• Keine Ergebnisse gefunden

X and Y Operators for General Linear Transport Processes

N/A
N/A
Protected

Academic year: 2022

Aktie "X and Y Operators for General Linear Transport Processes"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

X AND Y OPERATORS FOR GENERAL LINEAR TRANSPORT PROCESSES

J . C a s t i December 1974

R e s e a r c h R e p o r t s a r e p u b l i c a t i o n s r e p o r t i n g on t h e work o f t h e a u t h o r . Any v i e w s o r c o n c l u s i o n s a r e t h o s e o f t h e a u t h o r , a n d d o n o t n e c e s s a r i l y r e f l e c t t h o s e o f IIASA.

(2)
(3)

X a n d Y O p e r a t o r s f o r G e n e r a l L i n e a r T r a n s p o r t P r o c e s s e s

J . C a s t i

1 . I n t r o d u c t i o n

A c e n t r a l p r o b l e m o f a t m o s p h e r i c p h y s i c s i s t h e d e t e r m i n a - t i o n o f r a d i a t i o n f i e l d s u n d e r v a r i o u s c i r c u m s t a n c e s . Of s p e c i a l i m p o r t a n c e a r e t h e i n t e n s i t i e s o f s o l a r r a d i a t i o n t r a n s m i t t e d t h r o u g h t h e e a r t h ' s a t m o s p h e r e a n d t h e amount o f r a d i a t i o n re- f l e c t e d o u t t h e t o p . I t c a n b e shown t h a t , u n d e r t h e h y p o t h e s i s t h a t t h e a t m o s p h e r e may b e r e g a r d e d a s a p l a n e - p a r a l l e l s l a b , m o s t of t h e q u a n t i t i e s o f p h y s i c a l i n t e r e s t may b e c a l c u l a t e d

i n t e r m s o f t h e r e f l e c t e d , t r a n s m i t t e d , a n d i n t e r n a l i n t e n s i t i e s . The b a s i c e q u a t i o n d e s c r i b i n g t h e i n t e n s i t i e s i s t h e s o - c a l l e d " t r a n s p o r t " e q u a t i o n , w h i c h i s a l i n e a r t w o - p o i n t bound- a r y v a l u e p r o b l e m . B e g i n n i n g w i t h t h e work o f Ambartsumian [l]

a n d c o n t i n u e d by C h a n d r a s e k h a r [4]

,

S o b o l e v [7]

,

B e l l m a n and K a l a b a , e t a 1 . [2]

,

new " i m b e d d i n g " t y p e i n i t i a l v a l u e e q u a t i o n s h a v e b e e n d e v e l o p e d f o r c a l c u l a t i n g t h e b a s i c q u a n t i t i e s . Of s p e c i a l n o t e i n t h i s r e g a r d i s t h e c o n t r i b u t i o n o f C h a n d r a s e k h a r who showed t h a t , u n d e r s p e c i a l c i r c u m s t a n c e s , t h e b a s i c o p e r a t o r - R i c c a t i e q u a t i o n a s s o c i a t e d w i t h t h e c o m p u t a t i o n c o u l d b e re- p l a c e d by t w o v e c t o r f u n c t i o n s , now c a l l e d t h e C h a n d r a s e k h a r X-Y f u n c t i o n s . T h i s o b s e r v a t i o n n o t o n l y s h e d new l i g h t o n t h e s t r u c t u r e o f t h e p h y s i c a l p r o c e s s , b u t a l s o r e s u l t e d i n a s i g - n i f i c a n t r e d u c t i o n i n t h e c o m p u t i n g b u r d e n n e c e s s a r y t o o b t a i n t h e r e l e v a n t q u a n t i t i e s .

(4)

The p u r p o s e o f t h i s r e p o r t i s t o d e t a i l t h e m o s t g e n e r a l s i t u a t i o n i n which t h e X-Y-type of r e d u c t i o n may b e e x p e c t e d t o o c c u r and t o g i v e t h e a p p r o p r i a t e e q u a t i o n s . A g e n e r a l i z a t i o n o f t h e u s u a l a l g e b r a i c f o r m u l a r e l a t i n g t h e X-Y f u n c t i o n s t o t h e r e f l e c t i o n f u n c t i o n i s a l s o g i v e n , t o g e t h e r w i t h a t r e a t m e n t o f t h e c a s e where t h e a t m o s p h e r e may b e s e m i - i n f i n i t e i n e x t e n t . T h e s e r e s u l t s may p r o v e u s e f u l t o s e v e r a l IIASA s t u d i e s , n o t a b l y t h e c l i m a t o l o g y work of t h e E n e r g y p r o j e c t a n d t h e a s s o c i a t e d work i n t h e E c o l o g y g r o u p .

