• Keine Ergebnisse gefunden

but  were  afraid  to  ask  

N/A
N/A
Protected

Academic year: 2022

Aktie "but  were  afraid  to  ask  "

Copied!
72
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Everything  you  always  wanted  to   know  about  fusion  reactors,    

but  were  afraid  to  ask  

Minh  Quang  Tran  

 

Swiss  Plasma  Center  

Ecole  Polytechnique  Fédérale  de  Lausanne-­‐  

Switzerland  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(2)

Be  ware  of  my  plagiarism  

•  Everything  You  Always  Wanted  to  Know  About   Sex  *  But  Were  Afraid  to  Ask  (1972)  

•  Director:  Woody  Allen    

(3)

Plan  

•  More  will  come  with  the  talk  on  DEMO  by    Dr.  R.  Wenninger    

•   IntroducOon:  The  energy  issue  

•  The  Physics  basis:  reacOons  and  fuels  

•  Why  fusion  is  considered  as  a  “disrupOve  energy”?  

•  Some    (not  all)    issues  

•  ITER  

•  Technology  besides  Materials  

•  Road  map  towards  a  fusion  reactor  

•  InerOal  confinement  

•  15  minutes  for  Q&A:  Everything  you  always  wanted  to  know  about   fusion  reactors,  but  dare  to  ask  

 

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(4)

Introduction: The energy problem

•  The constraints:

1.  Increase of world population and therefore energy needs: 7.3 billions in 2015 to 8.9 billions by 2050, remaining stable beyond (UN study), coupled with a today inequality in energy access (inverse champagne glass)

2.  Change in energy mix requirement: stronger reliance on electricity for an increasing urban population

3.  Necessity to have “sustainable” energy “Development that meets the needs of the present without compromising the ability of future generations to meet their own needs” ( Brundtland report)

o Environment aspects: global warming

o Safety: accidents should not impose population evacuation

o Legacy towards next generations: depletion of fossil fuels; waste repository on a “human” (not geological) time scale

(5)

Electricity  

consumpOon/  capita  

•  World  bank  data  (h\p://data.worldbank.org/indicator/

EG.USE.ELEC.KH.PC/countries/all?display=graph)  

•  World  3064  kWh/capita  

•  EU:  6144  kW/h/  capita;  Germany:  7270  kWh/

capita  ;  Switzerland:  7343  kWh/capita  

•  China:  3810  kWh/capita;  India:  744  kWh/capita  

•  Vietnam:  1273  kWh/capita,  HaiO:  50  kWh/

capitaà  =  0.007  of  Germany  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(6)

Fusion reactions

•  Fusion reactions: “Easiest” to achieve reaction:

D + Tà He ( 3.5 MeV) + neutron

(14.1 MeV)

Other reactions

D + D à He3 ( 0.82 MeV) + neutron

(2.45 MeV

D + D à T (1.0MeV) + H ( 3.0MeV)

D + He3à He4 (3.76 MeV) +p (14.7MeV)

Energy release E = Δm  *  c2

2-3

n

Fission products

U

(7)

Fusion cross section

 1  keV  à  T  =  10   millions  degrees   through  the   relaOon     kBT  =  E  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(8)

Lawson  criterion  (1)  

•  Fusion  power  release    >  Power  loss  

•  Ions  have  a  Maxwellian  distribuOon  f(E)   characterized  by  a  temperature  T  

•  CalculaOon  of  the  fusion  reacOvity  <σv>  ,  which  is   average  over  the  distribuOon  funcOon  

•  Triple  product    Density  n*  Temperature  T*Energy   confinement  Ome  τE > 5*  1021    m-­‐3keV  s  

(9)

Lawson  criterion  (1a)  

•  Plot  of    <σv>    versus  T  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(10)

DerivaOon  of  Lawson  

criterion  (1)  

(11)

DerivaOon  of  Lawson   criterion  (2)  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(12)

