• Keine Ergebnisse gefunden

Edited by A. Dold and B. Eckmann

N/A
N/A
Protected

Academic year: 2022

Aktie "Edited by A. Dold and B. Eckmann "

Copied!
354
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Lecture Notes in Mathematics

For information about Vols. 1-980 please contact your bookseller or Springer-Verlag.

Vol. 9 8 1 : Value Distribution Theory. Proceedings, 1981. Edited by I. Lame and S. Rickman. VIII, 2 4 5 pages. 1983.

Vol. 9 8 2 : Stability P r o b l e m s for Stochastic Models. Proceedings, 1982. Edited by V. V. Kalashnikov a n d V. M. Zolotarev. XVII, 2 9 5 pages.

1983.

Vol. 9 8 3 : N o n s t a n d a r d Analysis-Recent Developments. Edited by A.E. H u r d . V, 213 pages. 1983.

Vol. 9 8 4 : A. Bove, J. E. Lewis, C. Parenti, Propagation of Singularities for Fuchsian Operators. IV, 161 pages. 1983.

Vol. 9 8 5 : Asymptotic Analysis II. Edited by F. Verhulst. VI, 4 9 7 pages.

1983.

Vol. 9 8 6 : Seminaire de P r o b a b i l i t y XVII 1981/82. Proceedings.

Edited by J. Azema and M. Yor. V, 512 pages. 1983.

Vol. 9 8 7 : C. J. Bushnell, A. Frohlich, G a u s s S u m s and p-adic Division Algebras. XI, 187 pages. 1983.

Vol. 9 8 8 : J. Schwermer, K o h o m o l o g i e arithmetisch definierter G r u p - pen und Eisensteinreihen. Ill, 170 pages. 1983.

Vol. 9 8 9 : A. B. Mingarelli, Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions. XIV, 318 pages. 1983.

Vol. 9 9 0 : Probability in Banach S p a c e s IV. Proceedings, 1982.

Edited by A. Beck a n d K. Jacobs. V, 2 3 4 pages. 1983.

Vol. 9 9 1 : Banach S p a c e Theory a n d its Applications. Proceedings, 1981. Edited by A. Pietsch, N. Popa and I. Singer. X, 3 0 2 pages.

1983.

Vol. 9 9 2 : H a r m o n i c Analysis, P r o c e e d i n g s , 1982. Edited by G. Mau- ceri, F. Ricci a n d G. W e i s s . X, 4 4 9 pages. 1983.

Vol. 9 9 3 : R. D. Bourgin, G e o m e t r i c A s p e c t s of Convex Sets with the Radon-Nikodym Property. XII, 4 7 4 pages. 1983.

Vol. 9 9 4 : J.-L. Journe, C a l d e r d n - Z y g m u n d Operators, Pseudo-Dif- ferential O p e r a t o r s and the C a u c h y Integral of C a l d e r d n . VI, 129 pages. 1983.

Vol. 9 9 5 : B a n a c h S p a c e s , H a r m o n i c Analysis, and Probability Theory.

Proceedings, 1 9 8 0 - 1 9 8 1 . Edited by R.C. Blei and S.J. Sidney.

V, 173 pages. 1983.

Vol. 9 9 6 : Invariant Theory. Proceedings, 1982. Edited by F. Gherar- delli. V, 159 pages. 1983.

Vol. 9 9 7 : Algebraic Geometry - O p e n Problems. Edited by C. Cili- berto, F. G h i o n e a n d F. O r e c c h i a . VIII, 411 pages. 1983.

Vol. 998: Recent D e v e l o p m e n t s in the Algebraic, Analytical, and Topological Theory of S e m i g r o u p s . P r o c e e d i n g s , 1981. Edited by K.H. Hofmann, H. J u r g e n s e n a n d H.J. Weinert. VI, 4 8 6 pages. 1983.

Vol. 9 9 9 : C. Preston, Iterates of M a p s on an Interval. VII, 2 0 5 pages.

1983.

Vol. 1000: H. Hopf, Differential Geometry in the Large, VII, 184 pages.

1983.

Vol. 1001: D.A. Hejhal, T h e S e l b e r g Trace Formula for PSL(2, nR).

Volume 2. VIII, 8 0 6 pages. 1983.

Vol. 1002: A. Edrei, E.B. Saff, R.S. Varga, Z e r o s of Sections of Power Series. VIII, 115 pages. 1983.

Vol. 1003: J. S c h m e t s , S p a c e s of Vector-Valued C o n t i n u o u s Func- tions. VI, 117 p a g e s . 1983.

Vol. 1004: Universal A l g e b r a a n d Lattice Theory. Proceedings, 1982.

Edited by R.S. Freese a n d O . C . Garcia. VI, 3 0 8 pages. 1983.

Vol. 1005: N u m e r i c a l M e t h o d s . Proceedings, 1982. Edited by V. Pe- reyra and A. Remoza. V, 2 9 6 pages. 1983.

Vol. 1006: A b e l i a n G r o u p Theory. Proceedings, 1 9 8 2 / 8 3 . Edited by R. Gobel, L. Lady a n d A. Mader. XVI, 771 pages. 1983.

Vol. 1007: G e o m e t r i c Dynamics. Proceedings, 1981. Edited by J. Palis Jr. IX. 8 2 7 p a g e s . 1983.

Vol 1008 Algebraic Geometry. Proceedings, 1981. Edited by J. Dol- g a c h e v V 138 pages. 1983

Vo\. : TA- C h a p m a n , C o n t r o l l e d S i m p l e Homotopy Theory and A p p l i c a t i o n s . Ill, 9 4 pages. 1983.

Vrjl 1010 J E. Dies, C h a i n e s d e Markov sur les permutations. IX, 2 2 6 p » 9f's- , 9 8 3-

Vol. 1011: J M . Sigal. Scattering Theory for Many-Body Q u a n t u m M e c h a n i c a l Systems. IV, 132 pages. 1983.

Vol. 1012: S. Kantorovitz, Spectral Theory of Banach S p a c e Oper- a t o r s . V, 179 pages. 1983.

Vol 1013: Complex Analysis - Fifth Romanian-Finnish Seminar, part 1. Proceedings, 1981. Edited by C. Andreian Cazacu, N. B o b o c , y\ j u r f ; h ^ s c u and I. S u c i u . XX, 3 9 3 pages. 1983.

Vol 1014: Complex Analysis - Fifth Romanian-Finnish Seminar, part 2. Proceedings, 1981. Edited by C. Andreian Cazacu, N. B o b o c , M j u r o h f j s c u and I. S u c i u . XX, 3 3 4 pages. 1983.

Vol. 1015: Equations differentielles et systemes de R a f f d a n s le c h a T i p complexe - II. Seminar. Edited by R. Gerard et J. R Ramis.

V 4) 1 pages. 1983.

Vol. 1016: Algebraic Geometry. Proceedings, 1982. Edited by M.

Raynaud and T. Shioda. VIII, 5 2 8 pages. 1983.

Vol 1017: Equadiff 8 2 . Proceedings, 1982. Edited by H.W. K n o b l o c h and K. Schmitt. XXIII, 6 6 6 pages. 1983.