2 . Problem S t a t e m e n t

We c o n s i d e r t h e p l a n e p a r a l l e l s l a b II ( a , r )

,

r > a , h a v i n g b o u n d a r i e s z = a and z = r . The d i s t r i b u t i o n o f r a d i a t i o n i n t h e d i r e c t i o n o f i n c r e a s i n g and d e c r e a s i n g z i s r e p r e s e n t e d by I' ( z )

,

r e s p e c t i v e l y . T h e s e q u a n t i t i e s t a k e i n t o a c c o u n t f r e q u e n c y , d e g r e e o f p o l a r i z a t i o n , d i r e c t i o n , a n d s o f o r t h . T h u s , 1 - ( z ) t a k e on v a l u e s i n a r e p r o d u c i n g c o n e + K o f non- n e g a t i v e f u n c t i o n s i n a s u i t a b l e s e p a r a b l e Banach s p a c e B .

To e a c h s u b - s l a b

n

( z , z ' )

,

( z , z ' )

C

( a , r )

,

t h e r e a r e a s s o c i a t e d r e f l e c t i o n o p e r a t o r s R' ( z , z' ) a n d t r a n s m i s s i o n o p e r a t o r s Q' ( 2 , z ' )

,

which assume v a l u e s from t h e Banach a l g e b r a -49 o f bounded l i n e a r o p e r a t o r s a c t i n g i n B . The s i g n s o f t r e f e r t o i l l u m i n a t i o n o f t h e s u b - s l a b from t h e l e f t and r i g h t , r e s p e c t i v e l y ( s e e F i g u r e 1)

.

(5)

F i g u r e 1. P l a n e - P a r a l l e l S l a b .

I n t h e medium, we a s s u m e (

I

'Q

+

R'

I

(

5

1 ( n o f i s s i o n ) a n d Q ' ( z , z ' ) + I , R ' ( z , z ' ) + O f o r z ' - z

+

0 . W e a l s o a s s u m e t h e e x i s t e n c e o f t h e l i m i t s

T' ( z ) 5 l i m I

-

~ + ( z , z ' )

,

z ' + z

+

0 Z - Z '

I n g e n e r a l , T', Z' a r e n o n - n e g a t i v e o p e r a t o r s . F o r a n homo- g e n e o u s medium, T', Z x a r e i n d e p e n d e n t o f z , w h i l e f o r a

+ +

l o c a l l y i s o t r o p i c medium T = T- a n d Z = Z-.

On t h e medium n ( a , r ) , l e t t h e f l o w I O

+

b e i n c i d e n t f r o m t h e l e f t . Then c o n s i d e r a t i o n o f t h e r e g i m e s o n t h e b o u n d a r i e s o f t h e s u b - s l a b TI ( z , z l ) shows t h a t 1.- ( z ) s a t i s f y t h e

equations [j] :

(6)

I n c o n c r e t e t r a n s f e r problems, t h e o p e r a t o r s ~ ' ( z ) , Z - ( z ) a r e known and we a r e i n t e r e s t e d i n methods f o r d e t e r - +

+ +

mining R - and Q-.

3 . R e f l e c t i o n , T r a n s m i s s i o n , and X-Y O p e r a t o r s

C o n s i d e r a t i o n of F i g u r e 1 shows t h a t f o r z ' = r , we have

S u b s t i t u t i o n of ( 3 ) i n t o ( 2 ) l e a d s t o t h e Cauchy problem f o r t h e o p e r a t o r R:

Knowledge o f R ( z ) a l l o w s u s t o s i m u l t a n e o u s l y s o l v e a f a m i l y o f d i f f e r e n t problems w i t h d i f f e r e n t v a l u e s of a . We d e t e r m i n e I

+

( z ) from t h e Cauchy problem

w h i l e I- ( z ) i s d e t e r m i n e d from ( 3 )

.

