• Keine Ergebnisse gefunden

Probing the magnetic moments of [Mn<sup>III</sup><sub>6</sub>Cr<sup>III</sup>]<sup>3+</sup>single-moleculemagnets : A cross comparison of XMCD and spin-resolvedelectron spectroscopy

N/A
N/A
Protected

Academic year: 2022

Aktie "Probing the magnetic moments of [Mn<sup>III</sup><sub>6</sub>Cr<sup>III</sup>]<sup>3+</sup>single-moleculemagnets : A cross comparison of XMCD and spin-resolvedelectron spectroscopy"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Probing the magnetic moments of [Mn III 6 Cr III ] 3+ single-molecule magnets—A cross comparison of XMCD and spin-resolved

electron spectroscopy

Andreas Helmstedt

a,∗

, Niklas Dohmeier

a

, Norbert Müller

a

, Aaron Gryzia

a

, Armin Brechling

a

, Ulrich Heinzmann

a

, Veronika Hoeke

b

, Erich Krickemeyer

b

, Thorsten Glaser

b

, Philipp Leicht

c

, Mikhail Fonin

c

, Thomas Tietze

d

,

Loïc Joly

e

, Karsten Kuepper

f,1

aFacultyofPhysics,BielefeldUniversity,Universitätsstr.25,33615Bielefeld,Germany

bFacultyofChemistry,BielefeldUniversity,Universitätsstr.25,33615Bielefeld,Germany

cFachbereichPhysik,UniversitätKonstanz,Universitätsstr.10,78457Konstanz,Germany

dMaxPlanckInstituteforIntelligentSystems,Heisenbergstr.3,70569Stuttgart,Germany

eInstitutdePhysiqueetChimiedesMatériauxdeStrasbourg,UMR7504,CNRS-UniversitédeStrasbourg,BP43,23rueduLoess, F-67034StrasbourgCedex2,France

fInstitutfürFestkörperphysik,UniversitätUlm,89069Ulm,Germany

Keywords:

Spin-resolved

Photoelectronspectroscopy Augerelectronspectroscopy Single-moleculemagnets XMCD

a b s t r a c t

Single-moleculemagnets(SMM)ofthe[MnIII6CrIII]3+structuraltypepreparedonSiandgold-coated glasssubstrateshavebeeninvestigatedbyspin-resolvedelectronspectroscopy(SPES)andX-raymag- neticcirculardichroism(XMCD)attheMnL3,2edgeandinadditionbyXMCDattheCrL3,2edgeusing synchrotronradiation.Differencesbetweenthetwomethodsarediscussed.Despiteitsseverelimita- tionsfor3dtransitionmetals,aspinsumruleevaluationisneverthelessperformedfortheMnIIIcentres inthe[MnIII6CrIII]3+SMMtoprovideasimplemeansofcomparingXMCDandspin-resolvedelectron spectroscopyresults.

1. Introduction

The annual amountof data being produced worldwide has reachedtheExabyte(1018byte)rangeandisincreasingrapidly[1].

Whiledatastoragemainlyreliesonharddiscdrives,fundamental limitations [2–4] of the magnetic recording principle define a maximumrecordingdensityofapprox1Tbit/inch2 [2,5].Beyond thiscriticaldensity,thermalfluctuationsareabletoovercomethe energy barrieragainst magnetizationreversal,leading toa loss of storedinformation [2,3,6].Effortsare beingmadetoreplace bulk magnetic and semiconductor devices bysingle molecules, which canperformas memorycells, transistorsor even logical

Correspondingauthor.Tel.:+491784952881;fax:+495211066001.

E-mailaddress:helmstedt.andreas@gmail.com(A.Helmstedt).

1 Present address: Department of Physics, Osnabrück University, Barbarastraße7,49076Osnabrück,Germany.

devices [7–9]. A comprehensivereview of this field is given in [10].Single-moleculemagnets(abbrev.SMM)[11–13]represent a promising approach withregard toquantum computing and information storage [14–17]. Single-molecule magnets require individualaddressingtoretrievethestoredinformation—therefore firstsuccessfulattemptstodepositSMMonsurfaceswithapref- erentialorientation[18] orinperiodic3Darrays [19]represent importantstepstowardsfutureapplications.

A‘serendipitousapproach’[20]resultedinthediscoveryofthe firstsingle-moleculemagnetMn12ac[21–23].However,adifferent methodinvolvingrationalbottom-upmoleculardesignwascho- sentoobtainthe[MnIII6CrIII]3+single-moleculemagnet[24–26].

Itisrepresentativeofthegeneral[Mt6Mc]n+structuretypethathas beenstudiedthoroughlyinthepastyears[24–31].

Thestabilityofthe[MnIII6CrIII]3+SMMdeposited onvarious substratesagainstsoftX-rayirradiationwasinvestigatedinearlier work[32],indicatingtheimportantroleoftheanionsassociated withtheSMMcorefortheradiationstability.Firstspin-resolved

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-266223

Erschienen in: Journal of Electron Spectroscopy and Related Phenomena ; 198 (2015). - S. 12-19

(2)

electronspectroscopy(SPES)experimentsonSMMwereperformed [33] usingthemoststable [MnIII6CrIII]3+ typewithperchlorate anions.Withthecontrolleddepositionofthe[MnIII6CrIII]3+SMM onsurfacesbeinga centralquestionfor futureapplications,the depositionbehaviouronsurfaceswasstudiedaswellbyAFMand STM[34,35].Withintheworkpresentedhere,SPESmeasurements wereperformedattheL3,2edgeoftheMnionsinthe[MnIII6CrIII]3+

SMM,usingcircularlypolarizedsynchrotronradiationfortheexci- tationstep.XMCDmeasurementsattheMnandCrL3,2edgeswere carriedoutaswellinordertocrosscomparethemwiththeelectron spinpolarizationspectra.