Vol 1018: G r a p h Theory, t a g o w 1981. Proceedings, 1981. Edited by M Etorowecki, J. W. Kennedy a n d M.M. Syslo. X, 2 8 9 pages. 1983.

Vol 1 0 l 9: Cabal Seminar 7 9 - 8 1 . Proceedings, 1 9 7 9 - 8 1 . Edited by A S Kechris, D. A. Martin a n d Y. N. Moschovakis. V, 2 8 4 pages. 1983.

Vol. 1020: Non C o m m u t a t i v e Harmonic Analysis a n d Lie G r o u p s , p r o c e e d i n g s , 1982. Edited by J. C a r m o n a and M. Vergne. V, 187 pages 1983.

Vol 1021: Probability Theory and Mathematical Statistics. Pro- ceedings. 1982. Edited by K. ltd and J.V. Prokhorov. VIII, 7 4 7 pages.

1983.

y0| 1022: G. Gentili, S. S a l a m o n and J.-R Vigue. Geometry Seminar -Luigi Bianchi", 1982. Edited by E. Vesentini. VI, 177 pages. 1983.

Vol 1023: S. M c A d a m , Asymptotic Prime Divisors. IX, 118 pages.

1983.

Vol 1024: Lie G r o u p Representations I. Proceedings, 1 9 8 2 - 1 9 8 3 . I'dited by R. Herb, R. L i p s m a n and J. Rosenberg. IX, 3 6 9 pages. 1983.

Vol 10215: D. Tanre, H o m o t o p i e Rationnelle: Modeles de C h e n , OuiHen. Sullivan. X, 211 pages. 1983.

Vol 1020: W. Plesken, G r o u p Rings of Finite G r o u p s Over p-adic integers. V, 151 pages. 1983.

Vol 1027: M. H a s u m i , Hardy Classes on Infinitely C o n n e c t e d Rie- .n an n Surfaces. XII, 2 8 0 pages. 1983.

Vol 1028: Seminaire d'Analyse P Lelong - R Dolbeault - H. Skoda.

A n n (i c s 1981/1983. Edite par R Lelong, R Dolbeault et H. Skoda.

VIII, 3 2 8 pages. 1983.

Vol. 1029: Seminaire d'Algebre Paul Dubreil etMarie-PauleMalliavin.

Proceedings, 1982. Edite par M.-R Malliavin. V, 3 3 9 pages. 1983.

Vol. 1030: U. Christian, Selberg's Zeta-, L-, and Eisensteinseries.

XII 196 pages. 1983.

Vol- 1^3, : Dynamics a n d Processes. Proceedings, 1981. Edited by Ph Bianchard and L. Streit. IX, 213 pages. 1983.

Vol. 1032: Ordinary Differential Equations and Operators. Pro- ceedings, 1982. Edited by W. N. Everitt and R. T. Lewis. XV, 521 pages.

Vol 1033: Measure Theory and its Applications. Proceedings, 1982.

Ed'te^ by J M . Belley, J. D u b o i s and R Morales. XV, 317 pages. 1983.

continued on page 335

(2)

Lecture Notes in Mathematics

Edited by A. Dold and B. Eckmann

1173

Hans Delfs

Manfred Knebusch

Locally Semialgebraic Spaces

UBR UBR UBR UBR UBR 069008388822

Springer-Verlag

Berlin Heidelberg New York Tokyo

(3)

%0 £l £sro

- - - ^ - 7 s 5 Authors

Hans Deifs Manfred Knebusch

Fakultat fur Mathematik, Universitat Regensburg Universitatsstr. 3 1 , 8400 Regensburg

Federal Republic of Germany

Univ.-Biblfothek Regensburg

S

Mathematics Subject Classification (1980): 14G30, 54E99, 55Q05, 57R05 ISBN 3-540-16060-4 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-16060-4 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1985 Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

2146/3140-543210

(4)

To C h r i s t l a n d G i s e l a

(5)
(6)

P r e f a c e

The p r i m a r y o c c u p a t i o n o f r e a l a l g e b r a i c geometry, o r b e t t e r " s e m i a l g e - b r a i c geometry", i s t o s t u d y t h e s e t o f s o l u t i o n s o f a f i n i t e system o f p o l y n o m i a l i n e q u a l i t i e s i n a f i n i t e number o f v a r i a b l e s o v e r the f i e l d 3R o f r e a l numbers. One wants t o do t h i s i n a c o n c e p t u a l way, n o t a l w a y s m e n t i o n i n g t h e p o l y n o m i a l d a t a , s i m i l a r l y as i n a l g e b r a i c geometry, s a y o v e r €, where one most o f t e n a v o i d s w o r k i n g e x p l i c i t e l y w i t h the

systems o f p o l y n o m i a l e q u a l i t i e s (and n o n - e q u a l i t i e s f * 0) i n v o l v e d .

But a s e m i a l g e b r a i c geometry w h i c h d e s e r v e s i t s name s h o u l d be a b l e t o work - a t l e a s t - o v e r an a r b i t r a r y r e a l c l o s e d f i e l d R i n s t e a d o f t h e f i e l d JR . Such f i e l d s a r e u s e f u l and even u n a v o i d a b l e i n s e m i a l g e b r a i c geometry f o r much t h e same r e a s o n as a l g e b r a i c a l l y c l o s e d f i e l d s o f

• c h a r a c t e r i s t i c z e r o - a t l e a s t - a r e u n a v o i d a b l e i n a l g e b r a i c geometry

; o v e r <C, as soon as one t r i e s t o a v o i d t r a n s c e n d e n t a l t e c h n i q u e s o r e v e n I t h e n .

; I n o r d e r t o i l l u s t r a t e t h i s we g i v e a somewhat t y p i c a l example. L e t ' f : V->W be an a l g e b r a i c map between i r r e d u c i b l e v a r i e t i e s o v e r 1R . T h i s

y i e l d s , by r e s t r i c t i o n , a c o n t i n u o u s map f _ : V(]R) -+WCIR) between t h e

IK

s e t s o f r e a l p o i n t s . We assume t h a t W(3R) i s Z a r i s k i dense i n W w h i c h .means t h a t W(3R) c o n t a i n s non s i n g u l a r p o i n t s o r , e q u i v a l e n t l y , t h a t t h e [ f u n c t i o n f i e l d 3R(W) i s f o r m a l l y r e a l . The g e n e r i c f i b r e X o f f , i . e .

