• Keine Ergebnisse gefunden

Challenging of bacteria the concept subsisting on antibiotics International Journal of Antimicrobial Agents

N/A
N/A
Protected

Academic year: 2022

Aktie "Challenging of bacteria the concept subsisting on antibiotics International Journal of Antimicrobial Agents"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatSciVerseScienceDirect

International Journal of Antimicrobial Agents

jou rn a l h o m e pa g e:h tt p : / / w w w . e l s e v i e r . c o m / l o c a t e / i j a n t i m i c a g

Challenging the concept of bacteria subsisting on antibiotics

Fiona Walsh

a,∗

, Sebastian G.B. Amyes

b

, Brion Duffy

a

aBacteriology,Agroscope–ResearchStationChangins-WädenswilACW,FederalDepartmentofEconomicAffairs,EducationandResearch(EAER), Wädenswil,Switzerland

bMolecularChemotherapy,MedicalMicrobiology,MedicalSchool,UniversityofEdinburgh,Edinburgh,UK

a r t i c l e i n f o

Articlehistory:

Received28January2013 Accepted28January2013

Keywords:

Catabolism Antibiotic Subsistence

␤-Lactam Streptomycin Trimethoprim

a b s t r a c t

Antibioticresistanceconcernshavebeencompoundedbyareportthatsoilbacteriacancataboliseantibi- otics,i.e.breakdownand usethemasasolecarbon source.Todatethishasnotbeenverifiedor reproduced,thereforeinthisstudysoilbacteriawerescreenedtoverifyandreproducethishypothe- sis.Survivalinhighconcentrationsofantibioticswasinitiallyobserved;however,onfurtheranalysis thesebacteriaeitherdidnotdegradetheantibioticsortheyusedanintrinsicresistancemechanism(␤- lactamases)todegradethe␤-lactams,asdemonstratedbyhigh-performanceliquidchromatography.

Theseresultsdidnotverifyorreproducethehypothesisthatbacteriasubsistonantibioticsorcatabolise antibioticsaspreviouslyreported.Thisstudyidentifiedthatbacteriawithacatabolisingphenotypedid notdegradestreptomycinortrimethoprimandthereforecouldnotutilisetheantibioticsasanutrient source.Therefore,weconcludethatsoilbacteriadonotcataboliseantibiotics.

© 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

1. Introduction

Antibioticresistanceis emergingasoneofthegreatestchal- lengestohumanhealth[1].Withinthepast20years, antibiotic resistancehasdevelopedfromresistancetosingleclassesofantibi- oticstomultidrugresistance(MDR)andextensivedrugresistance (XDR)[2].Catabolism,i.e.thecapacityofbacteriatonotonlyresist buttosubsistonantibiotics,hasbeenpresentedasapotentially crucialstepintheevolutionofantibioticresistancefromMDRand XDRtountreatable infections. In 2008,a novelhypothesiswas introduced,namelyantibioticcatabolism,definedbytheidenti- ficationofsoilbacteriafromdifferentphylathatwerecapableof degradingandutilisingdifferentclassesofantibioticsasasolecar- bonsource[3].Bacterialcatabolismofantibioticsisaconceptthat surpassesantibioticresistanceandMDRintermsofcomplexityin treatingandmanagingbacterialinfections.Therefore,itisimpor- tant forthefuture successful managementof antibiotic-treated bacterialinfectionsthatweareabletodistinguishbetweenconven- tionalresistancemechanismsandtheabilityofbacteriatosubsist onantibiotics.

Researchonantibioticdegradationwasreportedinthe1970s, butthenovelstudyonmultipleantibioticclassescatabolisedby soilbacteriaexposedthefullextentanddistributionofantibiotic- degradinggenesintheenvironment[4].Thisstudyhasspecifically

Correspondingauthor.Tel.:+41447836329.