Lawson  criterion  (2)  

•  Q  definiOon=  Fusion  power/  External  HeaOng   power  

•  But  the  fusion  reacOons  provide  energeOc  He  ions   (3.5  MeV)  which  can  thermalize  with  the  D  and  T     ions  (10-­‐20  keV):  He  ions  is  a  source  of  heaOng  

•  Qà  infinity  (igniOon)  if  External  HeaOng  power  is   null:  all  needed  heaOng  is  provided  by  He  ions  

•   For  a  reactor,  igniOon  is  not  required  Q  =  30-­‐40  

(13)

The challenge of fusion

Density  n*  Temperature  T*Energy  confinement  Ome  τE > 5*  

1021    m-­‐3keV  s   The  challenge:  

1. To  create  a  plasma  with  n    about  10  20  m-­‐3  and  T    about   108K,  i.e.    10  keV  

2. To  confine  its  energy  during  τE  of  a  few  seconds        

           

There  are  many  Ome  scale:  ParOcle  confinement  

Ome τP,  Plasma  duraOon,  Energy  confinement  Ome    

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(14)

Fuel  issues  

•  D:  abundant  as  natural  isotope  of  H  (  1/7000)  

•  T:  Short  life  (  12.3  years)  radioacOve  (  β  decay  at   about  5.7  keV)  

•  Needs  to  “  breed”  triOum  using  the  neutron  from   the  fusion  reacOon  D+  T  à  n  +  He  

6Li  +  nà  T  +  4He  +  4.8  MeV  (exothermic)  

7Li  +  nà  T  +  3He  +  n  –  2.5  MeV  (endothermic)  

•  Importance  for  the  “Breeding  Blanket”  in  a  reactor  

(15)

Fuel  issues  (a)  

•  Cross  secOon  of  the  fusion  reacOon  of  n  and  6Li   and  7Li  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(16)

Fusion : a

“disruptive” energy

•  Why a “disruptive” energy?

(1)

Li is abundant in the crust and in the sea water ( WEC 2013)

2) No chain reactions; no severe accidents: fuel inside the reactor sufficient only for a few

minutes (no “Tchernobyl” type accident);

(17)

Fusion : a

“disruptive” energy

•  (3) Environmental friendly

(2)

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

!"#$%&'()

-./%0123#

$!#

$!!#

$!!!#

''# %&# %$# $+# (,#

!)"#$%&'() ,,!#

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(18)

Fusion : a

“disruptive” energy

4.  Development of low activation materials ( Cf.

(3)

Talk by A Moeslang and A. Kimura)à no need of geological repository

5.  This contributes as well to the safety aspect by reducing the “after heat”

(19)

11.10.15 ICFRM 17- Tutorial Session

Market penetration

•  Economics studies confirm the possibility for fusion to penetrate the market

0 5 10 15 20 25

base 750 650 550 450

CO2 target (ppm)

Electricity Production (EJe) solar

wind biomass fusion fission gas coal hydro

0 105 1520 2530 35 4045

Coal Gas Nuclear fission Biomass Photovoltaics Wind Fusion

External Costs [mEuro/kWh]

Global Warming Other

Sum

(20)

State  of  ma\er  at  T>  

10

5

K  ,  about  10  eV  

•  Binding  energy  e-­‐ion:  about  10  eV  

•  At  fusion  temperature,  the  state  of  ma\er  is  

plasma,  i.e.  a  “gas”  formed  by  electrons  and  ions  ,   globally  neutral  and  dominated  by  “collecOve”  

effect  

•  Debye  shielding:  a  charge  is  surrounded  by  a  cloud   of  opposite  charges  which  “shield”  its  Coulombian   potenOal  Vc.  Beyond  a  few  Debye  lengths λD,  Vc  is   no  longer  felt.  λD  =  (ε0kBT/n0e2)1/2  

(21)