S i n c e t h e p i o n e e r i n g work of Chandrasekhar [ 4 ] and Ambartsumian

[I],

i t i s w e l l known t h a t , i n some c a s e s , t h e s o l u t i o n s t o t h e o p e r a t o r R i c c a t i e q u a t i o n ( 4 ) may be e x p r e s s e d by a n a l g e b r a i c c o m b i n a t i o n of l o w e r - d i m e n s i o n a l o p e r a t o r : ; , t h e s o - c a l l e d X and Y o p e r a t o r s . Our main r e s u l t shows when t h i s may be e x p e c t e d .

(7)

Theorem 1. Assume t h e medium i s homogeneous, i . e . T', Z' a r e i n d e p e n d e n t of z. F u r t h e r , assume

i ) dim r a n g e Z- = p < m

i i ) dim r a n g e Z

+

= q < m

and t h a t Z' a r e f a c t o r e d a s Z- = MN, Z + = UV, where dim r a n g e N = p = dim domain M I dim r a n g e V = q = dim domain V. Then R a d m i t s t h e a l g e b r a i c r e p r e s e n t a t i o n

where Y1, Y 2 , X I , X 2 s a t i s f y t h e e q u a t i o n s

P r o o f : We f o l l o w t h e p r o o f of [3] which was g i v e n f o r a s p e c i a l c a s e o f Eq. ( 4 )

.

D i f f e r e n t i a t e Eq. ( 4 ) w i t h r e s p e c t t o z . T h i s y i e l d s t h e f o l l o w i n g homogeneous e q u a t i o n f o r t h e o p e r a t o r dR -:

d z

Making t h e d e f i n i t i o n s X l ( z ) = R U , X 2 ( z ) = V R , and u s i n g t h e

(8)

r e p r e s e n t a t i o n

w h e r e

The t h e o r e m f o l l o w s w i t h Y1 = a M , Y 2 = N B . Remarks :

+ -

i ) F o r a n i s o t r o p i c a l l y s c a t t e r i n g medium, Z = Z and T+ = T

- ,

w i t h Ti b e i n g s e l f - a d j o i n t . T h u s , Y1 = Y2*, X1 = X2*, and t h e u s u a l s i t u a t i o n o f a s i n g l e X a n d a s i n g l e Y o p e r a t o r i s r e c o v e r e d :

i i ) F o r s l a b s w i t h a r e f l e c t i n g s u r f a c e a t z = r , t h e R i c c a t i e q u a t i o n ( 4 ) h a s a n o n - z e r o i n i t i a l c o n d i t i o n a t z = r , s a y R ( r ) = F. I f F i s i n d e p e n d e n t o f z , t h e f o r e g o i n g a r g u m e n t s c a r r y t h r o u g h , r e p l a c i n g ' a s s u m p t i o n i ) o f t h e Theorem b y i ' )

+ +

d i m r a n g e - ( z -

-

T-F

-

FT

+

FZ F ) < p m

.

F o r a s p e c i f i c a p p l i c a t i o n o f t h i s c a s e t o a n a t m o s p h e r e bounded by a L a m b e r t law r e f l e c t o r , see [ 6 ]

.

i i i ) t h e f i n i t e n e s s o f p a n d q i s n o t e s s e n t i a l . A l l t h a t i s r e q u i r e d i s t h a t Z

+

a n d Z - p r o j e c t i n t o l o w e r d i m e n s i o n a l s u b s p a c e s o f B . However, f o r c o m p u t a t i o n a l c o n s i d e r a t i o n s , t h e f i n i t e c a s e i s t h e m o s t a p p r o p r i a t e .

(9)

4. S e m i - I n f i n i t e Media

We now t r e a t t h e c a s e o f a s e m i - i n f i n i t e m e d i a . I n o r d e r t o d e r i v e a n e q u a t i o n f o r t h e o p e r a t o r s

x1

( - m )

, x2

( - a ) we u t i l i z e t h e f o l l o w i n g lemma:

Lemma 1. L e t P,A,Q be bounded l i n e a r o p e r a t o r s o f B t o

B. Then

w h e r e a : L ( B , B ) + $ (dim ')

'

i s t h e o p e r a t o r o f " s t a c k i n g "

t h e " c o l u m n s " o f a n e l e m e n t o f L ( B , B ) , and B i s t h e u s u a l t e n s o r p r o d u c t o f two o p e r a t o r s .

P r o o f . U s i n g t h e s e p a r a b i l i t y o f B , t h e p r o o f f o l l o w s by a c o o r d i n a t e - w i s e c o m p a r i s o n o f t h e l e f t and r i g h t s i d e s o f ( 6 ) .