E-mailaddresses:fiona.walsh@agroscope.admin.ch,fiona1walsh@gmail.com (F.Walsh).

led tothe scientific belief that soil bacteria contain previously uncharacterisedantibiotic-degradingresistanceenzymesandthat soil bacteriacan subsistonantibiotics, withrespect toat least 18differentantibiotics[3].Theonlyresistance-degradingmecha- nismdescribedpriortothisstudywasthedegradationof␤-lactam antibioticsbythe␤-lactamaseresistancemechanisms.Thecharac- terisedmechanismsofresistancetoallotherclassesofantibiotics donotincludedegradation.Thisstudyrevolutionisedthecurrent thinkingonhowbacteriacanresistantibioticswhilstalsoidentify- ingsoilbacteriaasapotentiallylargereservoirofnovelresistance mechanisms.Antibioticcatabolismwouldprotecttheentirebac- terial community from the inhibitoryeffects of antibiotics and concurrentlyincreasethepopulationsizeastheyusetheantibiotics asanutrientsource.

Althoughthehypothesisofantibioticcatabolismbysoilbacteria waspublished5yearsago,thishypothesishasneitherbeenrepro- ducednorverified.Theaimsofthecurrentstudywerethereforeto verifythehypothesisofsoilbacteriasubsistingonantibiotics.

2. Materialsandmethods 2.1. Samplingandsitedescriptions

Thesoilsamplingsites,locationsandelevationsaredescribed inTable1.SoilpHwasdeterminedbysuspending1gofsoilin 2.5mLof0.01MCaCl2andmeasuringthepHusingaglasselec- trode[5].ThepHofeachsoilwasdeterminedthreetimesandthe mean±standarddeviationisgiveninTable1.

0924-8579/$seefrontmatter© 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

http://dx.doi.org/10.1016/j.ijantimicag.2013.01.021

(2)

F.Walshetal./InternationalJournalofAntimicrobialAgents41 (2013) 558–563 559

Table1

Geographicanddescriptivecharacteristicsoftheanalysedurban,agriculturalandpristinesoilsamples.

SampleID Description Environmentalmatter Elevation(m) Latitude Longitude pH(n=3)

FWS1 WädenswilAppleOrchard Orchardsoil 407 47.2333 8.6667 7.0±0.1

FWS2 BenedictineAbbey Farmsoil 880 47.1167 8.75 7.1±0.1

FWS3 Hospitalgarden Lawnsoil 667 46.7167 9.4333 7.3±0

FWS4 LindauAppleOrchard Orchardsoil 485 47.4833 8.2 4.1±0.2

FWS5 GüttingenAppleOrchard Orchardsoil 503 47.6 9.2833 5.3±0.1

FWS6 Rütlimeadow Meadowsoil 835 46.9667 8.6 7.1±0.2

FWS7 AreabesideLakeZürich Lawnsoil 408 47.3667 8.55 7.0±0.1

FWS8 Matterhornmountaintrail Alpinesoil 1936 46.0167 7.75 7.2±0.1

FWS9 Farmlandtreatedwithpigmanure Manuredsoil 592 47.1833 8.3167 5.7±0.2

FWS10 MountainnearZürich Mountainforestsoil 700 47.3496 8.492 7.0±0

2.2. Samplingstrategy

Foreachsamplesite,eightsoilcoresampleswerecombined.

Soilsamplesconsistedofeightsoilcores(10cmdepth)perrepli- catetakenusingastainlesssteelcorerwithaninternaldiameterof 2.5cm.Soilcoreswerepooledforeachreplicateinthefield.Pooling ofsoilcoresisstandardlyappliedinordertoobtainmorerepre- sentativesamplesforacertainfieldplotoraspecificexperimental treatment[6–8].

2.3. Isolationofantibiotic-catabolisingbacteriafromSwisssoil

Soilbacteria withanantibiotic-catabolising phenotypewere isolatedand cultured usingmethods described previouslyfrom tensoilsunderavarietyofanthropogenicinfluencesfromurban, pristineandfarmlandsoils(Table1)[3].Minimalmedium[single carbonsource(SCS)]brothculturesofputativecatabolisingbacteria were serially diluted and spread-plated onto SCS agar supple- mentedwiththeappropriatecorrespondingantibiotic[3].Negative controlscomprisedSCSagarwithoutantibiotic,inoculatedinthe samemannerasdescribedbyDantasetal.[3].Theantibioticstested comprisedpenicillin,dicloxacillin,amikacin,cefalexin,kanamycin, gentamicin, sisomicin, streptomycin, vancomycin, levofloxacin, ciprofloxacin,sulfamethizole,nalidixicacid,chloramphenicol,d- cycloserine,cefotaxime,novobiocin,trimethoprim,sulfisoxazole, tetracycline,erythromycin,colistinandrifampicin.Allantibiotics and chemicals, except kanamycin and vancomycin (Carl Roth GmbHandCo.KG,Karlsruhe,Germany),wereobtainedfromSigma- AldrichChemieGmbH(Buchs,Switzerland).