Confinement  

•  Due  to  the  Debye  screening,  electrostaOc   confinement  is  not  possible:  electric  field  is   shielded  aqer  a  few  Debye  length  

•  Two  possibiliOes:    

u No  confinementà  InerKal  confinement    and  

realisaOon  of  the  triple  product  through  very  high   density  n  (  very  short  τE  and  τP  )  

u By  magneOc  field  à  MagneOc  confinement  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(22)

MagneOc  confinement   (1)  

•  Through  the  Lorentz  force  Florentz  =  q(v  x  B  )  

•  B  is  generated  either  or  both  current  by  external   coils  or  by  the  plasma  it  self  

∇ × B = µo j

f = Force density in fluid description =ρel

(

j × B

)

(23)

MagneOc  confinement   (2)  

•  Simple  toroidal  magneOc  field  (closed  field  lines)   created  by  a  a  wire  is  not  sufficient  :  parOcles  

“driq”  across  magneOc  field  due  to  curvature  and   spaOal  variaOon  (1/r)  of  B:  the  driq  direcOon  

(verOcal)  depends  on  the  charge,  leading  to  charge   separaOon  and  hence  a  verOcal  electric  field  E.  

This  E  combined  with  the  B  leads  to  a  global  driq   of  both  charge  species    according  to  (E  x  B),  

leading  to  loss  of  confinement  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(24)

Tokamak  

•  Confinement  is  provided  by  a  toroidal  magneOc   field  BT  provided  by  external  toroidal  coils(  TF  

coils)  and  by  a  current  carried  by  the  plasma  itself   IP.  

(25)

Tokamak  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(26)

Tokamak  field  lines  and  

aspect  raOo  

(27)

T3  (USSR)    

11.10.15   ICFRM  17-­‐  Tutorial  Session  

1968:  1  keV  confirmed  by   a  team  of  scienOsts  from   UKAEA  (  cold  war).  It  

opens  the  era  of  tokamak  

(28)

Confinement  modes  

H  mode:  High   energy  

confinement  mode  

(29)

H à  L  mode  transiOon  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(30)

Divertor  

Divertor:  Where  parOcle   and  energy  from  the  

plasma  are  removed.  

Divertor  plate:  W    

High  heat  flux  material   Cf.  Talk  by  Dr.  S.  Lisgo  

(31)

Divertor:

•  54 Divertor cassettes

•  High heat flux components capable of 10MWm-2 in stationary operation and 20MWm-2 transiently

CFC

W – reflector plates DIVERTOR

Divertor  (ITER)    

Heat  load  up   to  20  MW  m-­‐2  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(32)

Divertor:

•  54 Divertor cassettes

•  High heat flux components capable of 10MWm-2 in stationary operation and 20MWm-2 transiently

CFC

W – reflector plates

Divertor  (ITER)    

(33)

Stellarator  

•  3D  magneOc  confinement  created  exclusively  by   external  magneOc  coils.  No  plasma  current:  no   disrupOon  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

W7  X  stellarator  

(34)

HeaOng  (1)  

•  In  the  case  of  a  tokamak  where  we  have  a  plasma   current  IP,  what  is  the  heaOng    by  this  current?  

•  What  is  the  resisOvity  of  a  plasma?    In  the  keV   regime,  it  is  like  Cu,  but  it  decreases  as  T-­‐3/2.  

•  Ohmic  heaOng  ,  taking  into  account  

phenomenological  loss  rate,  cannot  bring  a  

tokamak  plasma  to  the  10-­‐20  keV  regime.  The   temperature  will  be  about  4  keV  (  Freiberg)  

(35)

Heating (2)

•  Heating by absorption RF waves or by injection of fast neutral particles, which thermalize with the plasma particles

RF waves at ion cyclotron frequency( about 50 MHz) or electron cyclotron frequency ( about 150-200 GHz)

Injection of fas t neutral partciles (1 MeV)

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(36)

Current  drive  (1)  