2. Scientificbackground

Theavailabilityofhigh-qualitysynchrotronradiationsources withvariablepolarizationwasthekeyfactorfortheXMCDmethod tobecomea versatile,widelyused toolfor theinvestigationof themagneticpropertiesofsolids[36–38].However,thetechnique requiresthesamplestoexhibitamagneticorientation—usuallythis conditionisachievedbystrongexternalmagneticfieldsandlow sampletemperatures.

ThewidepracticalapplicabilityoftheXMCDmethodisbasedon thediscoveryoftheso-calledsumrulesfortheorbital(Tholeetal.

[39])andthespinmagneticmoment(Carraetal.[40]), relating themeasuredhelicity-dependentdifferenceinabsorptiontothe localspinandorbitalmagneticmomentsoftheabsorbingatom [41,42].Thisapproachallowstheelement-specificdetermination ofthelocalmagneticmomentspresentinthesample.However, theapproximationsusedtoobtainthesumruleslimittheaccuracy ofthederivedspinandorbitalmagneticmoments,see[43–47].

Especiallyinthecase of3dtransitionmetals,correctionstothe sumruleresultsarerequired,eitherbyapplyingcorrectionfactors (Teramuraetal.[48])orbycomparingtheXMCDdatatotheresults frommultipletcalculationsasshownbyPiamontezeetal.[49].The lattermethodhasbeenappliedsuccessfully toMnIIIsystemsby Kuepperetal.[50].

TheapplicationofexternalmagneticfieldsintheXMCDexperi- mentrepresentsaninfluenceontheinvestigatedsystemsthathas thepotentialtochangetheconditionofthesampleswithrespectto theundisturbedstatewithoutexternalfields.Forthe[MnIII6CrIII]3+

SMMinvestigatedwithinthiswork,theapplicationoftheexter- nalmagneticfieldcauses distinctchangesin thespectral shape oftheMnL3,2edgeabsorption,confirmingtheexistenceofsuch influences.

ExperimentsperformedonparamagneticGdin2001byMüller etal.[51]indicatethatspin-resolvedelectronspectroscopyofsam- plesintheparamagneticregimeabovetheCurietemperatureyields thesameinformationas XMCDdatawithouttheneed toapply externalmagneticfields:Theprimaryexcitationstepinvolvingcir- cularlypolarizedradiationisgovernedbytherelativisticdipole selection rules [52,53]for paramagnetic samplesas wellas for magneticallyorientedmaterials.Asaresult,theexcitationinboth casesgeneratesorientedcoreholesinthesample.Thecorehole orientationoriginating fromtheprimaryexcitation stepcanbe investigatedbyanalyzingthespinpolarizationofAugerelectrons followingthedecayoftheprimarycorehole.TheL2,3M2,3VAuger decayoftheMnconstituentsinthe[MnIII6CrIII]3+SMMwasused toretrievetheorientationoftheprimarycoreholesfortheresults presentedhere,see[33].

AnXMCDexperimentperformedwithcircularlypolarizedlight leadstotwodifferentabsorptionyields[39]Y+and Ydepend- ingonthelight helicity(thephoton angularmomentum)being parallelor antiparallel tothepreferentialmagnetic directionM presentinthesample,respectively.Whileinmagneticallyordered solidsMisdefinedbythemagnetization,forassembliesofnon- interactinglocalizedmagneticmoments,e.g.forSMM,anexternal

magneticfieldofsufficientstrengthBisnecessarytodefineM.As themajorityspinorientationofamagnetizedsampleisantiparal- leltoM,theavailabilityofempty3dvalencestatesleadstoY+>Y fortheL3edgeofa3dtransitionmetalasinvestigatedwithinthis work.TheXMCDasymmetryAXMCD=(Y+−Y)/(Y++Y)resulting fromtheXMCDexperimentiscloselyconnectedtothecorehole orientationcreatedinamagneticallynon-orderedsamplebyan excitationstepusingcircularlypolarizedradiation.Theexistence ofthiscloserelationshipbetweenMCDeffectsinphotoexcitation aswellasintheangulardistributionofphotoelectronsandthespin polarizationofelectronsemittedfromparamagneticsampleshas beendescribedwithintheframeworkoftheelectricdipoleapprox- imation,see[54].Theequivalencyofbothapproachesisrestricted tosituationsinwhichtheexchangesplittingisnotresolvedinthe MCDexperiment[55].Also,corelevelsplittingandothereffects causedbycore–valenceinteractioninmagneticsamples[56]need tobeconsidered.

3. Experimentalapproach 3.1. Samplepreparation

The [MnIII6CrIII]3+ SMM investigated herewere synthesized according to the procedure described in earlier works [26,32].

Methanolic solutions of the SMM with a concentration of 9·10−5mol/lwereprepared.BasedontheresultsofanearlierXAS studyontheradiationsensitivityoftheinvestigatedSMM[32],the moststable[MnIII6CrIII](ClO4)3SMMwithperchlorateanionswas chosenforthespin-resolvedelectronspectroscopymeasurements.

Anairbrushprocessusingacommerciallyavailableairbrushgun (GrafoT1,see[57])andhigh-puritynitrogenasworkinggaswas developedforthe[MnIII6CrIII]3+samplepreparation:200␮lofthe methanolicSMMsolutionwereusedtocoatasquaresubstrateof approx.11mmedgelengthbyrepeatedlymovingtheairbrushnoz- zleacrossthesubstrateinaregularpattern.Thismethodallowed thedepositionofhomogeneousSMMdepositswithanareaofupto 100mm2.Fortheresultspresentedwithinthiswork,Si(110)and gold-coatedglasssubstrates(see[58])wereused.Thelargehomo- geneoussampleareaallowedtheuseofsamplescanningduring thespinpolarizationmeasurements:Dataobtainedfromalarge numberofsamplepositionsaremergedintoonespinpolarization datapoint,therebyovercomingthelimitationofthemeasuringtime duetothe[MnIII6CrIII]3+SMMradiationsensitivity.