Twobacteriadescribedashavingthecapacitytocatabolisecar- benicillin and penicillinwere obtainedfromthe Dantasgroup:

CA-S3F-1,Burkholderiasp.;andPE-S2R-1,Burkholderiasp.Dueto unforeseencircumstancesintheDantaslaboratory,furtherisolates catabolisingnon-␤-lactamantibioticscouldnotbeprovided.

Theabilitiesoftheantibiotic-catabolisingbacteriatogrowor surviveinsterile-filteredSCSmediumwithoutaddedantibiotics wereinvestigated.Assimilableorganiccarbon-freeglasswarewas prepared as previously described [9]. Bacteria were inoculated intoSCSmediumandgrownat22Cfor3days.Then,10␮Lwas removedandaddedtoSCSmediumwithandwithoutantibioticata finalconcentrationof1g/L.Totalbacterialcountswereperformed onDays0,5,7,14,21and28byplatecountsonLuria–Bertani(LB) agar.Thetotalorganiccarbonanddissolvedorganiccarbon(DOC) concentrationsweredeterminedaspreviouslydescribed[10].

2.4. Resistanceprofilingofantibiotic-catabolisingbacteria

Theresistanceprofileofeachisolatewasdeterminedasprevi- ouslydescribedusing1mg/mLofeachantibiotic[11].Antibiotic susceptibility tests were performed in duplicate. Where there wasadiscrepancybetweenthetworesults,susceptibilitytesting

wasperformedathirdtime[12,13].Twoconsistentsusceptibility resultsweretakenasthefinalresult.

2.5. Bacterialphylogeneticprofiling

Thephylogeneticprofilesofthebacteriaweredeterminedas previouslydescribed[3].Briefly,thevariableregions(nucleotides 63–1389) of the 16S rRNA genes were amplified by PCR and sequenced.Thephylogenyofthebacteriabasedonsequencevari- ationofthe16SrRNAgeneswasidentifiedusingBLASTnandthe Greengenes 2011database.Aphylogenetic treeofthebacterial speciesbasedonthe16SrRNAsequenceswasconstructedusing theneighbour-joiningalgorithminARB[14].

2.6. High-performanceliquidchromatography(HPLC) investigationofbacterialantibioticdegradation

Degradationof carbenicillin (bacteriaCA-S3F-1, Burkholderia sp.), penicillin (bacteria PE-C-1, Pseudomonas sp. and bacteria PE-S2R-1,Burkholderiasp.),streptomycin(bacteriaST-C-1,Achro- mobactersp.)andtrimethoprim(bacteriaTR-C-1,Pseudomonassp.) wasinvestigatedbyHPLC[1]performedusingaDionexPDA-100 photodiodearraydetector,Chromeleonv.6.80software(Dionex, Idstein,Germany)andtheconditionsdescribedinTable2.Aliquots (80␮L)ofculturesgrowninSCSmediumcontaining1mg/mLof antibioticwereinoculatedinto20mLofSCSmediumcontaining 1mg/mLof appropriateantibioticandincubatedat22Cfor 28 days.SCS–antibioticmediumcontainingnobacteriawasalsoincu- batedat22C.Then,1mLwasremovedatDays0,2,4,7,14,21 and28andwasanalysedinduplicateusingHPLC.Followingthe initialresultsoftheHPLCexperiments,allbacterialisolateswere alsoinoculatedintoSCSmediumcontainingnoantibioticasneg- ativecontrolsatafinalconcentrationof103 or104CFU/mLand incubatedat22Cfor28days.

