DataMining: an Overviewfroma

DatabasePerspective,IEEETrans.onKnowledgeandDataEngineering,

8:866-883.

(15)

Grabmeier, J. & Rudolph, A. (1998). Techniques of Cluster Algorithms in

DataMining,IBM.

Ha, S. H. & Park, S. C. (1998). Application of data mining tools to hotel

data mart onthe Intranet for databasemarketing,Expert Systemwith

Application15:1-31.

Hardle, W. & Klinke, S.& Muller, M. (1999 ). XploRe Learning Guide,

SpringerVerlag,Hiedelberg.

Hardle, W. , Hlavka, Z. & Klinke, S. (2000 ). XploRe Application Guide,

SpringerVerlag,Hiedelberg.

Michaud,P.(1987).AppliedStochasticModelsandDataAnalysis,3:173-189.

Michaud, P. (1997 ). Clustering Techniques, Future Generation Computer

Systems,13:135-147.

Abbildung

Figure 1: Personal Questions
Figure 2: Substantive Questions
Figure 3: Get Information
Table 1 gives the value of the overall goodness criterion G(P ) of equa-
+3

Referenzen

ÄHNLICHE DOKUMENTE

We show that the reflection principle is equivalent to rrs 2 , a strengthened version of Aczel’s relation reflection scheme. As applications, we give a new proof that

The rules of the game contain some explanations that describe why the Sumatran tiger is becoming extinct.. The children should not see the rules of the games, because you should

small, medium and large fires and that a scaling law for the time.. intervals separating successive fires

We have observed four properties of tense in relative clauses in §2.1.1: (i) relative clauses can contain a vacuous past tense, (ii) the later-than-matrix interpretation is

The preceding reasoning leads me to conclude that for i = 1,..., n , the w i ′ income is the lowest possible level of income which guarantees, first, that the relative

Such statements sit uneasily, however, with the argument made in the Government’s intervention in Ramzy, which advocates the revision of Chahal on the grounds

Neue, sorgfältig abgestimmte Komponenten machen das Outback zu einem zuverlässigen Bike auf absolut jedem Terrain...

Some national representatives felt that individual bilateral negotiations between line ministries and central departments (public administration and finances) may lead to an