• Keine Ergebnisse gefunden

B ~ = B~e z,spinsparalleloranti-paralleltomagneticeld

N/A
N/A
Protected

Academic year: 2022

Aktie "B ~ = B~e z,spinsparalleloranti-paralleltomagneticeld "

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

4 Task Theoretical Physics VI - Statistics

4.1 (Spin lattice)

Ateachsiteofaisolatedlatticeanunpairedelectronwithspin

1/2

islocalized.

Externalmagneticeld

B ~ = B~e z

,spinsparalleloranti-paralleltomagneticeld

s z,i = ± 1 2

. Energyofstate

r

givenby:

E r (B) = − 2µ B B X N

i=1

s z,i

(a)

n

spinsparalleltomagneticeld

⇒ N − n

spinsanti-parallel.Energyindepan- danceof

n

:

E n (B) = − 2µ B B 1 2

X n

i=1

1 − 1 2

X N

i=n

1

!

= − 2µ B B 1 2

X n

i=1

1 − 1 2

N − n

X

i=1

1

!

= − 2µ B B

n − N 2

Numberofstatesgiventhroughbinomialdistribution:

Ω n (E n ) = N ! n! (N − n)!

with:

n (E n ) = N 2

1 − E n (B) N µ B B

thisleadsto:

Ω n (E n ) = N !

N 2

1 − E N µ n (B) B B

!

N 2

1 + N µ E n (B) B B

!

(b)

ApplyingStirling'sformulato

Ω n (E n )

, with

N − n 1 ⇒ N n

and

n 1

:

Ω n (E n ) =

N e

N

n e

n N − n e

N −n = N N e n e N e N n

n n (N − n) N −n = N N n n (N − n) N −n

Logarithmusnaturalis:

(2)

ln Ω n (E n ) = N ln N − n ln n − (N − n) ln (N − n)

inserting

n (E n )

:

ln Ω n (E n ) = N ln N − N 2

1 − E n (B) N µ B B

ln N 2

1 − E n (B) N µ B B

N − N 2

1 − E n (B) N µ B B

ln

N − N

2

1 − E n (B) N µ B B

= N ln N − N 2

1 − E N µ B B

ln

N

1

2 − E 2N µ B B

− N 2

1 + E N µ B B

ln

N

1 2 + E

2µ B B

= N ln N − N 2

1 − E

N µ B B ln N + ln 1

2 − E 2N µ B B

− N 2

1 + E

N µ B B ln N + ln 1

2 + E 2µ B B

= N ln N − N

2 − E 2µ B B

ln N − N 2

1 − E N µ B B

ln

1

2 − E 2N µ B B

+ − N

2 + E 2µ B B

ln N − N 2

1 + E N µ B B

ln

1 2 + E

2µ B B

= − N 2

1 − E N µ B B

ln

1

2 − E 2N µ B B

− N 2

1 + E N µ B B

ln

1 2 + E

2µ B B

+

N − N 2 + E

2µ B B − N 2 − E

2µ B B

ln N

= − N 2

1 − E N µ B B

ln

1

2 − E 2N µ B B

− N 2

1 + E N µ B B

ln

1 2 + E

2µ B B

4.2 (Mixture of ideal gases)

Mixture ofidealgaseswith

N i

particlesofthekind

i

(

i = 1, . . . , m

)inavessel

ofvolume

V

.

Denitionofentropy:

S = − k B ln W (E)

with

W (E) = N!h Ω(E) 3 N

,forindistingushableparticleswith

c N = N !h 1 3 N

.

Forthetotalsystemwecan write:

Ω (N 1 , . . . , N m ) = N!

Π m i=1 N i ! Π m i=1N i i

Insertingthis intodenitionoftheEntropie:

(3)

S = − k B ln Ω (N 1 , . . . , N m ) N!h 3N

= − k B ln

N !

Π m i=1 N i ! Π m i=1N i i N !h 3N

= − k B ln N!

Π m i=1 N i ! + X m

i=1

N i ln Ω i − ln N !h 3N

!