2.7. Biologicalactivityoftheantibioticsolutionsfollowing incubationwiththecatabolisingbacteria

Thebiologicalactivitiesofthetrimethoprimandstreptomycin HPLCsolutionscontainingtherespectivecatabolisingbacteriafrom Days0,14 and28wereinvestigatedusinganadaptationofthe antibioticdisk diffusionassay [15]. Staphylococcus aureus ATCC

Table2

Descriptionofthehigh-performanceliquidchromatography(HPLC)experimental conditionsandcolumns.

Antibiotic Wavelength (nm)

Flowrate (mL/min)

Column

Penicillin 220 0.7 Nucleosil100-5,C18

Carbenicillin 220 0.7 Nucleosil100-5,C18

Streptomycin 195 0.7 Nucleosil100-5,C18

Trimethoprim 250 0.7 Nucleosil100-5,C18

(3)

Fig.1.Antibioticresistanceprofilesof140isolatesfromtensoils,showingpercentageofisolatesresistanttoantibioticsataconcentrationof1mg/mL.

25923(0.5McFarland)wasspreadonLBagarplates.TheHPLCsolu- tions(Days0,14and28)weresterile-filteredand15␮Lwasadded toasterilefilterpaperdiskontheS.aureusagarplates.Theplates wereincubatedat37Candthezonediametersofthediskdiffusion assaysweremeasuredafter16h.

2.8. Extractionofˇ-lactamaseenzymesandHPLCinvestigation ofˇ-lactamdegradationbytheˇ-lactamaseenzymes

CulturesofCA-S3F-1,PE-C-1andPE-S2R-1grownintherespec- tiveantibiotic(1mg/mL)-containingLBbrothat26Cwithshaking overnightwerediluted1in10inantibiotic(1mg/mL)-containing LBbrothandincubatedforafurther4h.Thefiltered(0.2␮mfilters), washedsupernatantswereusedinthecrude␤-lactamaseenzyme assays using nitrocefin at 100␮M at a wavelength of 486nm [16].EscherichiacolitransformedwithpUC19plasmid(AmpC␤- lactamase-producing)wasusedasapositivecontrol.Degradation ofcarbenicillinandpenicillinwasinvestigatedusingHPLCinthe samemannerastheHPLCantibioticdegradationexperiments.

3. Results

Bacteria presenting a catabolism phenotype (growth in SCS medium containing 1mg/mL of antibiotic) were isolated from all ten soil sources consisting of farmland, pristine soil and urban environments (Table 1). The antibiotics on which the bacteria presented a catabolism phenotype comprised peni- cillin, dicloxacillin, amikacin, kanamycin,gentamicin, sisomicin, streptomycin, cefalexin, vancomycin, trimethoprim, cefotaxime, sulfamethizole and erythromycin, representing many different classes ofantibiotics, including natural,semisynthetic and syn- thetic. All tensoils contained bacteria presenting a catabolism phenotype both to the ␤-lactam antibiotic penicillin and the macrolideerythromycin.Intotal,140bacteriawithanantibiotic- catabolisingphenotypewereidentified.

Antibioticresistanceprofiling oftheisolatedbacteriaidenti- fiedthat>80%werecapableofgrowthat1mg/mLof almostall antibiotics(Fig.1).Thepatternanddistributionofhigh-levelresis- tancedidnotinallcasescorrespondtothelevelsofcatabolism

against that antibiotic. However, for the fluoroquinolones and tetracycline, whichhad lowlevelsofresistance, nocatabolising isolateswereidentified.16SrRNAgeneticphylotypingidentified thatthemajorityofbacteriawerePseudomonadales(n=67)fol- lowedbyBurkholderiales(n=22)(Fig.2),whichweresimilarto thephylotypespreviouslyidentified[3].TheActinomycetaleswere theonly Gram-positive bacteriaidentified. Allbacterialisolates werecapableofgrowthinSCSmediumwithoutantibiotic,asthis mediumwasnotcarbon-freeasdescribedbyDantasetal.butcon- tained15mgofethylenediaminetetra-aceticacid(EDTA)perlitre ofSCSmedium[3].DOC testsidentifieda DOCconcentrationof 8.53mg/Lin theSCSmedium [9]. Thus, themedium contained sufficientcarbonwithoutantibioticstosupportbacterialgrowth.