Although opticalmicroscopy of the deposited [MnIII6CrIII]3+

revealslabyrinth-like,irregularstructuresonsmallscalesbelow 0.2mm(seeFig.1right),theseirregularitiesareaveragedoutdue tothespotsizeofapprox.1mm2usedforthesynchrotronradi- ationexperiments.Thehomogeneityofthedepositionprocessas wellastheconditionofthedeposited[MnIII6CrIII]3+SMMhave beencheckedbyMnL3,2edgeXAScharacterization.AllXASresults presentedwithinthisworkhavebeenobtainedinthetotalelectron yield(TEY)modei.e.bymeasuringthesamplecurrentandthere- forethetotalnumberofphoto-andsecondaryelectronsleaving thesample.

3.2. Spin-resolvedelectronspectroscopy

Thespin-resolvedelectronspectroscopy(SPES)measurements presented here have been performed at the beamlines UE52- SGM and UE56/2-PGM2 of the BESSY-II storage ring at the Helmholtz-Zentrum Berlin (HZB). Both beamlines usethe syn- chrotronradiationofpermanentmagnetundulatorsoftheAPPLE-II type and provide a range of photonenergies that extendfrom approx.90eVto1300eV,coveringthe640eVregionoftheMn L3,2 edge.Fordetailedinformationconcerningthespecifications

(3)

Fig.1. Left:XAScharacterizationofa[MnIII6CrIII](ClO4)3SMMsamplepreparedbythedescribedairbrushmethod.MnL3,2edgeabsorptionspectrarecordedatdifferent samplepositionsacrossthefull11mmby11mmsampleareaareshown.Right:MicroscopyimageoftheSMMsample—theirregularitiesoftheSMMdepositionvisibleat thismagnificationareaveragedoutduetothesynchrotronradiationspotsizeusedintheexperiment(blacksquare).

ofbothbeamlinessee[59–61].Anoff-focussamplepositionwas chosentoreducethesynchrotronradiationfluxatthesampleto 1011photons/s/100mAwithrespecttotheradiationsensitivityof the[MnIII6CrIII]3+SMM[32].

The experimental setupused for the spin-resolved electron spectroscopyexperimentsconsistedofaUHVapparatusequipped witha 90 sphericalfield electronspectrometerin normalinci- dence, normal emission geometry. After energy analysis the collectedelectronsweretransferredtoasphericalMottpolarime- teroftheRicetype[62],usingascatteringenergyofupto45kV.The polarizationsensitivity(Shermanfunction)oftheMottpolarime- terat25kV(45kV)wasSeff=−0.17±0.02(Seff=−0.23±0.02).Note thattheuncertaintyofthepolarizationsensitivityasascalefac- tor is not included in the error bars of the SPES results given in Figs. 3 and 4. Detectionof the scattered and retarded elec- tronswasperformed bychannel electron multipliers[63] with a circular entry funnel (diameter 25mm) to maximize detec- tion efficiency. The electron spectrometer as well as the Mott polarimeter has been used successfully before[33,51,53,64,65]

and has been described in more detail elsewhere, see[53,65].

TheUHVsetupwascompletedbyanelectricallyisolatedsample stage in order toperform total-electron-yield mode XAS mea- surements,a sampletransfer andpreparation systemproviding UHVstorageforupto6samplesand aload-lockwithapump- downtime of less than 1h, allowingfrequent sample changes madenecessarybythelimitedsamplelifetimeundersoftX-ray exposure[32].

3.3. XMCDmeasurements

ComparativeXMCDinvestigationsof[MnIII6CrIII](ClO4)3SMM havebeenperformedattheSIMbeamlineoftheSLSstoragering at the Paul-Scherrer institute in Villigen, Switzerland. The SIM beamlineisbasedonadoubleundulatorcomparabletotheUE56 undulatorsattheBESSY-IIstoragering.Bothundulatorsareslightly tiltedagainsteachotherandcanbeoperatedwithoppositehelicity.

However,onlyoneundulatorwasusedforthemeasurementspre- sentedwithinthiswork.Theavailableenergyrangeof90–2000eV [66]coverstheMnandCrL3,2 edgeswhichwerestudiedinour experiment.Thephotonfluxatthesamplepositionwasreduced bytuningthebeamlinemonochromatortoafix-focusconstantof approx.20insteadoftheusualvalueof2.25andaddinganalu- miniumfilterinordertotakeintoaccounttheradiationsensitivity ofthe[MnIII6CrIII]3+SMM.ThelowtemperatureXMCDsetupofthe IPCMSStrasbourg[66]providingsampletemperaturesofapprox.

2Kandamagneticfieldofupto6.9TwasusedtoobtaintheXMCD datapresentedhere.AllXMCDmeasurementsweredoneinTEY modebymeasuringthesamplecurrent.

4. Resultsanddiscussion 4.1. XASsamplecharacterization

Prior to the spin-resolved electron spectroscopy measure- ments, the [MnIII6CrIII](ClO4)3 samples were characterized by X-rayabsorptionspectroscopy.ThespectralshapeoftheMnL3,2

absorptionedgeisverysensitivetochangesintheoxidationstate oftheMnions,therebymakingXASausefultooltomonitorthe samplecondition.ReferencedataobtainedfrombulkMnIIandMnIII oxidesprovideameanstodeterminetheMnII/MnIIIratiopresentin the[MnIII6CrIII]3+sample[32].Theintact[MnIII6CrIII]3+molecule containssolelyMnIII,thereforethisratioservesasanindicatorof changestothemoleculeconditionduetopreparationorradiation exposure.