X = f 1 (n) w i t h n the g e n e r i c p o i n t o f W ( r e g a r d i n g V and W as s c h e m e s ) ,

\ i s an a l g e b r a i c scheme o v e r t h e f u n c t i o n f i e l d 3R(W) o f W, w h i c h c o n -

\ t a i n s a l o t o f i n f o r m a t i o n about f and fT O. But i t may be too d i f f i c u l t [ t o study X, s i n c e t h e f i e l d IR(W) i s u s u a l l y v e r y c o m p l i c a t e d . I n a l g e -

| b r a i c geometry one o f t e n r e p l a c e s X by the a l g e b r a i c v a r i e t y X o b t a i n e d I from X by e x t e n s i o n o f the b a s e f i e l d ]R(W) t o t h e a l g e b r a i c c l o s u r e C

o f 3E(W) . I t i s much e a s i e r t o s t u d y t h e " g e o m e t r i c g e n e r i c f i b r e " X

(7)

i n s t e a d o f X, and s t i l l one may hope t o e x t r a c t r e l e v a n t i n f o r m a t i o n a b o u t f from X. B u t i n s e m i a l g e b r a i c g e o m e t r y t h i s p r o c e d u r e i s n o t a d - v i s a b l e , s i n c e most r e a l phenomena i n X w i l l be d e s t r o y e d i n X. I n s t e a d o f X one s h o u l d s t u d y t h e v a r i e t i e s XQ, o b t a i n e d f r o m X by b a s e e x t e n - s i o n f r o m IR(W) t o t h e r e a l c l o s u r e s Ra o f IR(W) w i t h r e s p e c t t o t h e v a r i o u s o r d e r i n g s a o f t h e f u n c t i o n f i e l d IR(W) , and t h e s e t s o f r a t i o - n a l p o i n t s X (R ) . F o r e v e r y s u c h a we have R ^ ( VCT ) = C. Thus t h e R„

a ot a a a r e "as n e a r as p o s s i b l e " t o C and n e v e r t h e l e s s we may hope t o d e t e c t

some o f t h e r e a l phenomena o f X, and u l t i m a t e l y o f f , i n t h e s e t s

v v -

The v a r i e t y X i s t h e p r o j e c t i v e l i m i t o f t h e schemes f 1 (U) = V x^u w i t h U r u n n i n g t h r o u g h t h e Z a r i s k i - o p e n s u b s e t s o f W, s i n c e t h e s e U a r e the Z a r i s k i n e i g h b o u r h o o d s o f t h e g e n e r i c p o i n t ri i n W. S i m i l a r l y X i s t h e p r o j e c t i v e l i m i t o f t h e f i b r e p r o d u c t s V ^ u , w i t h r e s p e c t t o t h e e t a l e m o r p h i s m s cp : U -»W from a r b i t r a r y v a r i e t i e s U o v e r IR t o W (U * 0 , b u t U(IR) may be empty), s i n c e t h e s e morphisms cp a r e t h e e t a l e n e i g h b o u r - hoods o f n. How about t h e Xa? An o r d e r i n g a o f IR(W) c o r r e s p o n d s u n i - q u e l y t o an u l t r a f i l t e r F i n t h e B o o l e a n l a t t i c e )T(W ( IR ) o f s e m i a l g e - b r a i c s u b s e t s o f W(IR) such t h a t e v e r y A €F has a non empty i n t e r i o r A i n t h e s t r o n g t o p o l o g y (= c l a s s i c a l t o p o l o g y on W(IR)), w h i c h means t h a t A i s Z a r i s k i d e n s e i n W, c f . [B, 8 . 1 1 ] , [ B r , § 4 ] . (A r a t i o n a l f u n c - t i o n h €IR(W) i s p o s i t i v e w i t h r e s p e c t t o a i f and o n l y i f h i s d e f i n e d and p o s i t i v e on some s e t A C F ) . I t t u r n s o u t t h a t Xa i s t h e p r o j e c t i v e l i m i t o f t h e f i b r e p r o d u c t s V x^u w i t h r e s p e c t t o t h o s e e t a l e morphisms cp : U ->W s u c h t h a t cp(U(IR)) € F . (N.B. cp(U(IR)) i s s e m i a l g e b r a i c . ) T h i s i s due t o t h e f a c t t h a t Ra c a n be i n t e r p r e t e d as t h e u n i o n o f t h e r i n g s o f N a s h f u n c t i o n s &W( U ) on t h e v a r i o u s smooth open s e t s U € F , c f . [ R y ] .

Much more c a n be s a i d about a g e o m e t r i c i n t e r p r e t a t i o n o v e r IR o f the f i e l d s Ra, t h e v a r i e t i e s XQ and t h e p o i n t s i nxa(Ra) * B ut t h i s w o u l d

(8)

t a k e u s t o o f a r a f i e l d . We o n l y m e n t i o n t h a t t h e r e a l s p e c t r a o f commu- t a t i v e r i n g s i n v e n t e d by M. C o s t e and M.F. C o s t e - R o y p r o v i d e e x a c t l y t h e r i g h t l a n g u a g e t o u n d e r s t a n d a l l t h i s , c f . [ C R ] , [ R y ] , and t h e

l i t e r a t u r e c i t e d t h e r e a n d , f o r an i n t r o d u c t i o n t o r e a l s p e c t r a , a l s o [L, § 4 , § 7 ] , [ B r , § 3 , § 4 ] , [ K ] , [BCR, Chap. 7 ] .

We have b e e n somewhat vague above. I n p a r t i c u l a r we d i d n o t make p r e - c i s e t h e v a r i o u s d i r e c t s y s t e m s w h i c h y i e l d t h e p r o j e c t i v e l i m i t s X and XQ. We o n l y wanted t o i n d i c a t e t h a t i n s e m i a l g e b r a i c geometry o v e r IR r e a l c l o s e d f i e l d s may come up i n a n a t u r a l and g e o m e t r i c way.

The p r e s e n t l e c t u r e n o t e s g i v e a c o n t r i b u t i o n t o a b a s i c b u t r a t h e r modest a s p e c t o f s e m i a l g e b r a i c geometry: t h e t o p o l o g i c a l phenomena o f

s e m i a l g e b r a i c s e t s i n V(R) f o r V a v a r i e t y o v e r a r e a l c l o s e d f i e l d R.

T h e r e i s a d i f f i c u l t y w i t h t h e word " t o p o l o g i c a l " h e r e . Of c o u r s e , V(R) i s e q u i p p e d w i t h t h e s t r o n g t o p o l o g y coming f r o m t h e t o p o l o g y o f t h e o r d e r e d f i e l d R. B u t , e x c e p t i n t h e c a s e R = I R , t h e t o p o l o g i c a l s p a c e V(R) i s t o t a l l y d i s c o n n e c t e d .

These p a t h o l o g i e s c a n be r e m e d i e d by c o n s i d e r i n g on V(R) a t o p o l o g y i n t h e s e n s e o f G r o t h e n d i e c k , where o n l y open s e m i a l g e b r a i c s u b s e t s U o f V(R) a r e a d m i t t e d a s "open s e t s " , and f o r s u c h a s e t U e s s e n t i a l l y o n l y c o v e r i n g s by f i n i t e l y many open s e m i a l g e b r a i c s u b s e t s o f U a r e a d m i t t e d as "open c o v e r i n g s " .

I t seems t h a t t h e c a t e g o r y o f s e m i a l g e b r a i c s p a c e s and maps o v e r a r e a l c l o s e d f i e l d R, w h i c h has been i n t r o d u c e d i n o u r p a p e r [ D K2] , p r o v i d e s t h e r i g h t framev/ork f o r t h i s " s e m i a l g e b r a i c t o p o l o g y " . A l r e a d y i n t h a t paper and l a t e r i n o t h e r ones ( [ D ] , [ D1] , [DK^], [DK^], [DK^]) we f o u n d a n a l o g u e s o f many r e s u l t s i n c l a s s i c a l t o p o l o g y . Sometimes t h i n g s a r e even n i c e r h e r e . T h i s i s n o t a s t o n i s h i n g s i n c e , i n t h e c a s e R =IR, t h e

(9)

s e m i a l g e b r a i c s e t s a r e r a t h e r tame f r o m a t o p o l o g i c a l v i e w p o i n t .