Thisconstituentwasoverlookedbytheseminalstudy[3].Growth ofselectedstrainsofbacteriainSCSmediumwithoutantibiotics increasedbyaminimumof2loggrowthover28days(Fig.3).

TheHPLCexperimentswereperformedtoinvestigatewhether theantibioticsstreptomycin(bacteriaST-C-1,Achromobactersp.), trimethoprim(bacteriaTR-C-1,Pseudomonassp.),penicillin(bacte- riaPE-C-1,Pseudomonassp.andPE-S2R-1,Burkholderiasp.)and carbenicillin(bacteriaCA-S3F-1,Burkholderiasp.)weredegraded inthepresenceofthecatabolisingbacteria(Fig.4a).Thebacte- ria used in the penicillin and carbenicillin HPLC experiments includedisolates(bacteriaPE-S2R-1andbacteriaCA-S3F-1)previ- ouslyreportedasantibioticcatabolisers[3].Threedifferentclasses of antibiotic, which have different target sites and resistance mechanisms, were chosen. Streptomycin is a protein synthesis pathwayinhibitor,trimethoprimisadihydrofolatesynthesispath- wayinhibitor,andthe␤-lactamscarbenicillinandpenicillinare cellwallsynthesis inhibitors.Therewerenostatisticallysignifi- cantdifferencesbetweentheconcentrationsofstreptomycinand trimethoprimantibioticswithandwithoutthebacteria,asdeter- mined by Student’s t-test. Bacteria were viable after 28 days incubationastestedbygrowthonLBagar.Theseresultsindicated thatstreptomycinandtrimethoprimwerenotdegradedover28 days andthebacteria werestillviable at Day28. Theseantibi- oticswerenotcatabolisedeventhoughthebacteriapresentedwith thesamephenotypeaspreviouslydescribedantibioticcatabolis- ers.Thebiologicalactivitiesofstreptomycinandtrimethoprimat

(4)

F.Walshetal./InternationalJournalofAntimicrobialAgents41 (2013) 558–563 561

Fig.2. Phylogeneticdistributionof140bacterialisolatesfromtensoils.

Day28 wereinvestigated usingantibioticdiskdiffusionassays.

The diameters of the zones of inhibition did not decrease for streptomycinortrimethoprimsolutionsbetween0and28days.

StreptomycinandtrimethoprimwereasbiologicallyactiveatDay 28asatDay0,confirmingthattheydidnotlosetheirbiological activitiesaswouldbeexpectediftheyweredegraded.

The␤-lactamantibioticspenicillinandcarbenicillindegraded in thepresence and absence ofthe bacteria. Penicillinand the

␤-lactamantibiotics arenotstableand degradeeasily,which is whypenicillinwassodifficulttoproduceinlargequantitiesini- tiallyafteritsdiscovery.Therateandextentofdegradationwere higherwhenthebacteriawerepresentthaninthemediumlack- ingbacteria(Fig.4a).The␤-lactamantibioticsaretheonlyclass ofantibioticsknowntobedegradedduetoaresistancemecha- nism,namelythe␤-lactamases.PseudomonasandBurkholderiaspp.

bothcontainchromosomallymediatedAmpCenzymescapableof degrading␤-lactamantibiotics[17,18].

The ␤-lactam-degrading bacteria (PE-C-1, PE-S2R-1 and CA- S3F-1)wereinvestigatedfortheproductionof␤-lactam-degrading

␤-lactamases.Productionof␤-lactamaseswasconfirmedbydiges- tionofnitrocefinasdetectedbyultravioletspectrophotometryover time.Therateof␤-lactamdegradationwasdeterminedbyplotting theabsorbanceagainsttimeforeachbacteria.Usingtheseplots,the slopesofthelinesforCA-S3F-1(carbenicillin),PE-S2R-1(penicillin) andPE-C-1(penicillin)were0.0642x+0.1202,0.0097x+0.0977and 0.0041x+0.1278,respectively,indicatingthatdegradationofthe

␤-lactamringwasfastestbythe␤-lactamaseextractedfromCA- S3F-1, followed by PE-S2R-1 and then PE-C-1. Therefore, each bacteriacontained␤-lactamasescapableofdegradingthe␤-lactam ringofthe␤-lactamantibiotics.Theconcentrationofproteininthe assayswasthesameandthusthedifferencesinratesofdegradation werenotduetovariationsinprotein(enzyme)concentrations.