•  What  is  current  drive?  The  toroidal  plasma  IP  is  an   essenOal  component  of  a  tokamak  

IP  is  induced  as   the  current  in  a   transformer.  So   it  cannot  be  

sustained  in   steady  state  

(37)

Current  drive  (2)  

•  Non  inducOve  current  drive  can  be  achieved  by  

injecOon  of  parOcle  momentum  (  neutral  beam)  or   by  preferenOally  injecOng  EM  waves      using  

Doppler  shiqed  resonance  e.g.    For  electron   cyclotron  wave:  ω = Ωce  +/-­‐  k//v//    or  by  

manipulaOng  the  pressure    

•  Example  of  full  non  inducOve  current  drive    in  a   medium  size  tokamak  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

EX/W-5

2

analysis is performed with eight energy bins available for each chord, with adjustable thresholds within the 10-200 keV range.

The second harmonic X-mode ECE radiometer observes the plasma along one of three possible horizontal viewlines, two on the high field side and one on the low field side, and operates in the 78-114 GHz range with 24 channels of 0.75 GHz bandwidth [6]. The EC radiation observed on the high field side is dominated by relativistically downshifted emission by the high energy end of the electron distribution function and can thus be employed to diagnose the suprathermal population.

The quasilinear Fokker-Planck code CQL3D [7] is employed to model the dynamics of the elec- tron distribution function. The code is coupled to the TORAY-GA ray-tracing module [8] and solves the Fokker-Planck equation in two velocity and one spatial dimensions. The equation in- cludes a quasilinear EC wave damping term, a relativistic collision operator and a model for ra- dial diffusion, with an optional linear dependence on the parallel velocity and a particle- conserving advection term.

2. ECCD and suprathermal electrons

The ability to control the deposition location and toroidal injection angle accurately is instru- mental in the application of ECCD to current profile tailoring. This high degree of control was clearly demonstrated in TCV by sustaining the non-inductive plasma current with two X2 gy- rotrons at the time, and firing two sets of two gyrotrons in succession for their maximum pulse durations (2 s). As shown in Fig. 1, the TCV discharge length was thus extended to a record 4.3 s, well beyond the maximum length achievable in Ohmic conditions. Matching the powers, dep- osition locations and parallel wave numbers of the two sets of beams is essential for a smooth switch-over. This external control was further demonstrated by an interlaced square-wave mod- ulation of the two clusters (180 degrees out of phase), with no visible resulting modulation of the plasma parameters.

500 100

Plasma current (kA)

0 0.5 1 ECRH power cluster A (MW)

0 0.5 1

ECRH power cluster B (MW)

−1 0 Loop voltage (V) 1

6

7 Ohmic transformer current (kA)

1 1.5 Edge elongation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

1.5

2.5 Internal inductance

Time (s)

FIG. 1. TCV discharge 20881 of record length (4.3 s), sustained by 0.9 MW ECCD.

!

(38)

Physics  issues  (1)  

•  A  magneOcally  confined  plasma    contains  free   energy  which  can  be  released  as  instabiliOes  

•  Example:  Consider    a  tokamak  as  a  levitated  ringin   a  magneOc  field  topology.  Eanrshaw  theorem  

indicates  that  the  equilibrium  is  not  stable.  One   degree  of  freedom  is  unstable:  in  a  tokamak  it  is   called  the  VerOcal  Displacement  Event  VDE,  

leading  ,  if  uncontrolled  to  disrupOon    

(39)

Physics  issues  (2)  

•  Another  example:  The  confinement  of  the  3.5   MeV  He  ions  produced  by  the  fusion  reacOons  

•  These  energeOc  ions  may  be  lost  by  interacOon  

with  waves  (  Alfven  waves)  excited    in  the  plasma,   before  thermalizing  with  the  D  and  T  ions.  