ApplyingStirlingformula

N !/Π m i=1 N i ! = Π m i=1 N e N

e N i

N i

≈ Π m i=1

N N i

N i

:

S

ensemble

= − k B ln Π m i=1 N

N i

N i

+ X m

i=1

N i ln Ω i − ln N !h 3N

!

= − k B ln Π m i=1 N

N i

N i

+ X m

i=1

N i ln Ω i

N!h 3N

!

= − k B

X m

i=1

N i ln N N i − k B

X m

i=1

N i ln Ω i

N !h 3N

= − k B

X m

i=1

N i ln N N i

+ S

= S

Mix

+ S

Entropyof anidealgas(Sackur-Tetrode-equation):

S (E, V, N ) = k B N

ln V

N

+ 3 2 ln

4πmE 3N h 2

+ 5

2

leadsto:

S (E, V, N 1 , N 2 , . . . N m ) = X m

i=1

S i + S

Mix

==

X m

i=1

k B N i

ln

V N i

+ 3

2 ln

4πm i E i

3N i h 2

+ 5 2

− k B

X m

i=1

N i ln N N i

= X m

i=1

k B N i

ln V

N i − ln N N i

+ 3 2 ln

4πm i E i

3N i h 2

+ 5 2

= X m

i=1

k B N i

ln

V N i

N i

N

+ 3 2 ln

4πm i E i

3N i h 2

+ 5 2

= X m

i=1

k B N i

ln V

N + 3 2 ln

4πm i E i

3N i h 2

+ 5 2

= k B N ln V N +

X m

i=1

k B N i

3 2 ln

4πm i E i

3N i h 2

+ 5 2 k B N

Denitionofpressure:

(4)

p = T ∂S

∂V E,N

inserting

S

:

p = k B T 1 V N = 1

β N V = ρ

β ⇔ pV = N k B T

4.3 (Ideal gas in a centrifuge)

Radius

= R

,height

= L

,centrifugefrequency

= ω

andmassofparticle

= m

. The

z

-axisisparallelto theaxisofthecentrifuge. OneparticleHamiltonian:

H = p 2

2m − ω (xp y − yp x )

(a)

Toshow:

Z 1 = 2πm

h 2 β 3/2

2πL mβω 2

e mβω 2 R 2 /2 − 1

partitionfunctionforoneparticleofthegas.

Denitionofpartitionfunction:

Z N = c N

Z

d 3N q d 3N p e −βH(~ q N ,~ p N )

with

c N = N !h 1 3 N

foridentical particles.

InsertingHamiltonian:

Z 1 = 1 1!h 3

Z

d 3 q d 3 p e −β p

2

2m +βω(xp y −yp x )

Integratingovermomentum:

Z 1 = 1 1!h 3

Z d 3 q

Z ∞

−∞

dp x e 2 β m p 2 x βωyp x Z ∞

−∞

dp y e 2 β m p 2 y +βωxp y Z ∞

−∞

dp z e 2 β m p 2 z

with:

Z

−∞

dp z e 2 β m p 2 z =

s Z

−∞

dx Z

−∞

dy exp

− β

2m (x 2 + y 2 )

=

s Z

0

dr Z 2π

0

dϕ r exp

− β 2m r 2

= s

2m β π

Z

0

du exp ( − u)

=

r 2mπ

β

(5)

Z

−∞

dp x e 2 β m p 2 x βωyp x = Z

−∞

dp x e ( 2m β p 2 x +βωyp x + 2 ω 2 y 2 ) + 2 ω 2 y 2

= e 2 ω 2 y 2 · Z

−∞

dp x e

√ β

2 m p x + √ mβ 2 ωy 2

=

r 2m

β e 2 ω 2 y 2 · Z

−∞

du e u 2

=

r 2m

β e 2 ω 2 y 2 · √ π

=

r 2mπ

β e 2 ω 2 y 2 Z

−∞

dp y e 2 β m p 2 y +βωxp y = Z

−∞

dp y e ( 2m β p 2 y − βωxp y + 2 ω 2 x 2 ) + 2 ω 2 x 2

= e 2 ω 2 x 2 · Z

−∞

dp y e

√ β

2 m p y − √ mβ 2 ωx 2

= . . .

equivalentto

p x . . .