Degradation of carbenicillin and penicillin by the extracted

␤-lactamaseswasfurtherinvestigated byHPLC (Fig. 4b).These resultsidentifiedthatthe␤-lactamasesextractedfromPE-S2R-1 (describedinapreviousstudyasa␤-lactamcataboliser)digested

Fig.3.Growthofthefivebacteriapresentingcatabolismphenotypesinsinglecarbonsource(SCS)mediumwithoutantibioticover28days.Thefivebacteriaarethoseused inthehigh-performanceliquidchromatography(HPLC)experiments:PE-S2R-1,Burkholderiasp.;PE-C-1,Pseudomonassp.;CA-S3F-1,Burkholderiasp.;ST-C-1,Achromobacter sp.;TR-C-1,Pseudomonassp.

(5)

Fig.4.High-performanceliquidchromatography(HPLC)analysisofantibioticdegradationover28daysinthepresenceof(a)bacteriaandthecorrespondingantibiotics and(b)␤-lactamasesandthecorrespondingantibioticsincomparisonwithdegradationbythebacteria.PE-S2R-1,Burkholderiasp.;PE-C-1,Pseudomonassp.;CA-S3F-1, Burkholderiasp.;ST-C-1,Achromobactersp.;TR-C-1,Pseudomonassp.

penicillintoalmostnothingbyDay4.Therateofdegradationby theextracted␤-lactamaseisalmostidenticaltothatofthebacteria (PE-S2R-1).The␤-lactamasesfromCA-S3F-1andPE-C-1showed asimilarrateofdegradation.Therefore,noadditionalmechanism otherthantheantibioticresistancemechanism(␤-lactamase)was requiredbyanyofthesebacteriatodegradethe␤-lactamantibi- oticspenicillinandcarbenicillin.

Asstreptomycinandtrimethoprimwerenotdegradedafter28 daysof incubation withthebacteria,concentrations ofthefive bacteria usedin the HPLCexperiments weremonitored in SCS mediumwithoutantibioticover28days.Thehypothesiswasthat thebacteria may beviable at the end of the 28 days but that theyhave not grown over the 28 days and thus couldsurvive

ina non-growingstate.Theinitialbacterialcountsrangedfrom 1.27×103CFU/mLto1.55×104CFU/mL(Fig.3).

4. Discussion

Reproducibilityandverificationofresultsarevitalcomponents ofthebasis ofscientific discovery.We aimedtoreproduceand verifythediscoveryofsoilbacteriacapableofcatabolisingantibi- otics[3].Withinthe4yearssincethishypothesiswasreported,the paperdescribingtheseresultshasbeencited145times(Google Scholar,28January2013).However,thehypothesishasnotbeen verifiedorreproduced.Wepropose,basedontheresultsofthe current studyanda lackofverifiedresultsconcurringwiththe

(6)

F.Walshetal./InternationalJournalofAntimicrobialAgents41 (2013) 558–563 563

hypothesisofsoilbacteriacatabolisingantibiotics,thatsoilbacte- ria do not catabolise theantibiotics and do not use anynovel mechanismofdegradation.Usingbacteriafromthepreviousstudy andfromthisstudy,wehaveidentifiedthatthe␤-lactamswere degradedbythewell-characterised␤-lactamaseresistancemech- anism.Thesoilbacteriadonotthereforerepresentasourceofnovel antibiotic-degradingenzymes.Thisstudyhasalsoidentifiedthat bacteriawiththecatabolisingphenotypedidnotdegradestrep- tomycinortrimethoprim.Weproposethatnoevidencehasbeen showntoindicatethatsoilbacteriacandegradeanyotherclasses ofantibiotics.The‘carbon-free’medium(SCS)contained15mg/mL EDTAthat,accordingtoDantasetal.,wouldbesufficienttosupport bacterialgrowth[3].Thiswasoverlookedbytheseminalstudy.