•  Heat  removal  in  divertor  

•  ….  And  many  more  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(40)

Material  science  issues  

•  A  very  exciOng  field  to  deliver  materials  which   ü   Have  the  necessary    thermo-­‐mechanical  

properOes  under  irradiaOon  

ü Are  compaOble  with  the  operaOon  of  magneOcally   confined  plasma  

ü Fulfil  the  promises  of    waste  disposal  

•  In  itself  it  is  an  exciOng  field  

(41)

11.10.15 ICFRM  17-­‐  Tutorial  Session  

Space

Time

1-30 nm, 1-10 ps

1-5 nm, 2 ps - s 1 nm - 1 µm, 10 ps - s

10 nm - µm, ns - s

10 nm - 10 µm, µs - hours

DDD

kRT

0.1 nm - 1 m, 1 ps - years

MD

Formation energies

of point defects 0.1 nm

Ab Initio

kMC FEM

0 50 100 150

-250 -200 -150 -100 -50 0 50 100

K (MPa m1/2)

T(˚C)

6 2 1

3

4 5

1. RT, unirradiated 2. RT, 0.37 dpa 3. RT, 0.93 dpa 4. 523 K, unirradiated 5. 523 K, 0.30 dpa 6. 523 K, 0.75 dpa 800

700 600 500 400 300 200 100 0

σ [MPa]

10 9 8 7 6 5 4 3 2 1 0

ε[%]

Ttest = Tirrad.

1 µm - 1 cm Kinetic rate

theory

Discrete dislocation dynamics

Finite element modelling

Kinetic Monte Carlo Molecular dynamics

Atomic displacement cascade

Stacking fault

tetrahedron Interaction edge dislocation- void

Nanocrystal

TEM simulated image TEM image

TEM image

TEM image

kRT equations Interaction

dislocations- defects

Tensile tests

Creep tests Fracture toughness versus temperature Bend bar with

FEM mesh

(42)

ITER objectives (1)

•  ITER objectives:

1. Produce P fusion = 500 (360) MWth of during 400

(3000) s with an external additional heating Pheating 50 MW (Power gain Q =P fusion /Pheating = 10)

2. Study physics of a “burning” plasma, i.e. when the energetic 3.5 MeV He nuclei from fusion reactions are confined and provide a dominant heating power (100 MW compared to the 50 MW of external

heating)

(43)

ITER objectives (1)

3.  Integrate in a single device the different

technologies (e.g. superconductivity SC, heating methods and all associated power electronics) and the physics constraints

4. Prove the safety aspects of a fusion reactor: ITER is the first fusion reactor to be licenced as a nuclear

reactor

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(44)

Extrapolation for

ITER

(45)

The ITER tokamak

Plasma

Current IP :15 MA Major radius R= 6.2 m

Plasma radius a = 2m

R/a= 3.1

Fusion power: 500 MW

Pulse : 400s SC Poloidal

field (PF) coils

SC Toroidal field (TF) coils BT= 5.3 T

SC Central solenoid (CS)

Generates IP

Ports for Heating &

Current Drive and Diagnostics

R

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(46)

ITER  safety  

•  Aqer  the  Fukishima  accident,  ITER  also  went   through  the  so  called  “stress  test”  as  any  other   nuclear  reactor  

ITER  was  licenced  as  “réacteur  nucléaire  de  base”  

according  to  the  French    nuclear  legislaOon  in2012,   becoming  the  first  fusion  reactor  to  be  licenced

(47)

Superconductors  

•  Coils  to  create  the  magneOc  configuraOon  of  ITER   are  superconducOng  (either  Nb3Sn  or  NbTi)    

11.10.15   ICFRM  17-­‐  Tutorial  Session  

NB3Sn  condcutors   for  CS  (  leq)  and   TF    (right)  coils  

(48)

Toroidal field coils (

ITER)

(49)

Some  features  of  ITER  

•  ITER  will  include  Test  Blanket  Modules  TBMs,   which  are  mock-­‐ups  of  Breeding  Blanket  for  a   reactor  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