=

r 2mπ

β e 2 ω 2 x 2

Weget:

Z 1 = 1 h 3

r 2mπ β

3 Z

d 3 q e 2 ω 2 y 2 e 2 ω 2 x 2

Usingcylindricalcoordinates:

Z 1 =

2mπ h 2 β

3/2 Z R

0

dr Z 2π

0

dϕ Z L

0

dz r e 2 ω 2 r 2

=

2mπ h 2 β

3/2

2πL

Z mβω 2 R 2 /2 0

du

2mβω 2 r/2 r e u

=

2mπ h 2 β

3/2

2πL

mβω 2 · [e u ] mβω

2 R 2 /2 0

=

2mπ h 2 β

3/2

2πL mβω 2 ·

e mβω 2 R 2 /2 − 1

(b)

Using

N

identicalparticlesweget:

Z N = 1 N!h 3N

Z

d 3N q d 3N p e β

P N i =1

p 2 i

2 m − ω(x i p y,i − y i p x,i )

(6)

Z N = 1 N!h 3N

Z d 3N q

· Z ∞

−∞

d N p x e −β

P N i=1

p 2 x,i 2 m +ωy i p x,i

· Z

−∞

d N p y e β

P N i =1

p 2 y,i

2 m − ωx i p y,i

· Z

−∞

d N p z e −β P N i=1

p 2 z,i 2 m

with:

Z

−∞

dp z e 2 β m P N i=1 p 2 z,i = Z

−∞

dp z e 2 β m p 2 z N

=

r 2mπ β

N

Z

−∞

d N p x e β

P N i =1

p 2 x,i 2 m +ωy i p x,i

= Z

−∞

dp x e 2 β m p 2 x βωyp x N

=

r 2mπ β

N

e N 2 ω 2 y 2

Z

−∞

d N p y e β

P N i =1

p 2 y,i 2 m − ωx i p y,i

=

r 2mπ β

N

e N 2 ω 2 x 2

leadsto:

Z N = 1 N !h 3N

r 2mπ β

3N Z

d 3N q e N 2 ω 2 y 2 e N 2 ω 2 x 2

= 1

N !h 3N

r 2mπ β

3N Z

d 3 q e 2 ω 2 ( x 2 +y 2 ) N

Usingresultfrom (a):

Z N = 1 N!

2mπ h 2 β

3 2 N 2πL mβω 2

N

·

e mβω 2 R 2 /2 − 1 N

(c)

Denition offreeenergy:

(7)

F (T, V, N) = − 1

β ln Z N (T, V )

inserting

Z N

from(b):

F (T, V, N ) = − 1 β ln

"

1 N !

2mπ h 2 β

3 N 2 2πL mβω 2

N

·

e mβω 2 R 2 /2 − 1 N #

= − 1 β

− ln N ! + 3 2 N · ln

2mπ h 2 β

+ N ln

2πL mβω 2

+ N ln

e mβω 2 R 2 /2 − 1

(d)

Denition:

p = − ∂F

∂V

Volumeofacylinder:

V = πR 2 L

Sincethereisnodirect

V

dependance in

F

andpressureisgoingtovaryin

dependanceof

R

and

L

wecalculatetwodierentpressures

p R

and

p L

. Therefore

oneofthemstaysin asavariable.

p R = − ∂F

∂V

L = − ∂F

∂R

∂R

∂V

L = − 1 2 √

πV L

∂F

∂R

L = − 1 2πRL

∂F

∂R L

inserting

F

from(c)

L = const.

:

p R = − 1

2πRL

∂R

− 1 β

− ln N! + 3 2 N · ln

2mπ h 2 β

+ N ln

2πL mβω 2

+ N ln

e mβω 2 R 2 /2 − 1

= 1

2βπRL

N ∂

∂R ln h

e mβω 2 R 2 /2 − 1 i

= N

2βπRL

e mβω 2 R 2 /2

e mβω 2 R 2 /2 − 1 · mβω 2 2 · 2R

!