I n t h e c a s e R =IR t h e c a t e g o r y o f s e m i a l g e b r a i c s p a c e s c a n be compared w i t h t h e c a t e g o r y o f t o p o l o g i c a l s p a c e s , and t h i s a f f o r d s us a new p e r s p e c t i v e c o n c e r n i n g t h e two b r a n c h e s o f m a t h e m a t i c s i n v o l v e d , s e m i - a l g e b r a i c geometry and a l g e b r a i c t o p o l o g y , c f . t h e i n t r o d u c t i o n o f [ B ] , F o r example, a l o n g j o u r n e y a l o n g t h i s r o a d s h o u l d g i v e a t h o r o u g h un- d e r s t a n d i n g o f why so many s p a c e s o c c u r i n g i n u s u a l a l g e b r a i c t o p o l o g y a r e s e m i a l g e b r a i c s e t s .

N e v e r t h e l e s s t h e c a t e g o r y o f s e m i a l g e b r a i c s p a c e s i s t o o r e s t r i c t i v e f o r some p u r p o s e s . A good i n s t a n c e where t h i s c a n be s e e n i s t h e t h e o r y o f s e m i a l g e b r a i c c o v e r i n g s . I f M i s a c o n n e c t e d a f f i n e s e m i a l g e b r a i c s p a c e o v e r R, and xq i s some p o i n t i n M, we c a n d e f i n e t h e f u n d a m e n t a l g r o u p ( M , xQ) i n t h e u s u a l way as t h e s e t o f s e m i a l g e b r a i c homotopy

* )

c l a s s e s o f s e m i a l g e b r a i c l o o p s w i t h b a s e p o i n t xQ ( c f . Ill,§6) . T h i s i s an h o n e s t t o g o o d n e s s g r o u p , g e n e r a t e d by f i n i t e l y many e l e m e n t s s a - t i s f y i n g f i n i t e l y many r e l a t i o n s . On t h e o t h e r hand we e v i d e n t l y have t h e n o t i o n o f an ( u n r a m i f i e d ) c o v e r i n g p :N -»M o f M, p b e i n g a l o c a l l y t r i v i a l s e m i a l g e b r a i c map w i t h d i s c r e t e (= z e r o - d i m e n s i o n a l ) f i b r e s . Of c o u r s e , one would l i k e t o c l a s s i f y t h e c o v e r i n g s o f M by s u b g r o u p s o f TT.j ( M , xQ) . B u t a z e r o - d i m e n s i o n a l s e m i a l g e b r a i c s p a c e i s n e c e s s a r i l y a f i n i t e s e t . Thus e v e r y s e m i a l g e b r a i c c o v e r i n g has f i n i t e d e g r e e . I t c a n be shown t h a t i n d e e d t h e i s o m o r p h i s m c l a s s e s o f s e m i a l g e b r a i c c o v e r i n g s o f M c o r r e s p o n d u n i q u e l y t o t h e c o n j u g a c y c l a s s e s o f s u b - g r o u p s o f f i n i t e i n d e x i n ( M , xQ) i n t h e u s u a l way. B u t t h e r e s h o u l d a l s o e x i s t c o v e r i n g s o f a more g e n e r a l n a t u r e w h i c h c o r r e s p o n d t o the o t h e r subgroups o f tt^ ( M ,xQ) . I n p a r t i c u l a r t h e r e s h o u l d e x i s t a u n i - v e r s a l c o v e r i n g o f M. T h e s e more g e n e r a l c o v e r i n g s c a n be d e f i n e d i n

*) T h i s means §6 i n C h a p t e r I I I o f t h i s book.

(10)

t h e c a t e g o r y o f " l o c a l l y s e m i a l g e b r a i c " s p a c e s and maps.

A f t e r s e v e r a l y e a r s o f e x p e r i m e n t i n g w i t h l o c a l l y s e m i a l g e b r a i c s p a c e s we a r e c o n v i n c e d t h a t t h e s e s p a c e s e x i s t " i n n a t u r e " . The c o v e r i n g s o f

a f f i n e s e m i a l g e b r a i c s p a c e s a r e r e g u l a r paracompact l o c a l l y s e m i a l g e - b r a i c s p a c e s , t o be d e f i n e d i n I , § 4 . R e g u l a r paracompact s p a c e s seem t o be t h e "good" l o c a l l y s e m i a l g e b r a i c s p a c e s , a n a l o g o u s t o t h e a f f i n e s p a c e s i n t h e s e m i a l g e b r a i c c a t e g o r y . F o r i n s t a n c e , f o r t h e s e spaces t h e r e e x i s t s a s a t i s f a c t o r y cohomology t h e o r y o f s h e a v e s , b a s e d on f l a b b y and s o f t s h e a v e s , w h i c h p a r a l l e l s t h e c l a s s i c a l t h e o r y f o r t o p o - l o g i c a l p a r a c o m p a c t s p a c e s . We w i l l n o t d e a l w i t h t h e s e m a t t e r s h e r e , e x c e p t f o r some b r i e f r e m a r k s i n A p p e n d i x A, b u t t h e y a r e q u i t e impor- t a n t f o r d e f i n i n g homology and cohomology g r o u p s o f v a r i o u s k i n d s f o r t h e s e s p a c e s , c f . [ D ] , [ D ^ , [ D2] .

A l t h o u g h r e g u l a r p a r a c o m p a c t s p a c e s a r e a v e r y s a t i s f y i n g s u b c l a s s o f l o c a l l y s e m i a l g e b r a i c s p a c e s one has t o f a c e t h e f a c t t h a t t h e r e e x i s t many l o c a l l y s e m i a l g e b r a i c s p a c e s i n n a t u r e w h i c h a r e n o t paracompact.

( I t seems t h a t r e g u l a r i t y may be assumed i n most a p p l i c a t i o n s . ) F o r example, s t u d y i n g open s u b s e t s o f q u i t e i n n o c e n t l y l o o k i n g r e a l s p e c t r a may l e a d t o r e g u l a r s p a c e s w h i c h a r e n o t paracompact, c f . A p p e n d i x A.

Thus i t i s n o t j u s t f o r f u n o r f o r s y s t e m a t i c r e a s o n s t h a t we s t u d y i n C h a p t e r I more g e n e r a l s p a c e s . I n t h e l a t e r c h a p t e r s we a r e f o r c e d t o r e s t r i c t t o paracompact s p a c e s , s i n c e o t h e r w i s e o u r d e e p e r t e c h n i q u e s break down.