Thesamplespreparedbytheairbrushmethoddescribedbefore werecheckedbyXASwithregardtothehomogeneityofthedepo- sitionprocess:Thehomogeneityofthe[MnIII6CrIII]3+samplewith respecttothemoleculeconditioniscrucialasthespinpolariza- tiondatafromdifferentsamplepositionsaremergedtoreducethe statisticalerroroftheresults.

The results of the XAS characterization reveal a very good homogeneityoftheabsorptionyieldmeasuredatdifferentsam- plepositions, seeFig.1.Furthermore,theoxidationstateofthe Mnionsinthe[MnIII6CrIII](ClO4)3SMM,indicatedbythespectral shapeoftheMnL3,2absorption,isthesameoverthewholesample area,fulfillingtherequirementsfortheapplicationofthesample scanningduringthespinpolarizationmeasurements.

4.2. Monitoringofradiation-inducedreduction

BesidesthecharacterizationofSMMsamplesuponpreparation, XASwasalsousedtomonitorradiation-inducedchangestothe moleculecondition.Previousinvestigationsrevealedthattheoxi- dationstateoftheMnionsin[MnIII6CrIII]3+SMMchangesfrom MnIIItoMnIIunderexposuretosoftX-rays,withtherateofthe reductionprocessbeingstronglycorrelatedtothechoiceofanions [32].

Mn L3,2 edge absorption spectra were recorded before and after the acquisition of one SPES datapoint to investigate the

(4)

Fig.2.Radiation-inducedchangeoftheMnoxidationstatein[MnIII6CrIII](ClO4)3

SMM.TheinitialMnIIIcontentof0.93isreducedto0.78bythereductionprocess occurringuponsoftX-rayexposure.Theradiationdamageshowncorrespondsto theacquisitionofasingleSPESdatapointataphotonenergyof642eV,clearly demonstratingthenecessityofsamplescanning.

radiation damage caused by themeasurement, see Fig. 2. The [MnIII6CrIII](ClO4)3sampleshowedaninitialMnIIIcontentof0.93, indicatingthatthemajorityofthedepositedSMMwereintheir intended original state. TheMnIII contentwas reduced to 0.78 by a soft X-ray exposure of approx. 60s, corresponding tothe acquisitionofasingleSPESdatapoint.TheSPESmeasurementwas performedattheMnIIIabsorptionmaximumat642eV,leadingto thecreationofamaximumnumberofsecondaryelectronsinthe SMMsample.Thereforetheextentofradiation-inducedreduction showninFig.2canberegardedasaworst-caseestimate.Forexcita- tionenergieswithalowerabsorptioncrosssection(off-resonance), lessradiationdamagewasobserved.

4.3. SPESofmanganese(II)acetate

SPESmeasurementsofmanganese(II)acetatewereperformed inordertodemonstratethatSPESandXMCDresultscorrespond also for Mn ions in a chemical environment resembling the [MnIII6CrIII]3+ SMM more closelythan MnO and Mn2O3. Based on the results of previousspin-resolved electron spectroscopy investigationsof Mnbulk oxidesand manganese(II)acetate(see [33]),thespinpolarizationoftheelectronsejectedfromaman- ganese(II)acetatereferencesampleasaresultoftheMnL2,3M2,3V Augertransitionhasbeenmeasuredfordifferentexcitationener- giescoveringthewholeMnL3,2 region.Duetosinglet coupling beingpredominantintheinvestigatedAugertransition,thespin polarizationoftheAugerelectronsequalsthespinpolarizationof theorientedcoreholesfromtheprimaryexcitationprocesswith theoppositesign.

Insteadofrecordingfullspin-resolvedAugerspectraasshown in[33],adifferentapproachwaschosenhere:Afterlocatingthe appropriateAugerlineinanoverviewspectrum,thespin-resolved measurementswereperformedwithafixedelectronenergycor- respondingtotheselectedAugertransition.Theresultsobtained frommanganese(II)acetatearegivenin Fig.3,thebottompanel showsthecorrespondingabsorptionspectrumwiththeexcitation energiesmarked.TheintegrationtimeoftheSPESmeasurement wassetto300sperhelicityanddatapoint.Thebandwidthofthe excitationwaschosenindividuallyforeachdatapoint,representing a compromisebetweenresolutionand therequiredcountrates dependingonthevaryingelectronyield.Theselectedbandwidth is given by the horizontal error bars of the spin polarization

- 0.3 - 0.2 - 0.1 0.0 0.1 0.2 0.3

spin polarization

spin polarization MnIIacetate

638 640 642 644 646 648 650 652 654

0.0 0.1 0.2 0.3 0.4 0.5

TEY (arb u)

photon energy (eV)

absorption yield 0.1 0.05 0.00 - 0.05 - 0.10

XMCD asymmetry

Fig.3.SPESresultsofmanganese(II)acetate.Toppanel:Thespinpolarizationof theAugerelectronsresultingfromtheMnL2,3M2,3VAugertransitionisshown.The horizontalerrorbarsrepresentthebandwidthofthecircularlypolarizedradiation usedintheexcitationstep.Theverticalerrorbarscorrespondtothestatisticalerror ofthemeasurements.ThesolidlinerepresentsXMCDdataobtainedfromman- ganese(II)acetate(7T,approx.15K)forcomparison.Bottompanel:Acorresponding MnL3,2edgeabsorptionspectrumofmanganese(II)acetateisshown.

datapointsin Fig.3, while theverticalerrorbars representthe statisticalerrorofthemeasurements.

The Auger electron spin polarization observed in man- ganese(II)acetate reveals negative values in the Mn L3 region.