Usingthesamemethodologiesaspreviouslyreported,thisstudy hasidentifiedsoilbacteriawithhigh-levelresistanceto14different antibioticsfromdifferentclasses[3].Bacteriawiththesamepheno- typehavepreviouslybeendescribedassubsistingontheantibiotics asasolecarbonsource[3].However,thecurrentstudyhasiden- tifiedthatbacteriawithacatabolismphenotypedidnotdegrade streptomycinortrimethoprim.Resistancetotheseantibioticshas todatebeenrestrictedtotargetsitemutation,modification,efflux, productionofanadditionaltarget,orhyperproductionofthetarget site [19]. High-level resistance in Pseudomonas and Burkholde- ria spp. has been associated with intrinsic resistance to these antibiotics[20,21].The␤-lactamantibioticsweredestroyedinthe presenceofthesoilbacteria,howeverdestructionoftheantibi- oticswasdue totheproductionof ␤-lactamases. Productionof

␤-lactamases wasfirst reported in 1940 [22]. Therehas been, however,sincethennoevidencetosuggestthatproductionof␤- lactamasesislinkedtotheutilisationandsubsistenceofbacteria onantibioticsasasolecarbonsource.

Using the same methods and some of the bacteria as the previousstudydescribingsubsistenceonantibioticsasasolecar- bonsource,wecometoacontradictoryconclusion.Weconclude that thebacteria previously described as using antibiotics as a solecarbonsourcehaveeithernotdegradedtheantibiotics,and thuscannotutilisewholeantibioticsasacarbonsource,orhave degradedtheantibioticsusingwell-characterisedresistancemech- anisms,whichhavenotpreviouslybeenlinkedtoutilisationasa solecarbonsource.

Acknowledgments

ThisworkwasconductedwithintheEuropeanresearchnetwork COSTTD0803Detectingevolutionaryhotspotsofantibioticresis- tancesinEurope(DARE).TheauthorsthankA.Baechli,T.Poigerand H.-U.Weilenmannfortechnicalassistanceanddiscussion.

Funding:ThisprojectwasfundedbytheSwissFederalOfficefor Agriculture,theSwissFederalOfficefortheEnvironmentandthe SwissExpertCommitteeforBiosafety(SECB).

Competinginterest:Nonedeclared.

Ethicalapproval:Notrequired.

References

[1]LevySB,MarshallB.Antibacterialresistanceworldwide:causes,challengesand responses.NatMed2004;10(12Suppl.):S122–9.

[2]CentersforDiseaseControlandPrevention(CDC).EmergenceofMycobac- terium tuberculosis with extensive resistance to second-line drugs worldwide, 2000–2004. MMWR Morb Mortal Wkly Rep 2006;55:

301–5.

[3]DantasG,SommerMO,OluwasegunRD,ChurchGM.Bacteriasubsistingon antibiotics.Science2008;320:100–3.

[4]DaviesJ,DaviesD.Originsandevolutionofantibioticresistance.MicrobiolMol BiolRev2010;74:417–33.

[5]Anderson IC, Campbell CD, ProsserJI.Diversity offungi inorganic soils underamoorlandScotspine(PinussylvestrisL.)gradient.EnvironMicrobiol 2003;5:1121–32.

[6]GomesNCM,FagbolaO,CostaR,RumjanekNG,BuchnerA,Mendona-HaglerL, etal.Dynamicsoffungalcommunitiesinbulkandmaizerhizospheresoilin thetropics.ApplEnvironMicrobiol2003;69:3758–66.

[7]MillingA,SmallaK,MaidlFX,SchloterM,MunchJC.Effectsoftransgenicpota- toeswithanalteredstarchcompositiononthediversityofsoilandrhizosphere bacteriaandfungi.PlantSoil2004;266:23–39.

[8]WillC,ThürmerA,Wollherr,NackeH,HeroldN,SchrumpfM,etal.Horizon- specific bacterial community composition of German grassland soils, as revealedbypyrosequencing-basedanalysisof16SrRNAgenes.ApplEnviron Microbiol2010;76:6751–9.

[9]HammesFA,EgliT.Newmethodforassimilableorganiccarbondetermina- tionusingflow-cytometricenumerationandanaturalmicrobialconsortium asinoculum.EnvironSciTechnol2005;39:3289–94.