There i s one phenomenon i n o u r t h e o r y w h i c h may seem somewhat u n u s u a l f o r a r e a d e r o f our p r e v i o u s p a p e r s . I n a s e m i a l g e b r a i c s p a c e M i t i s s t r i c t l y f o r b i d d e n t o work w i t h s u b s e t s o f M o t h e r t h a n t h e s e m i a l g e b r a i c s u b s e t s [DK2f § 7 ] . B u t i n a l o c a l l y s e m i a l g e b r a i c s p a c e M t h e r e e x i s t two n a t u r a l c l a s s e s o f a d m i s s i b l e s u b s e t s , t h e c l a s s T(M) o f l o c a l l y

(11)

s e m i a l g e b r a i c s u b s e t s o f M and t h e s m a l l e r c l a s s JT(M) o f s e m i a l g e b r a i c s u b s e t s o f M. The i n t e r p l a y between T(M) and T(M) i s a theme w h i c h r e - c u r s t h r o u g o u t t h e whole t h e o r y .

The g o a l o f t h e f i r s t volume o f o u r l e c t u r e n o t e s i s t o e s t a b l i s h t h e c a t e g o r y o f l o c a l l y s e m i a l g e b r a i c s p a c e s and maps o v e r an a r b i t r a r y r e a l c l o s e d f i e l d R on f i r m grounds, and t o p r o v e enough r e s u l t s a b o u t t h e s e s p a c e s and maps, t h a t t h e r e a d e r w i l l f e e l w e l l a c q u a i n t e d w i t h them and w i l l r e g a r d them as c o n c r e t e and a c c e s s i b l e o b j e c t s . The n e x t t o p i c s , t o be c o v e r e d i n t h e s e c o n d volume, a r e t h e t h e o r y o f l o c a l l y s e m i a l g e b r a i c f i b r a t i o n s and f i b r e b u n d l e s ( C h a p t e r IV) and t h e t h e o r y o f c o v e r i n g s ( C h a p t e r V ) .

As b a c k g r o u n d m a t e r i a l we assume o u r p a p e r s [DK23/ [DK^], [DK^], some s e c t i o n s o f [DK^], and Robson's p a p e r [ R ] . Here y o u f i n d n e a r l y e v e r y - t h i n g w h i c h we need about s e m i a l g e b r a i c s p a c e s , w r i t t e n up i n a s y s t e - m a t i c way c o m p a t i b l e w i t h t h e s p i r i t o f t h e s e l e c t u r e n o t e s . Of c o u r s e , i t w o u l d have been more c o m f o r t a b l e f o r t h e r e a d e r i f we h a d s t a r t e d t h e l e c t u r e n o t e s w i t h a r e v i e w o f t h e r e s u l t s o f t h o s e p a p e r s . B u t t h i s i s n o t r e a l l y n e c e s s a r y and would have made t h e l e c t u r e n o t e s t o o l o n g . Of c o u r s e , t h e book [BCR] o f Bochnak and t h e C o s t e s - as soon as i t has a p p e a r e d - w i l l c o n t a i n most b a s i c f a c t s w h i c h a r e n e c e s s a r y f o r an u n d e r s t a n d i n g o f t h e s e l e c t u r e n o t e s and much more.

A s u r v e y on some b a s i c r e s u l t s about s e m i a l g e b r a i c s p a c e s has b e e n g i v e n i n [DK]. A n o t h e r s u r v e y on b a s i c r e s u l t s about l o c a l l y s e m i a l g e - b r a i c s p a c e s , which, o f c o u r s e , a l l w i l l be c o v e r e d by t h e two volumes o f t h e s e l e c t u r e n o t e s , has been g i v e n i n [DKg] and [DK^].

We hope t h a t t h e s e l e c t u r e n o t e s , d e s i g n e d i n f i r s t p l a c e f o r t h e needs o f s e m i a l g e b r a i c geometry, a r e a l s o o f i n t e r e s t f o r t o p o l o g i s t s . The main r e s u l t s a r e u s u a l l y non t r i v i a l a l s o i n t h e c a s e R = 3R and n o t much e a s i e r t o be p r o v e d i n t h i s s p e c i a l c a s e . The c a t e g o r y o f l o c a l l y

(12)

s e m i a l g e b r a i c s p a c e s o v e r 3R l i e s somewhat " i n between" t h e c a t e g o r y TOP o f t o p o l o g i c a l H a u s d o r f f s p a c e s and t h e c a t e g o r y PL o f p i e c e w i s e l i n e a r s p a c e s , b e i n g l e s s r i g i d t h a n PL and, i n some r e s p e c t s , l e s s p a t h o l o g i c a l t h a n TOP.

The c e n t r a l r e s u l t o f t h e whole volume seems t o be Theorem 4.4 i n C h a p t e r I I , §4, w h i c h s t a t e s t h a t e v e r y r e g u l a r paracompact l o c a l l y s e m i a l g e b r a i c s p a c e M c a n be t r i a n g u l a t e d , and moreover a g i v e n l o c a l l y f i n i t e f a m i l y o f l o c a l l y s e m i a l g e b r a i c s u b s e t s o f M can be t r i a n g u l a t e d s i m u l t a n e o u s l y . Thus we may r e g a r d e v e r y r e g u l a r paracompact space as a l o c a l l y f i n i t e p o l y h e d r o n w i t h some open f a c e s m i s s i n g ( c f . t h e d e f i - n i t i o n o f s t r i c t l y l o c a l l y f i n i t e s i m p l i c i a l complexes, i n I , § 2 , w h i c h i s s l i g h t l y d i f f e r e n t f r o m t h e c l a s s i c a l d e f i n i t i o n ) . B u t i n c o n -

t r a s t t o P L - t h e o r y , we may s u b d i v i d e s i m p l i c e s n o t o n l y l i n e a r l y b u t

" s e m i a l g e b r a i c a l l y " . N e v e r t h e l e s s , i n t h e s p e c i a l c a s e t h a t R= IR and M i s p a r t i a l l y c o m p l e t e , S h i o t a and Y o k o i have r e c e n t l y p r o v e d t h a t any two PL s t r u c t u r e s on M w h i c h r e f i n e t h e g i v e n s e m i a l g e b r a i c s t r u c t u r e a r e i s o m o r p h i c ([SY, Th. 4.1], t h e y p r o v e t h i s more g e n e r a l l y f o r s u i t a b l e l o c a l l y s u b a n a l y t i c s p a c e s ) . T h i s r e m a r k a b l e theorem can be e x t e n d e d t o p a r t i a l l y complete r e g u l a r paracompact s p a c e s o v e r any R, as we hope t o e x p l a i n i n t h e s e c o n d volume.