Towardshigherphotonenergies,asignchangeoccursattheupper edgeof theMnL3 multiplet.Thehighest positivevalues ofthe spin polarization areobserved around thesatellite structure at 641.5eVwhichisacharacteristicspectralfeatureofMnII[32].The signchangeoccurringbetweenthemainabsorptionandthesatel- litestructurehasbeenobservedinXMCDinvestigationsofother molecularMnIIcompounds[32,67].Whilenosignificantspinpolar- izationisfoundforthephotonenergyrangeinbetweentheL3and L2multipletstructures,asmallpositivespinpolarizationwithabso- lutevaluesbelow5%hasbeenmeasuredforthehigherexcitation energiesoftheL2multiplet.

Themeasuredspinpolarizationstronglydependsontheexci- tationbandwidthintheproximityofsharppolarizationfeatures:

At an excitation energy of 641.6eV, two measurements were performedwithdifferentexcitationbandwidthsof250meVand 750meV.Whilethemeasuredspinpolarizationisclosetozerofor thelargerexcitationbandwidth,apolarizationof+12%correspond- ingtothesignchangeinXMCDobservedbyKhanraetal.[67]is obtainedforthesmallerexcitationbandwidth.

XMCDmeasurementsofmanganese(II)acetatehavebeenper- formedincooperationwiththegroupofE.GoeringattheMPIfor IntelligentSystemslocatedinStuttgartforcomparison(seeFig.3 toppanel,solidline).TheXMCDsampleshavebeenpreparedbya drop-castingprocessongoldcoatedglasssubstrates.Themeasure- mentswerecarriedoutusingamagneticfieldof7Tandcoolingthe sampletoatemperatureofapprox.15KattheBESSY-IIstoragering facilityoftheHZB(beamlinePM3).Thedifferenceinabsorption yieldsobtainedfromtheXMCDexperimenthasbeennormalized tothesumof thehelicity-dependentyieldstoderive AXMCD as describedinthetheoreticalbackground.TheXMCDasymmetryand thedetectedspinpolarizationoftheAugerelectronsexhibitoppo- sitesignsasseeninpreviousexperiments[33],whichhasbeen takenintoconsiderationbychangingthedirectionofthevertical axis.

Agoodqualitativeagreementbetweenthespinpolarizationof theAugerelectronsand theXMCDasymmetry isfoundforthe energyrangeofthewholeL3regionuptotheonsetoftheL2multi- pletat649.5eV.WithintheL2edgeregion,somedifferencesoccur betweenthetwophysicalquantities.Ithastobenotedthatdespite

(5)

- 0.3 - 0.2 - 0.1 0.0 0.1 0.2

spin polarization

spin polarization

[MnIII6CrIII](ClO4)3

638 640 642 644 646 648 650 652 654 656 658 660 0.0

0.2 0.4 0.6 0.8 1.0

TEY (arb u)

photon energy (eV)

absorption yield 0.6 0.4 0.2 0.0 - 0.2 - 0.4

XMCD asymmetry

Fig.4.SPESresultsof[MnIII6CrIII](ClO4)3SMM.Toppanel:Spinpolarization resultsobtainedfrom[MnIII6CrIII](ClO4)3SMMusingthedescribedmethodare presented.Themeaningofthehorizontalandverticalerrorbarsisgiveninthecap- tionofFig.3.ComparativeXMCDdataaregivenbythesolidline,seemaintextfor details.Bottompanel:MnL3,2edgeabsorptionspectrumof[MnIII6CrIII](ClO4)3, theexcitationenergiesusedfortheSPESmeasurementsaremarkedbycircles(diam- eterequalsexcitationbandwidth).

thesatisfactoryqualitativeagreementfoundhere,theabsoluteval- uesoftheXMCDasymmetryareapproximately3timeslowerthan thecorrespondingspinpolarizationdata:Notethedifferentscaling oftheleftandrightverticalaxisofFig.3;weexpectthisdifference tobecorrelatedtoaninsufficientmagneticorderingoftheman- ganese(II)acetatesampleintheexternalmagneticfieldduringthe XMCDmeasurement.

4.4. SPESof[MnIII6CrIII]3+SMM

Duetotheradiationsensitivityofthe[MnIII6CrIII]3+SMM[32], theaboveapproachhadtobemodified,astheoccurrenceofradi- ation damage limited the measuringtime. Therefore, a sample scanningmethodwasintroduced:Anew,previouslyunexposed samplepositionwasselectedaftereachmeasurementofapprox.

60s.Alargenumberofmeasurementswascombinedintoonespin polarizationdatapoint.VariationsoftheSMMlayerthicknesscan- celledout,asonlytheasymmetryofthecountratesofthetwo detectors wasevaluated. Instrument related asymmetries were cancelledoutbycombiningmeasurementswithdifferenthelic- ity ofthecircularly polarizedlight usedfor theexcitation. The [MnIII6CrIII](ClO4)3SMMwiththeperchlorateanionwaschosen fortheSPES measurements,aspreviousinvestigationsrevealed its higher radiationstability compared tothe SMM typeswith tetraphenylborateandlactateanions[32].

Spin polarization results obtained from [MnIII6CrIII](ClO4)3

samplesareshownintheupperpanelofFig.4.Theresultof a comparativeXMCD studyat B=−6.9Tand approx. 2K is given bythesolid lineinthetoppanel.Again,thelowerpanelofthe figure represents the corresponding absorption spectrum with theexcitationenergiesfor theSPES measurementsmarked.For [MnIII6CrIII](ClO4)3anegativespinpolarizationwithabsoluteval- uesupto20%ispredominantintheMnL3edgeregion.Instrong contrasttotheresultsobtainedfrommanganese(II)acetatethespin polarizationremainsnegativerighttotheonsetoftheL2absorp- tionmultiplet—thedistinctchangeofsignobservedinMnIIsystems isnotfoundhere.Apositivespinpolarizationofupto+8%was detectedinthefirstpeakstructureoftheL2multiplet.