The r e s u l t which g e n e r a l i z e s t h e C h a n d r a s e k h a r H - e q u a t i o n f o r t h e s e m i - i n f i n i t e medium i s

Theorem 2. L e t X ( - m ) = H X ( - a ) = H 2 . hen H1 and H2_

1--1L3 s a t i s f y t h e e q u a t i o n s

P r o o f . From t h e R i c c a t i e q u a t i o n ( 4 )

,

we have

A p p l y i n g a t o b o t h s i d e s o f t h i s e q u a t i o n and u s i n g t h e r e s u l t s

(10)

t h e theorem e a s i l y f o l l o w s .

Remarks: ( i ) Theorem 2 assumes t h a t X i

+ u j $

0, where

{Xi] a r e t h e c h a r a c t e r i s t i c r o o t s of T- and C u . 1 a r e t h e r o o t s 3

of ( T + ) * ; ( i i ) i n b o t h Theorems 1 and 2 , c o n s i d e r a b l e s i m p l i -

- *

f i c a t i o n o c c u r s i f Z - and Z+ a r e s e l f - a d j o i n t , w h i l e T+ = T s i n c e i n t h i s c a s e X1 =. X2*, Y1 = Y2*, and H1 = H2*. T h i s i s t h e s i t u a t i o n which p r e v a i l s i n t h e c l a s s i c a l p l a n e - p a r a l l e l , i s o t r o p i c s c a t t e r i n g , homogeneous c a s e .

(11)

R e f e r e n c e s

[ l ] A m b a r t s u m i a n , V.A. C o l l e c t e d Works, T 7 0 1 . 1, Y e r e v a n , USSR, 1 9 6 0 .

[2] B e l l m a n , R . , R. K a l a b a , and M. P r e s t u n d . I n v a r i a n t I m b e d d i n g a n d R a d i a t i v e T r a n s f e r i n S l a b s o f F i n i t e T h i c k n e s s , American E l s e v i e r C o . , N e w Y o r k , 1 9 6 3 .

[3] C a s t i , J . " M a t r i x R i c c a t i E q u a t i o n s , D i m e n s i o n a l i t y R e d u c t i o n , and G e n e r a l i z e d X-Y F u n c t i o n s , " U t i l i t a s Math.

-

( t o a p p e a r November 1 9 7 4 )

.

[4] C h a n d r a s e k h a r , S. R a d i a t i v e T r a n s f e r , Dover P u b l . C o . , N e w Y o r k , 1 9 6 0 .

[5] E n g i b a r y a n , N . and M. M n a t s a k a n y a n . "On P r o b l e m s o f L i n e a r T r a n s f e r , " D o k l a d y Academia Nauk USSR

217

( 1 9 7 4 )

533-535, ( R u s s i a n )

.

[6] S i d h u , G. and J . C a s t i . " X and Y F u n c t i o n s f o r P l a n e t a r y A t m o s p h e r e s w i t h L a m b e r t Law R e f l e c t i n g S u r f a c e s , "

A s t r o p h y s i c a l J . ( t o a p p e a r March 1 9 7 5 ) . [7] S o b o l e v , V.V. A T r e a t i s e on R a d i a t i v e T r a n s f e r ,

Van N o s t r a n d C o . , N e w Y o r k , 1 9 6 3 .

Referenzen

ÄHNLICHE DOKUMENTE

Charakteristische Merkmale des ML-Effekts – Lichtkurve I. Applications on

Später werden wir durch Einsetzen überprüfen, ob diese Annahme auch

• An den Programmpunkten 1 und 2 gelten die Zusicherungen r &gt; 0 bzw.. Weitere Propagation von C durch den Kontrollfluss-Graphen komplettiert die lokal konsistente Annotation

Logische Größen können mit logischen Operatoren und Operationen verknüpft werden, darunter AND, OR, NOT.. Christidis •

Bartlett’s formula for a general class of non linear processes. Francq, Christian and

Also h¨ angt der Wert des Integrals nicht von dem konkreten Weg, sondern nur von den Randpunkten ab.. Also h¨ angt der Wert des Integrals nicht von dem konkreten Weg, sondern nur

Man best¨ atigt nun leicht, dass f¨ ur diese Funktionen tats¨ achlich alle drei Gleichungen erf¨

This is exactly the application of the general linear method M to the inherent regular ODE (7’), provided that in both cases the same initial input vector is used... Denote by u [0]