I f S i s a r e a l c l o s e d f i e l d c o n t a i n i n g R t h e n , as a consequence o f T a r s k i ' s p r i n c i p l e , we c a n a s s o c i a t e w i t h e v e r y l o c a l l y s e m i a l g e b r a i c space M o v e r R a l o c a l l y s e m i a l g e b r a i c s p a c e M(S) o v e r S by " e x t e n s i o n o f the base f i e l d R t o S", c f . 1.2.10. T h i s y i e l d s a v e r y good n a t u r e d f u n c t o r M ^ M ( S ) f r o m t h e c a t e g o r y o f r e g u l a r paracompact s p a c e s o v e r R t o the c a t e g o r y o f r e g u l a r paracompact s p a c e s o v e r S, w h i c h i s o f c r u - c i a l i m p o r t a n c e f o r o u r whole t h e o r y . The homotopy groups ( c f . I l l , § 6 ) , t h e homology groups ( c f . I l l , §7) and a l s o t h e v a r i o u s K-groups o f M

( o r t h o g o n a l , u n i t a r y , s y r a p l e c t i c , c f . C h a p t e r IV i n t h e s e c o n d volume) a r e p r e s e r v e d under b a s e f i e l d e x t e n s i o n f r o m R t o S. These a r e examples

(13)

o f t h e main message o f o u r whole t h e o r y , t h a t o v e r a c o m p l i c a t e d r e a l c l o s e d f i e l d t h e l o c a l l y s e m i a l g e b r a i c s p a c e s a r e i n many r e s p e c t s n o t more c o m p l i c a t e d t h a n o v e r a s i m p l e f i e l d , as t h e f i e l d IR o r the f i e l d RQ o f r e a l a l g e b r a i c numbers. We b e l i e v e t h a t t h i s message i s by no means t r i v i a l . I t may be r e g a r d e d as a v a s t g e n e r a l i z a t i o n o f T a r s k i ' s p r i n c i p l e f o r t o p o l o g i c a l s t a t e m e n t s . As soon as one l e a v e s t h e c a d r e o f s e m i a l g e b r a i c t o p o l o g y and works, s a y w i t h a l g e b r a i c f u n c t i o n s t h e n t h e a n a l o g u e o f o u r message seems t o h o l d o n l y u n d e r s e v e r e r e s t r i c t i o n s F o r example, i t i s w e l l known t h a t , i n g e n e r a l , s e m i a l g e b r a i c f u n c t i o n s on t h e u n i t i n t e r v a l [0,1] i n R c a n n o t be a p p r o x i m a t e d u n i f o r m l y by p o l y n o m i a l s , i n c o n t r a s t t o t h e S t o n e - W e i e r s t r a B t h e o r e m f o r R= 3R .

The book has two a p p e n d i c e s . A p p e n d i x B ( t o C h a p t e r I) c o n t a i n s some e a s y b u t f u n d a m e n t a l r e s u l t s i n t h e t h e o r y o f b a s e e x t e n s i o n . They have n o t been i n c l u d e d i n t o C h a p t e r I s i n c e some o f t h e t e c h n i q u e s n e e d e d t o d e r i v e them seem t o have t h e i r n a t u r a l p l a c e i n C h a p t e r I I . A p p e n d i x A i s o f d i f f e r e n t k i n d . Here we draw t h e c o n n e c t i o n s between o u r t h e o r y and " a b s t r a c t " s e m i a l g e b r a i c g e o m e t r y w h i c h , s t a r t i n g f r o m t h e n o t i o n o f t h e r e a l s p e c t r u m , now i s i n a p r o c e s s o f r a p i d d e v e l o p - ment. A p p e n d i x A i s n o t n e e d e d f o r o u r t h e o r y i n a t e c h n i c a l s e n s e , b u t t h e r e we w i l l f i n d t h e o c c a s i o n t o e x p l a i n some more p o i n t s o f our p h i l o s o p h y a b o u t t h e " r a i s o n d ' e t r e " o f l o c a l l y s e m i a l g e b r a i c s p a c e s .

We t h a n k t h e members o f t h e f o r m e r R e g e n s b u r g e r s e m i a l g e b r a i c group, i n p a r t i c u l a r R o l a n d Huber and Robby Robson, f o r s t i m u l a t i n g d i s c u s s i o n s and c r i t i c i s m a b o u t t h e c o n t e n t s o f t h e s e l e c t u r e n o t e s . S p e c i a l t h a n k s a r e due t o J o s e M a n u e l Gamboa and R. Huber f o r a p e n e t r a t i n g (and v e r y s u c c e s s f u l ) s e a r c h f o r m i s t a k e s i n t h e f i n a l v e r s i o n o f t h e m a n u s c r i p t .

We t h a n k M a r i n a R i c h t e r f o r h e r p a t i e n c e and e x c e l l e n c e i n t y p i n g the book and R. Robson f o r e l i m i n a t i n g some o f t h e most annoying g r a m m a t i c a l m i s t a k e s . We a r e w e l l aware t h a t we c o u l d have w r i t t e n a b e t t e r book

(14)

i n o u r n a t i v e l a n g u a g e , b u t s i n c e t h e book i s d e s i g n e d as a " t o p o l o g i e g e n e r a l e " f o r s e m i a l g e b r a i c geometry w h i c h s h o u l d be u s e f u l as a w i d e l y a c c e p t e d r e f e r e n c e , we have w r i t t e n i n t h a t l a n g u a g e w h i c h w i l l be u n d e r s t o o d by the most.

R e g e n s b u r g , J u l y 1985

Hans D e l f s , M a n f r e d K n e b u s c h

(15)
(16)

TABLE OF CONTENTS

page

C h a p t i e r I - The b a s i c d e f i n i t i o n s 1

§1 - L o c a l l y s e m i a l g e b r a i c s p a c e s and maps 1

§2 - I n d u c t i v e l i m i t s , some examples o f l o c a l l y s e m i a l g e -

b r a i c s p a c e s 1 1

§3 - L o c a l l y s e m i a l g e b r a i c s u b s e t s 27

§4 - R e g u l a r and paracompact s p a c e s 42

§5 - S e m i a l g e b r a i c maps and p r o p e r maps 54

§6 - P a r t i a l l y p r o p e r maps 63

§7 - L o c a l l y complete s p a c e s 75

Chaptter I I - C o m p l e t i o n s and t r i a n g u l a t i o n s 87

§1 - G l u i n g paracompact s p a c e s 87

§2 - E x i s t e n c e o f c o m p l e t i o n s 94

§3 - A b s t r a c t s i m p l i c i a l complexes 99

§4 - T r i a n g u l a t i o n o f r e g u l a r paracompact s p a c e s 1 °6

§5 - T r i a n g u l a t i o n o f w e a k l y s i m p l i c i a l maps, maximal

complexes 113

§6 - T r i a n g u l a t i o n o f amenable p a r t i a l l y f i n i t e maps 124

§7 - S t a r s and s h e l l s 13 8

§8 - Pure h u l l s o f dense p a i r s 146

§9 - Ends o f s p a c e s , t h e L C - s t r a t i f i c a t i o n 156

§10 —Some p r o p e r q u o t i e n t s 178

§11 — M o d i f i c a t i o n o f p u r e ends 189

§12 — T h e S t e i n f a c t o r i z a t i o n o f a s e m i a l g e b r a i c map 198

§13 — S e m i a l g e b r a i c s p r e a d s 211

§14 — H u b e r ' s theorem on open mappings 219

(17)

C h a p t e r I I I - Homotopies 22 6

§1 - Some s t r o n g d e f o r m a t i o n r e t r a c t s 22 6

§2 - S i m p l i c i a l a p p r o x i m a t i o n s 23 2

§3 - The f i r s t main theorem on homotopy s e t s ; mapping s p a c e s 24 3

§4 - R e l a t i v e homotopy s e t s 24 9

§5 - The s e c o n d main theorem; c o n t i g u i t y c l a s s e s 257

§6 - Homotopy groups 26 5

§7 - Homology; t h e H u r e w i c z theorems 278

§8 - Homotopy groups o f ends 286

Appendix A - A b s t r a c t l o c a l l y s e m i a l g e b r a i c s p a c e s 295 Appendix B - C o n s e r v a t i o n o f some p r o p e r t i e s o f spaces and maps

under base f i e l d e x t e n s i o n 309

R e f e r e n c e s 315 L i s t o f symbols 319

G l o s s a r y 322

(18)

C h a p t e r I . - The b a s i c d e f i n i t i o n s

The g o a l s o f t h i s c h a p t e r a r e modest. We p r e s e n t t h e b a s i c d e f i n i t i o n s and some e l e m e n t a r y o b s e r v a t i o n s needed by anyone who wants t o work w i t h l o c a l l y s e m i a l g e b r a i c s p a c e s . The c o v e r i n g s mentioned i n t h e p r e - f a c e w i l l be a s p e c i a l c l a s s o f t h e " p a r t i a l l y p r o p e r maps" c o n s i d e r e d i n § 6 .