= N

2πL

2 1 − e mβω 2 R 2 /2

Thisconvergesto

p R V = N k B T

for

ω → 0

,thiscanbeseenusingL'Hospital.

p L

:

p R = − ∂F

∂V

R = − ∂F

∂L

∂L

∂V

R = − 1 πR 2

∂F

∂L R

with

F

,

R = const.

:

(8)

p L = − 1 πR 2

∂L

− 1 β − N

β ln L √

m h 3 ω 2 N ·

e mβω 2 R 2 /2 − 1

− 5N 2β ln

2π β

= N

βπR 2

∂L

ln L √ m h 3 ω 2 N

= N

βπR 2 L

= 1 β

N V

Thisistheidealgasrelation

p L V = N k B T

,whichseemslikelyforthe

z

-axis,

sincethere is noreasonforanyother dependance there (especially thereis no

dependanceof

ω

).

Totalforceatouter walls:

F = p · A

with

F R = p R A R

= N

2πL

2 1 − e −mβω 2 R 2 /2

πR 2 F R = N

2L

2 R 2 1 − e mβω 2 R 2 /2

and

F L = p L A L

= 1

β N

πR 2 L 2πRL F L = 2N

4.4 (Doppler broadening)

Atomswith mass

m

, temperature

T

emit light in

x

-direction,movingwith

v x

leadstodopplereect:

ν = ν 0

1 + v x

c

Using

v x = p m x

andHamiltonianforfreeparticle

H = P N i=1

p 2 i 2m

:

ν = ν 0

1 + p x

mc

(a)

Denition:

h A i =

R d 3N q R

d 3N p A (~ q N , ~ p N ) e βH(~ q N ,~ p N ) R d 3N q R

d 3N p e βH(~ q N ,~ p N )

(9)

h ν i = ν 0

R d 3N q R

d 3N p 1 + mc p x

e β P N i =1 p

2 i 2 m

R d 3N q R

d 3N p e β P N i=1 p

2 i 2m

= ν 0

R d 3N q R

d 3N p e β P N i =1 p

2 i 2 m

R d 3N q R

d 3N p e −β P N i=1 p

2 i 2 m

+ ν 0

mc

R d 3N q R

d 3N p p x e β P N i =1 p

2 i 2 m

R d 3N q R

d 3N p e −β P N i=1 p

2 i 2 m

= ν 0

second term vanishes becauseof symmetry reasons(integrating over sym-

metricintervall,but

p x

isodd,whileexponent(

p 2 = p 2 x + p 2 y + p 2 z

)

p 2 x

iseven).

(b)

Denition:

∆ν = r D

(ν − h ν i ) 2 E

= r D

ν 2 − 2ν h ν i + h ν i 2 E

= q

h ν 2 i − h ν i 2 ν 2

calculation:

ν 2

= ν 0 2

R d 3N q R

d 3N p 1 + mc p x 2

e β P N i =1 p

2 i 2 m

R d 3N q R

d 3N p e −β P N i=1 p

2 i 2m

= ν 0 2 + ν 0 2 (mc) 2

R d 3N q R

d 3N p p 2 x e β P N i =1 p

2 i 2 m

R d 3N q R

d 3N p e β P N i =1 p

2 i 2 m

1 + mc p x 2

=

1 + 2 mc p x + mc p x 2

,rsttermleadsto

ν 0 2

,whilenumeratorand

denominator integralsarethesame,secondtermcancelsbecauseofsymmetry.

Integralsoflasttermhaveto becalculated:

denominator:

Z d 3N q

Z

d 3N p e β P N i=1 p

2 i 2m =

Z d 3N q

Z

−∞

dp e β p

2 2m

3N

=

r 2mπ β

3N Z d 3N q

numerator:

Z d 3N q

Z

d 3N p p 2 x e β P N i =1 p

2 i

2m =

Z d 3N q

Z

−∞

dp x p 2 x e 2m β P N i =1 p 2 x,i Z

−∞

dp e 2m β p 2 2N

=

r 2mπ β

2N Z d 3N q

Z

−∞

dp x p 2 x e 2 β m p 2 x N

solvingonedimensional integral:

(10)