Besidesthequalitativeagreementbetweenthespinpolarization datainFig.4andtheXMCDresultshownforcomparison,anumber ofdistinctdifferencesarevisible:TheabsolutevalueoftheXMCD asymmetryisapproximatelytwicetheabsolutevalueofthespin

Fig.5.MnL3,2 edgeXMCDdataobtained from[MnIII6CrIII](ClO4)3SMMat B=−6.9Tand2K.Thehelicitydependentabsorptionspectra(toppanel)areshown togetherwiththeresultingXMCDdifference(bottompanel).

polarizationintheL3 region,thoughtheoverallstructurewithin theL3multipletiscomparable.Thelargepositiveexcursionofthe XMCDasymmetryatthehighenergysideoftheL3multipletisnot reproducedinthespinpolarizationdata.Acomparabledifference isalsofoundatthehighenergysideoftheL2 multiplet.Amore detaileddiscussionofthedifferencesisgivenlaterfollowingthe XMCDresults.

4.5. XMCDresultsof[MnIII6CrIII](ClO4)3

XMCDmeasurementsatanexternalfieldof−6.9Tandatem- peratureofapprox.2KwereperformedattheSIMbeamlineofthe SLSstoragering(Villigen,Switzerland)on[MnIII6CrIII](ClO4)3sam- plesforcomparison.Asindicatedbymagnetizationmeasurements withvariedtemperatureandexternalfield(VTVH),saturationis reachedfor[MnIII6CrIII]3+withexternalfieldsofapprox.7T,see reference[29].

AseriesofeightconsecutiveXASscanswasperformedtoesti- matetheradiationdamage causedbytheXMCD measurement.

Nodiscernibleradiationdamageeffectswerefoundinthisseries.

Using thecontinuousmode of thebeamline monochromator, a setofthreeabsorptionspectrawasrecordedforeachhelicityand magneticfieldorientation.Theaveragedhelicity-dependentXAS spectraaswellastheresultingXMCDdifferenceareshowninFig.5.

Despitetheverylowsignal-to-noiseratio,XMCDmeasurements weresuccessfullyperformedalsoattheCrL3,2edge.Usingthesame setupasbefore,seriesof5XASscanswereaveragedtoobtainthe resultsshowninFig.6.AdistinctdifferenceinthesignoftheXMCD effectisvisibleintheCrL3,2XMCDdatacomparedtotheresults obtainedattheMnL3,2edge(seeFig.5),indicatingthattheanti- ferromagneticcouplingbetweentheterminalMnIIIionsandthe centralCrIII[24]isstilleffectiveatanexternalfieldof6.9T.

4.6. SumruleevaluationofSPESdata

Accordingtotheapproach describedinthetheoreticalback- ground,informationequivalenttoXMCDdatashouldbeobtainable fromtheSPESmeasurement.Thereforeasumruleanalysis(see [39–42])wasperformedforbothmethods.

Ithastobenotedthattheapplicabilityofthesumruleapproach to3d4 systemsliketheMnIII ionsinthe[MnIII6CrIII]3+ SMMis severelylimitedbyanumberofphysicalconstraints,see[49]for a detaileddiscussion. However,theseconstraintsapply toboth experimentalmethods,thereforethesumruleapproachremains

(6)

Fig.6. CrL3,2 edgeXMCD dataobtained from [MnIII6CrIII](ClO4)3 SMMat B=−6.9Tand2K.Toppanel:Helicitydependentabsorptionspectra.Bottompanel:

ResultingXMCDdifference.NotethedifferenceinthesignoftheXMCDeffect comparedtoFig.5,indicatinganantiferromagneticorientationoftheMnandCr magneticmoments.

ausefultoolforthecomparisonbetweenXMCDandspin-resolved electronspectroscopydata.Charge-transfermultipletcalculations asdescribedinreferences[49,50]arerequiredtoderiveabsolute valuesforthelocalmagneticmomentswithoutthelimitedaccu- racyofthesumruleformalism.

The linearly interpolated SPES data were multiplied point- wisewithabsorptiondatarecordedinconnectionwiththeSPES measurements withoutan external magnetic field as the mea- sured electronspin polarization corresponds totheasymmetry ofthehelicitydependentabsorptionintensities.Themultiplica- tionaccountsforthefactthatthedifferenceofthetwoabsorption yieldsY+andYinsteadoftheasymmetryAXMCDisrequiredfor theusualformulation ofthe XMCDsumrules. Additionallythe signoftheSPESdatawasinvertedinthissteptoaccountforthe signchangeintroducedintotheSPESmeasurementsbytheAuger processinvolved[33].

ItiswellknownthatthefullseparationoftheL2andL3 con- tributionsisdifficultfor3d4systemsasMnIII.Duetothecomplex structureoftheL2andL3multiplets,anattempttofittheabsorp- tiondatawiththeoreticalmodelswasnotperformed.Instead,the followingsimplifiedapproachwaschosen:TheXMCDdifference nearlyvanishesbetween650eVand652eV,creatingaregionin whichthevalueofthepintegralchangesonlyslightlywithpho- ton energy.Theupper limitof thep integrationwaschosen in thisregionforbothXMCDandspin-resolvedelectronspectroscopy data.Withthischoice,theresultingerrorduetotheinaccuratesep- arationoftheedgesisexpectedtobesmallcomparedtotheother contributionstothesumruleerrordescribedin[49].