§1 - L o c a l l y s e m i a l g e b r a i c s p a c e s and maps

Our i d e a i s t o d e f i n e l o c a l l y s e m i a l g e b r a i c s p a c e s as s u i t a b l e r i n - ged s p a c e s i n t h e sense o f G r o t h e n d i e c k . Then t h e more d e l i c a t e q u e s t i o n how t o d e f i n e l o c a l l y s e m i a l g e b r a i c maps becomes t r i v i a l . These maps w i l l be s i m p l y a l l t h e morphisms between t h e l o c a l l y s e - m i a l g e b r a i c s p a c e s i n t h e c a t e g o r y o f r i n g e d s p a c e s . We used t h e same p r o c e d u r e a l r e a d y t o d e f i n e s e m i a l g e b r a i c s p a c e s i n [DK2,§7].

D e f i n i t i o n 1. A g e n e r a l i z e d t o p o l o g i c a l space *) i s a s e t M t o g e t h e r w i t h a s e t 'f(M) o f s u b s e t s o f M, c a l l e d t h e "open s u b s e t s " o f M, and a s e t C o vM o f f a m i l i e s ( Ual a € I ) i n ^ ( M ) * * ) , c a l l e d t h e " a d m i s s i b l e c o v e r i n g s " such t h a t t h e f o l l o w i n g p r o p e r t i e s h o l d :

i ) 0 e 7(M) , M € tf(M) .

i i ) I f U1 € *(M) , U2 € T(M) , t h e n fl U2 € f ( M ) and U1 U U2 € f ( M ) . i i i ) E v e r y f a m i l y ( Ual a € I ) i n ^f(M) w i t h I f i n i t e i s an element

o f C o vM.

M

i v ) I f (UglaGI) i s an e l e m e n t o f Cov^, t h e n t h e u n i o n U := U ( Ual a € I ) o f t h i s f a m i l y i s an element o f jP(M) .

*) T h i s term s h o u l d be r e g a r d e d as ad h o c .

**) In o r d e r t o g u a r a n t e e t h a t Cov^. i s r e a l l y a s e t one s h o u l d o n l y a l l o w s u b s e t s o f some f i x e d l a r g e s e t as index s e t s I . We w i l l i g n o r e a l l s e t - t h e o r e t i c d i f f i c u l t i e s h e r e .

(19)

F o r any U € T(M) we d e n o t e t h e s u b s e t o f a l l (UglaGI) € C o vM w i t h U ( Ual a € I ) = U by Cov^dJ) and we c a l l t h e s e c o v e r i n g s t h e " a d m i s s i b l e c o v e r i n g s o f U".

v) I f ( Ual a e i ) i s an a d m i s s i b l e c o v e r i n g o f U € T(M) and i f V € f(M) i s a s u b s e t o f U, t h e n ( UaD V l a € I ) i s an a d m i s s i b l e c o v e r i n g o f V.

v i ) I f an a d m i s s i b l e c o v e r i n g (Ualcx€I) o f U € T(M) i s g i v e n and f o r e v e r y a € I an a d m i s s i b l e c o v e r i n g ( Vap l 3 £ Ja) o f Ua i s g i v e n , t h e n (V^^I a € 1 , 3G JQ) i s an a d m i s s i b l e c o v e r i n g o f U.

v i i ) I f (U |a€I) i s a f a m i l y i n f(M) w i t h U ( Ual a € I ) = U € fCM) a n d i f (Vpl3€J) € C o vM( U ) i s a r e f i n e m e n t o f ( Ual a € I ) { i . e . t h e r e e x i s t s a map A : J-» I w i t h V ^ c u ^ ^ ^or ever^ 3 € J} , t h e n

( Ual a € I ) € C o vM( U ) .

v i i i ) I f U € f ( M ) , (U l a € I ) 6 C o vM( U ) and i f V i s a s u b s e t o f U w i t h a M

V n Ua € T(M) f o r e v e r y a € I , t h e n V € f (M) [and t h u s , by (v) , (V n U l o c € I ) i s an a d m i s s i b l e c o v e r i n g o f V] .

Comments.

a) We u s u a l l y j u s t w r i t e "M" f o r t h e t r i p l e (M, T(M) , Cov^) . A g e n e r a - l i z e d t o p o l o g i c a l space M i s a ( r a t h e r s p e c i a l ) example o f a s i t e i n t h e s e n s e o f G r o t h e n d i e c k . Thus we have G r o t h e n d i e c k ' s t h e o r y o f

s h e a v e s o v e r such spaces M a t o u r d i s p o s a l , c f . [ A ] , [SGA4, Exp. I I ] . L e t u s r e c a l l t h e n o t i o n o f an ( a b e l i a n ) s h e a f h e r e i n o u r s p e c i a l s i t u a t i o n . A p r e s h e a f ? on M i s an a s s i g n m e n t Uv+^U) o f an a b e l i a n g r o u p ^(U) t o e v e r y U G CT(M) e q u i p p e d w i t h a r e s t r i c t i o n homomorphism r ^ : T(U) -> ^(V) f o r e v e r y p a i r o f open s e t s U,V w i t h V c U s u c h t h a t r ^ = i d and r X ° r ^ = rr^ f o r U D V D W . A p r e s h e a f T i s a s h e a f i f i n

U W V W

a d d i t i o n f o r any a d m i s s i b l e c o v e r i n g ( U ^ l a E I ) o f any U € T(M), t h e u s u a l sequence

o - T ( u ) - TT7(\J) Z 1 r T ( u n u J

<x€I ( a, 3) € I x i a 1 3

(20)

i s e x a c t . Thus a s h e a f i s v e r y much the same n o t i o n as f o r u s u a l t o - p o l o g i c a l s p a c e s , e x c e p t t h a t now o n l y s e t s i n T(M) a r e a l l o w e d as open s e t s and o n l y a d m i s s i b l e c o v e r i n g s a r e a l l o w e d as open c o v e r i n g s . b) The l a s t two axioms ( v i i ) and ( v i i i ) i n the d e f i n i t i o n o f a gene- r a l i z e d t o p o l o g i c a l space a r e l e s s s u b s t a n t i a l t h a n the o t h e r s . Axiom ( v i i ) i s j u s t a t e c h n i c a l d e v i c e t o make f o r m a l arguments smoother. N o t i c e t h a t i f axioms ( i ) - ( v i ) a r e f u l f i l l e d , then by e n r i c h i n g t h e s e t s C o vM( U ) , U € T(M), by a l l f a m i l i e s (U |a€I) i n ?(M) which have t h e u n i o n U and w h i c h admit r e f i n e m e n t s l y i n g i n C o v ^ d J ) , we o b t a i n a new s i t e (M,?(M),Cov^) w h i c h f u l f i l l s ( i ) - ( v i i ) and which has t h e same sheaves as t h e o r i g i n a l s i t e (M, (M) , C o vM) . The r o l e o f axiom ( v i i i ) i s more s u b t l e and w i l l be d i s c u s s e d a t t h e end o f t h i s s e c t i o n .