EU  HCLL  and  HCPB  TBM  

(50)

TBM  

He-Cooled Ceramic Breeder concepts F  proposal to install a specific-design TBM (China, EU, India)

F proposal to contribute with a specific- design sub-module in other Parties TBM (Korea, Japan, RF, USA)

Lithium-Lead concepts

F Helium-Cooled design (EU)

F Dual-Coolant (He+LiPb) design (US, India) F Dual-Functional design, which is initially a HCLL evolving later to DCLL (China)

Water-Cooled Ceramic Breeder concept F specific-design TBM (Japan)

Molten Lithium concepts

F Self-Cooled design (SCLi) (RF)

F He-Cooled design type (HCLi) (Korea)

Solid Breeders Designs Liquid Breeders Designs

TBM

TBMs tests need a whole TBM system

T B M P O R T

(51)

PFC  (ITER)  

•  CFC divertor targets (~50m2):

−  high thermal conductivity and good

thermal shock resistance (doesn’t melt)

−  but combines chemically with hydrogen (ie tritium)

•  Be first wall (~700m2):

−  good thermal conductivity

−  low-Zi – low core radiation

−  melting during VDEs

•  W-clad divertor elements (~100m2):

−  high melting point and sputtering resistance

−  but might still melt during thermal transients

−  will eventually replace CFC

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(52)

HeaOng  and  Current   Drive  in  ITER  

•  ITER  will  have  3  methods  to  heat  and  perform  non   inducOve  current:  

•  Electron  cyclotron  wave  at  170  GHz  and  20  MW   power  deposited  to  plasma  

•  Ion  cyclotron  wave  in  the  frequency  range  of  55   MW  and  20MW  at  plasma  

•  Neutral  beam  injecOon  at  1  MeV  and  about  30  A  

(53)

Where  are  we?  

•  How  far  are  we  from  the  goal,  regarding  nTτE?  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(54)

Another  way  to  ask  the     quesOon  

(courtesy  of  IO)  

•  Electrical   power   consumpOon   to   answer   the   quesOon:  Steady  state:120  MW  conOnuous  power   consumpOon,180   MVA   connected   loads   (mainly   motors),  During  plasma  pulse:  500  MW  peak  pulse   consumpOon,   2.2   GVA   connected   power   converters    

   

(55)

The  roadmap  towards   fusion  

•  The  roadmap  is  NOT  a  single  machine  but  rather  a   programme:  

1.  Build  and  exploit  ITER  

2.  A  programme  on  material  based  on  an  Early   Neutron  Source  /IFMIF  

3.  PreparaOon  of  DEMO  to  be  operaOonal  by  2050   (Cf  Talk  by  Dr.  R.  Wenninger)  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(56)

The Roadmap

Present

experiments +

JET 15 MWth

ITER

In construction 500 MWth

DEMO

Preconceptual design

500 MWe

Fusion

Power Plant

1.5 GWe

2025-20 30

2050

2015

Man

From Chinese Road map:

DEMO: 2030 FPP: 2050

JET

ENS/IFMIF  

(57)

Why  do  we  need  a   dedicated  n  source?  

•  The  fusion  reacOons  produces  neutron  with  a  well   defined  energy  of  14  MeV  and  hence  to  test  

material  one  needs  a  high  flux  and  fluence  source     close  to  this  energy  (  Cf.  Dr.  J.  Knaster  talk  P9)  

§  TransmutaOon;  Frenkel  pair  formaOon;  He  and  H   embri\lement  (56Fe(n,α)53Cr  (incident  n  threshold  at  2.9   MeV)  and  56Fe(n,  p)56Mn  (incident  n  threshold  at  0.9  MeV)  

§  InteracOon  of  the  14  MeV  with  material  (Cf.  Dr.  A.  