Usingthemostcommonsumruleexpression[41,42]andcal- culatingtherequiredintegralsp(L3edgeXMCDdifference),q(L3,2 edgeXMCDdifference)andr(L3,2edgehelicityaveragedabsorp- tion),thefollowingresultswerederivedfromSPESdata:

spin=−(3p−2q)×(10−n3d)

r×kcorr =−1.8±0.4Bohr

orbit=−2×q×(10−n3d)

3r =−0.60±0.12Bohr

ApossiblemagneticdipolecontributionTZtothespinmag- neticmomenthasbeenignoredgiventhefactthatthiseffectis smallfor3dtransitionmetals[48].DuetothenatureoftheMnIII- ligandbondpresentinthe[MnIII6CrIII]3+SMMthesystemcanbe regardedasbeingpurely3d4.Anadditionalcorrectionfactorkcorr

Fig. 7.Comparison of XMCD and spin polarization data obtained from [MnIII6CrIII](ClO4)3 SMM. Note that the sign of the spin polarization has beeninverted.Thespinpolarizationrawdataweremultipliedwithahelicity- independent absorption spectrum derived from the XMCD measurements to accountforthedifferencesintheintensitynormalizationusedbytheSPESand XMCDmethod.

hasbeenappliedtotheresult,followingtheapproachsuggestedby Piamontezeetal.[49].Thecorrectionfactorsuccessfullyderivedfor MnIIIionsbyKuepperetal.[50]wasused,althoughithastobecon- sideredthattheMnIIIionsin[MnIII6CrIII](ClO4)3areembeddedin adifferentchemicalenvironment.

Theerrorgiveninthespinandorbitalmagneticmomentresults wasderived usingthefollowingmethod:Eachspinpolarization datapointwasvariedwithanormaldistributionwithinitsuncer- taintylimits(seeerrorbarsinFig.4),leadingtoanewasymmetry curve.Theresultwasevaluatedusingthesumrulesasbeforeto obtainnewvaluesforspinandorbit.After500runs,thestandard deviationofthecalculatedvalueswasderivedtoestimatetheerror oftheresults.

Resultsforthelocalspinandorbitalmagneticmomentswere derivedaccordinglyfromtheXMCDdatagiveninFig.5.Notethat thecorrectionfactorforthespinmagneticmomentwasappliedas beforeandthemagneticdipolecontributionwasneglected:

spin=−(3p−2q)×(10−n3d)

r×kcorr =−1.9±0.2Bohr

orbit=−2×q×(10−n3d)

3r =−0.30±0.03Bohr

Theerrorofthederivedspinandorbitalmagneticmomentshas beenestimatedfollowingthesameapproachasusedfortheSPES results—theuncertainty ofeachXMCDdifferencedatapoint was derivedfromtheaveragingoftheoriginalspectra.Afterwards,the variationmethoddescribedbeforewasapplied.

4.7. DiscussionofdifferencesbetweenXMCDandspin-resolved electronspectroscopy

Despitethereasonableagreementbetweenthespinmagnetic momentobtainedviathesumrulemethodfromSPESandXMCD data,significantdifferencesbetweenthetwodatasetsexist.Adirect comparisonoftheXMCDdifferencesignalandthemeasuredspin polarizationisshowninFig.7.Notethatthesignofthespinpolar- izationhasbeeninvertedandthespinpolarizationdatahavebeen multipliedwithaspin-integratedabsorptionspectrumtoaccount forthedifferentintensitynormalizationofbothmethods.

ItisstrikingthatinthewholeMnL3edgeregion,theXMCD signal reveals larger absolute values with respect to the spin

(7)

Fig.8. XASspectraof[MnIII6CrIII](ClO4)3SMMobtainedunderdifferentexperi- mentalconditions:Measurementatroomtemperature(blacksolidline)andat2K withoutexternalfield(darkyellowsolidline).Spectrarecordedat2Kand−6.9T withoppositelighthelicity(dottedlines)havebeenaveragedtoobtainthespin independentabsorptionspectrum(redsolidline).Inset:Ashiftofapprox.300meV occursforthemainMnIIIabsorptionfeature.(Forinterpretationofthereferencesto colourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

polarizationdata.Nevertheless,thestructureofthemultipletwith itsthreepeaksatapprox640eV,641eVandslightlyabove642eV isreproducedreasonablywellinbothmethods.Thesignchange andthelargenegativeexcursionoftheXMCDsignalatenergies abovetheL3multipletisnotreproducedinthespinpolarization data.The measuredspin polarization retainsitssignup tothe onset of theL2 peak structure. Here, the XMCD signalreveals againrelativelylargenegativevalueswhicharenotreproducedin the(sign-corrected)spinpolarization.Duetothesecharacteristic differences,theintegral-basedsumruleevaluationleadstocom- parableresultsforthespinmagneticmoment:Thelargerpositive swingoftheXMCDsignalintheMnL3regionandthenegative excursioninbetweentheL3 andL2multiplet regioncancelout, resultingincomparablevaluesfortheL3andL3,2integrals.

Withrespecttotheexperimentalconditionswhichthesample issubjectedto,twomajordifferencesexistbetweentheXMCDand SPESmethod:WhiletheXMCDmethodrequired(1)theapplication ofanexternalmagneticfieldof−6.9Tand(2)alowsampletem- peratureofapprox.2K,theSPESmeasurementswereperformedat roomtemperatureandwithallexternalmagneticfieldscompen- satedtonegligiblevalues.

Absorptionspectraobtainedunderdifferentexperimentalcon- ditionswerecomparedtoinvestigatetheinfluenceofthesetwo factors,seeFig.8.Twospectraobtainedatroomtemperature(MAX- lab beamline D1011, black solid line) and at approx. 2K (dark yellowsolidline,measuredatSLS)showaverygoodagreement andhintatanegligibleinfluenceofthesampletemperatureon theMnL3,2 absorption.Twospectrarecordedat2Kand−6.9T withoppositehelicity(dottedlines)wereaveragedtoobtainthe spin-independentspectrum(redsolidline)showninFig.8.