Z

−∞

dp x p 2 x e 2m β p 2 x = Z

−∞

dp x p x · p x e 2m β p 2 x

=

− p x · m β e 2 β m p 2 x

−∞

+ m β

Z

−∞

dp x e 2 β m p 2 x

= m

β

r 2mπ β

insertingin numeratorintegral:

Z d 3N q

Z

d 3N p p 2 x e β P N i =1 p

2 i

2 m =

r 2mπ β

2N m

β

r 2mπ β

N Z d 3N q

=

r 2mπ β

3N m β

N Z d 3N q

insertingnumeratoranddenominatorintegral:

ν 2

= ν 0 2 + ν 0 2 (mc) 2

hq 2mπ β

i 3N

m β

N R d 3N q hq 2mπ

β

i 3N R d 3N q

= ν 0 2 · 1 + m N (mc) 2 β N

!

Thisleadsto:

∆ν = q

h ν 2 i − h ν i 2 = s

ν 0 2 + m N

(mc) 2 β N · ν 0 2 − ν 0 2 = m N 2 mcβ N 2 · ν 0

with

N = 1

,thisiswhatweneed,sinceweonlyhavealookatoneaverage-

particle:

∆ν = r k B T

mc 2 · ν 0

(c)

UsingMaxwellvelocitydistribution:

w (~v) d 3 v = mβ

3 2

exp

− βmv 2 2

d 3 v

wegetthevelocitydistributionfor

v x

:

w (v x ) dv x = mβ

3 2

exp

− βmv 2 x 2

Z

−∞

dv y exp − βmv y 2 2

! Z

−∞

dv z exp

− βmv z 2 2

(11)

= mβ

3 2

exp

− βmv 2 x 2

Z

−∞

dv exp

− βm 2 v 2

2

= mβ

3 2

exp

− βmv 2 x 2

r 2π βm

2

= mβ

1 2

exp

− βmv 2 x 2

whilewegotthedirect correlation

I (ν) dν = w (v x ) dv x

with

v x = c ν 0

(ν − ν 0 )

and

dv x = c ν 0

weget:

I (ν ) dν = 1

√ π

mc 2 β 2ν 0 2

1 2

exp − βmc 2 (ν − ν 0 ) 22 0

! dν

Forthenonrelativisticcase

k B T mc 2

,with

β = k 1

B T

,wehavetoconsider,

that

βmc 2 → ∞

. Whilethesquareroottermwilldivergetheexponentialterm willconvergeto zero. Substituting

x = q

mc 2 β 2ν 0 2

weget:

I (ν ) = x

√ π exp

− x 2 (ν − ν 0 ) 2

whichisarepresentationof thedelta functionfor

x → ∞

:

x lim →∞ I (ν) = δ (ν − ν 0 )

This means, we only get an intensity at

ν 0 = ν

, while

ν 0

is the emitted

frequencyoftheatoms. Thismeans,thevelocityoftheatomsdoesn'thaveany

eect andthedopplereect doesn'toccur. Meaning

v x c

:

ν = ν 0

 

 1 + v x

|{z} c

→ 0

 

 ≈ ν 0

Referenzen

ÄHNLICHE DOKUMENTE

Constrained ordination of first two canonical axes as determined by RDA of yield and yield components (plant density after emergence m −2 , number of tillers m −2 , number of ears m

I would argue that a cynical government might say: you know what, a few rockets out of Gaza that don’t actually cause casualties, every couple of years, just to remind the

Thus, there is a maximal number of bosons that can be accommodated in the single particle states with non-zero momentum. This is the

unbiasedness and efficiency depend on one particular version of the rational expectations hypothesis that is probably not appropriate for real world empirical tests. The structure

In addition to providing nonconditional forecasts of exogenous developments which will constitute the setting against which plans for the long-term future have to be made, i t

The Plan also sets out specific action, for example to: cut smoking in pregnancy, and by people with long term mental health problems; ensure people with learning disability

This modified form of operators preserves constants as well as the exponential function exp A , but loose to preserve the linear functions... Funding Open Access funding

One possible explanation for the ratcheting up observed in the unemployment rate is that the rates of growth of labour productivity, the participation rate, and population