Kimura  presentaOon)  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(58)

InerOal  fusion  

•  The  plasma  is  NOT  confined.  Its  expansion  rate  is   given  by  the  ion  acousOc  speed  cs  =  (kBT/  Ion  

mass)0.5  

(59)

EM  wave  interacOon   with  plasma  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

Interaction zone

InteracOon  zone  

(60)

The prospect of inertial fusion energy derives from scientific advancements in different arenas

Fast Ignition/Shock Ignition Indirect Drive Laser Fusion:

Central Hot Spot Ignition

Direct Drive Laser Fusion:

Central Hot Spot Ignition

Heavy Ion Fusion

(61)

How  ICF  could  be   achieved  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(62)

The National Ignition Facility (NIF) provides the

opportunity for ignition physics research at full scale

° ° ° °

Laser Beams (enter through

laser entrance

hole (LEH)

Hohlraum (laser target) Coupling: laser energy couples to

hohlraum and converts to x-rays Drive: x-rays bathe capsule,

heating it up -- it expands

•  conservation of momentum: ablated shell expands outward, rest of shell (frozen DT) is

forced inward

Fusion initiates in a central hot spot and a burn front propagates outward

Fuel DT

Tr (eV)

Symmetry: radiation compresses capsule and it implodes

Time (ns)

(63)

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(64)
(65)

NIF  laser  amplifiers  

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(66)
(67)

The  hohlraum    

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(68)
(69)

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(70)

Conclusion  (1)  

•  Fusion  is  a  mulO  generaOon    endeavour.      

•  To  the  quesOon  :  is  this  worth  devoOng  your   career  as  a  material  scienOst?  

•  From  a  personal  perspecOve,  at  the  end  of  my  

career  ,  without  any  regret,  I  would  join  again  this   quest  

•  The  only  thing  I  would  do  differently  is  to  study   material  sciences,  to  be  able  to  solve  the  most   challenging  field  of  fusion  research:  a  no  –no  go.  

(71)

Conclusion (2)

22nd World Energy Congress, Daegu 2013

Capturing the Moments

20 November 2013

 “The   fusion   challenge   is   much   bigger   than  Apollo  …  It’s  like  a  mission  to  Mars   or   jumping   from   the   Wright   brothers   airplane  to  the  jet  engine.”  It  is  generally   agreed  that  the  middle  of  this  century  is   a   realisOc   Omeline   for   commercial   scale   fusion   energy,   though   some   it   can   happen  faster.    

-­‐   Nebojsa   Nakicenovic,   Deputy   Director  

&  Deputy  CEO  of  IIASA    

11.10.15   ICFRM  17-­‐  Tutorial  Session  

(72)

   

Thank  you  for  your  a\enOon  

Referenzen

ÄHNLICHE DOKUMENTE

In this communication we review our recent work 1 )' 2 ) on the magnetic response of ballistic microstructures. For a free electron gas the low-field susceptibility is

Here we present results from in situ measurements from the European Space Agency ’ s (ESA) CryoSat-2 Validation Experiment (CryoVEx) 2017 campaign in April 2017, an effort to

Beyond 1 PeV the photon-photon pair production produces high-energy charged particles, which Inverse Compton scatter on the target photons and redistribute the high-energy γ-ray

1) Inventory, reprocessing and analysis of existing data from the Weddell Sea to evaluate and identify key areas, which are in the need of protection. 2) Discussion, improvement

Histograms of the dates at which the conventional and the prospective proportions of populations counted as old (with remaining life expectancy (RLE) of 15 years or less) reach

Does the Qatar process makes sense, when there is already an effort by the Afghan government through the High Peace Council to dialogue with the Taliban.. Especially, when

The cointegration test, shown in Table 9, (see Engle &amp; Granger, 1987; Engle and Yoo, 1987, Table 2), shows that in the two cases with monthly data (models 5 and 6),

To the south of this line are the major water mass formation areas where warm and salty water masses coming from the north are transformed into cold Weddell Sea Bottom Water