[10]Vital M, Stucki D, Egli T, Hammes F. Evaluating the growth poten- tial of pathogenic bacteria in water. Appl Environ Microbiol 2010;76:

6477–84.

[11]D’CostaVM,McGrannKM,HughesDW,WrightGD.Samplingtheantibiotic resistome.Science2006;311:374–7.

[12]ClinicalandLaboratoryStandardsInstitute.Methodsfordilutionantimicrobial susceptibilitytestsforbacteriathatgrowaerobically;approvedstandard.8th ed.DocumentM7-A8.Wayne,PA:CLSI;2009.

[13]HousmanST,SutherlandC,NicolauDP.InvitroevaluationofRib-Xnovelcom- pounds’potencyagainstselectedisolatesofPseudomonasaeruginosa.In:51st InterscienceConferenceonAntimicrobialAgentsandChemotherapy(ICAAC).

Washington,DC:ASMPress;2011.

[14]LudwigW,StrunkO,WestramR,RichterL,MeierH,Yadhukumar,etal.ARB:a softwareenvironmentforsequencedata.NucleicAcidsRes2004;32:1363–71.

[15]ClinicalandLaboratoryStandardsInstitute.Performancestandardsforantimi- crobial disk susceptibility tests; approved standard. 10th ed. Document M02-A10.Wayne,PA:CLSI;2009.

[16]JeonJH,KimSJ,LeeHS,ChaSS,LeeJH,YoonSH.Novelmetagenome-derived carboxylesterasethathydrolyzes␤-lactamantibiotics.ApplEnvironMicrobiol 2011;77:7830–6.

[17]JuanC,MaciáMD,GutiérrezO,VidalC,PérezJL,OliverA.Molecularmechanisms of ␤-lactam resistance mediated by AmpC hyperproduction in Pseu- domonasaeruginosaclinicalstrains.AntimicrobAgentsChemother2005;49:

4733–8.

[18]LivermoreDM,MushtaqS,GeY,WarnerM.ActivityofcephalosporinCXA-101 (FR264205)againstPseudomonasaeruginosaandBurkholderiacepaciagroup strainsandisolates.IntJAntimicrobAgents2009;34:402–6.

[19]AmyesS,ThomsonC,MilesR,TilotsonG.Antimicrobialchemotherapy.London, UK:MartinDunitz;1996.

[20]Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T.

Contribution of the MexX–MexY–OprM efflux system to intrinsic resis- tanceinPseudomonasaeruginosa. AntimicrobAgents Chemother2000;44:

2242–6.

[21]Köhler T, KokM,Michea-HamzehpourM,Plesiat P,GotohN,Nishino T, etal.Multidrugeffluxinintrinsicresistancetotrimethoprimandsulfame- thoxazoleinPseudomonasaeruginosa.AntimicrobAgentsChemother1996;40:

2288–90.

[22]AbrahamE,ChainE.Anenzymefrombacteriaabletodestroypenicillin.Nature 1940;46:837.

Referenzen

ÄHNLICHE DOKUMENTE

Columns and whiskers represent mean values and standard errors from 20 infected plants of each accession. AUDPC value of Express represents that of the second

The worm burdens of young adult 3- and 6wcck-old groups were not statistically different from baby hamsters in lungs P>0.05 but in the intestines young adults carried

Calves born in the smallest cowhouse were completely resistant only to tetracyclines and sulphamethoxydin, while the resistance to other antibiotics was much lower than in

Especially when we take into account the role of traditional historical novels in the rapid spread of nationalism in the late 19 th and early 20 th centuries, the postmodern

The specificity and sensitivity of the microarray in detecting resistance genes was tested with gram-positive bacteria of eight different genera (Bacillus, Clostridium,

also! called! P2;! Carter! and! Fairlamb,! 1993;! Carter! et! al.,! 1995;! Mäser! et! al.,!

tide or its analogs. Therefore, it is possible that some cases of erythromycin resistance observed in clinical isolates can be due to mutations in the rRNA genes

With bacterial resistance becoming a threat to public health, there is a demand for new chemical scaffolds that interact with new ribosomal sites and inhibit translation via