Distinctdifferencesareobservedwithrespecttotheexperimen- talsituationwithoutexternalmagneticfields:TheMnIIIabsorption maximum(leftmostarrow)revealsahigherrelativeabsorption.It appearstobeshiftedtowardshigherphotonenergiesbyapprox.

300meV.Thehigh-energyedgeoftheL3multipletaswellasthe wholespectralregionbetweenL3andL2righttotheonsetofthe L2multipletrevealahigherabsorptionyieldthanwithoutexternal fields.IthastobenotedthatthisdifferenceintheMnabsorption coincideswiththespectralregioninwhichthelargestdiscrepancy betweenXMCDandSPESresultsoccurs.Anon-negligibleinfluence

oftheexternalmagneticfieldontheelectronicstructureoftheMnIII ionspresentin[MnIII6CrIII](ClO4)3SMMmaybeassumedtoplaya majorroleintheobserveddifferencesbetweenthetwomethods.

ThismaybecorrelatedtothefactthattheSt=21/2spingroundstate ofthe[MnIII6CrIII]3+SMMisenergeticallynotwellseparated,but severalspinstatesofdifferentspinquantumnumbersarewithina fewwavenumbers[24,26].

Despitethereasonablygoodagreementofthespinmagnetic momentderivedviathesumruleapproachfromXMCDandSPES data,theobtainedresultsaresignificantlylowerthanthetheo- reticalvalueexpectedfortheMnIIIandCrIIIcouplingschemeand previousdatafromACandDCmagnetometry[26],indicatingthe physicallimitationsofthesumruleformalismfor3d4systemsas describedbyvariousauthors[43–50].

5. Summaryandconclusion

ComparativeXMCD(2K,7T)andspin-resolvedelectronspec- troscopymeasurements(roomtemperature,noexternalfield)at the Mn L edge have been performed on [MnIII6CrIII]3+ single- moleculemagnetsdepositedonAuandSisubstrates.Aninfluence oftheexternalmagneticfieldontheabsorptionspectrumofthe SMMsampleshasbeenobserved.Despiteitslimitedapplicabil- ityto3d4 systems,asimplesumruleevaluationwasperformed toprovideameansofcomparingthetwoexperimentalmethods.

However,theabsolutevalueofthelocalspinmagneticmoment obtainedfromboth methods differssignificantlyfromprevious resultsmeasuredbyACandDC magnetometry.Furtherinvesti- gationsarerequired:Thecorrectionfactorusedinthesumrule evaluationneedstoberefinedfortheinvestigatedSMMsystem usingthechargetransfermultipletapproach[49]forcomparative calculationsoftheXMCDandspinpolarizationeffect.

Itisunlikelythatthedistinctdifferencesintheabsolutemagni- tudeofthespinpolarizationandtheXMCDeffectarecausedsolely bytheobservedinfluencesofthemagneticfield.Theresultsseemto indicatethattheinitialassumptionofadirectonetoonecorrespon- denceneedstoberefinedbytheoreticalinvestigations.However theexistenceofacorrespondenceisclearlyprovenbytheverygood agreementoftheenergydependencefoundfortheelectronspin polarizationandtheXMCDincludingtheirsignchange,whichhas beenshownforGdaswellasformanganese(II)acetate.Despitethe observeddifferences,aqualitativeagreementhasbeenconfirmed for[MnIII6CrIII]3+SMMaswell.Itmightbepossiblethatthereisan energy-independentfactorofnegativesign,dependinguponthe angularmomentaJ,LandSfortheratioofelectronspinpolariza- tionandXMCDasymmetry.Thereforefurthertheoreticalworkis requiredtogainmoreinsightintothenatureoftheobservedcor- respondenceandtoderiveaquantitativerelationbetweenthetwo physicalquantities.

Asthemagnetizationstudies[26]probeonlythetotalmagneti- zationoftheSMMsamplewithoutprovidingelementalresolution, aninvestigationoftheCrIIIcontributionisrequiredtoprovidea deeperunderstanding.

Acknowledgements

SpecialthanksareduetotheHelmholtzZentrumBerlin(BESSY II)andthePaulScherrerInstituteVilligen(SLS)andtheirbeamline staffforthecontinuoussupporttroughoutthenumerousbeam- times.ThanksarealsoduetoE.Goering(MaxPlanckInstitutefor IntelligentSystems,Stuttgart)forprovidingtheXMCDsetupused forthemanganese(II)acetatestudies.KKacknowledgesfinancial support by the SFB 569 funded by the Deutsche Forschungs- gemeinschaft(DFG). Thisworkwassupportedby theDeutsche Forschungsgemeinschaft(DFG)withinResearchUnit945.

Referenzen

ÄHNLICHE DOKUMENTE

The ruthenium complex bis-tetrabutylammonium cis-dithio- cyanato-N,N9-bis-2,29-bipyridine-4-carboxylic acid, 49-carboxy- late ruthenium( II ), N-719, was found to block the dark

The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded

Based on the values of the dissociation constants for extracellular K þ and Na þ interaction with the transport sites derived from the data of Peluffo (24) and Nakao and Gadsby (25)

In the case of variations of the rate constants, because the heat generated by each Na + , K + ATPase cycle remains constant under those conditions and be cause Na + and K + pumping

The structure shows a large cavity opening on the periplasmic surface (outward-facing conformation) with both Ca 2+ and Na + bound at the α-repeat regions, suggesting the following

Neurolin is a cell surface receptor expressed in the growing axons of retinal ganglion cells of Carassius auratus (gold- fish) and Danio rerio (zebrafish) and plays a key role in

In short, the correlated energy splittings and polarizations of the NV − and NV 0 optical ZPLs observed in the spectrum of a single NV color center in diamond is quite striking and,

In the second section, we define measurable labeling functions and show the Brouwer fixed point theorem for conditional simplexes via a construction in the spirit of Sperner’s