From now on R d e n o t e s a f i x e d r e a l c l o s e d f i e l d .

D e f i n i t i o n 2 . A r i n g e d space o v e r R i s a p a i r (M,0 ) c o n s i s t i n g o f a g e n e r a l i z e d t o p o l o g i c a l space M and a sheaf 0?^ o f commutative R- a l g e b r a s . A morphism (cp,*f) : (M,C?M) -* ( N , ©N) between r i n g e d s p a c e s

(M,#M) and (N,C?N) o v e r R i s d e f i n e d i n t h e o b v i o u s way: cp i s a c o n - t i n u o u s map from M t o N, i . e . e v e r y open s e t V i n N has an open p r e -

-1 -1 image cp (V) and f o r e v e r y (V la€I) e C o vN( V ) the f a m i l y (cp ( Va) l a € I )

i s an a d m i s s i b l e c o v e r i n g o f cp"1 (V) . The second component 3 i s a I s o - morphism from t h e s h e a f (0^ t o t h e sheaf t P * ^ r e s p e c t i n g the R - a l g e - b r a s t r u c t u r e s . In o t h e r words, f o r any open s e t s U i n M and V i n N with cp(U) czv we have an R - a l g e b r a homomorphism

* U, V!VV> - < V ° >

with the u s u a l c o m p a t i b i l i t i e s w i t h r e s p e c t t o the r e s t r i c t i o n maps.

(21)

Example. L e t M be a s e m i a l g e b r a i c space o v e r R as d e f i n e d i n [DI^,

§ 7 ] . Choose f o r 7(M) t h e s e t ?(M) o f a l l open s e m i a l g e b r a i c s u b s e t s o f M, and f o r U G f(M) d e f i n e t h e s e t C o vM( U ) t o be t h e s e t o f a l l f a m i l i e s ( L L l i G I ) i n f(M) such t h a t t h e u n i o n U ( u \ | i € I ) = U and s u c h t h a t f i n i t e l y many U ^ i € 1 , a l r e a d y c o v e r U.

The axioms ( i ) - ( v i i i ) a r e c l e a r l y f u l f i l l e d . Thus M i s a g e n e r a - l i z e d t o p o l o g i c a l s p a c e . (N.B. In t h i s way e v e r y " r e s t r i c t e d t o p o - l o g i c a l space", as d e f i n e d i n [DK>, § 7 ] , can be r e g a r d e d as a gene- r a l i z e d t o p o l o g i c a l s p a c e ) . The sheaves on t h i s g e n e r a l i z e d t o p o l o - g i c a l space M a r e t h e same as t h e sheaves on t h e " r e s t r i c t e d t o p o l o - g i c a l space" M c o n s i d e r e d i n [DI<2,§7]. In p a r t i c u l a r on M t h e r e i s a s h e a f C?M o f R - a l g e b r a s d e f i n e d as f o l l o w s : I f U € flM) , t h e n #M(U) i s the R - a l g e b r a o f s e m i a l g e b r a i c f u n c t i o n s f:U R. F o r open s e m i a l - g e b r a i c s e t s V c U t h e r e s t r i c t i o n map r^r from (5> (U) t o (V) i s the

r V M M

o b v i o u s r e s t r i c t i o n o f f u n c t i o n s f »-> f | v . T h i s r i n q e d space (M,#M) o v e r R i s r e a l l y t h e same o b j e c t as t h e s e m i a l g e b r a i c space M and w i l l be i d e n t i f i e d w i t h i t .

I f (M,<^) i s a r i n g e d space o v e r R t h e n f o r any U £ 7(M) we o b t a i n

"by r e s t r i c t i o n " a r i n q e d space (U,^|U) o v e r R as f o l l o w s : cr(U) c o n s i s t s o f a l l V G tf(M) w i t h V c U . Cov^ c o n s i s t s o f a l l f a m i l i e s

(V laGI) £ Cov., w i t h V c ( ] f o r e v e r y aGI, and C?|TJ i s t h e r e s t r i c t i o n

a M a J M

o f t h e sheaf C? t o U, i . e . (C? |U)(V) = ® ^ (V) f o r e v e r y V G 7(U) .

M M M

These r i n g e d s p a c e s (U,0MIU) a r e c a l l e d t h e open s u b s p a c e s o f (M,0 ).

An open s u b s e t U o f M i s c a l l e d an open s e m i a l g e b r a i c s u b s e t i f (U,0MIU!

i s a s e m i a l g e b r a i c space o v e r R, as d e f i n e d i n t h e example above.

D e f i n i t i o n 3. A l o c a l l y s e m i a l g e b r a i c space o v e r R i s a r i n g e d space (M,C>M) o v e r R w h i c h p o s s e s s e s an a d m i s s i b l e c o v e r i n g (M^laGI) ECov^'M) such t h a t a l l M a r e open s e m i a l g e b r a i c s u b s e t s o f M.

(22)

L e t us l o o k a t t h e s e d e f i n i t i o n s more c l o s e l y . Assume t h a t (M,C?^) i s a l O ' C a l l y s e m i a l g e b r a i c space and t h a t (M^lcxEI) i s an a d m i s s i b l e c o - v e r i n g o f M by open s e m i a l a e b r a i c s u b s e t s M^. What a r e the o t h e r open s e m i a l g e b r a i c s u b s e t s o f M? C l e a r l y; i f U € f(M) i s s e m i a l g e b r a i c , t h e n

( U H M ^ I a E I ) i s an a d m i s s i b l e c o v e r i n g o f the s e m i a l g e b r a i c space U, and t h u s U i s c o n t a i n e d i n the u n i o n o f f i n i t e l y many s e t s M^. Con- v e r s e l y i f U € 7(H) and UcMot^ U ... U M0 r f o r f i n i t e l y many i n d i c e s

, ..., ar € I t h e n t h e s e t Ma^ U ... U Ma r = W i s open s e m i a l g e b r a i c i n M by t h e v e r y d e f i n i t i o n o f s e m i a l c r e b r a i c s p a c e s . Moreover U £ T(W) . T h u s (U,C?M|U) i s a l s o a s e m i a l g e b r a i c s p a c e . The open s e m i a l g e b r a i c s u b s e t s o f M a r e p r e c i s e l y t h o s e s e t s U € f(M) which a r e c o n t a i n e d i n t h e u n i o n o f f i n i t e l y many s e t s M . We w i l l h e n c e f o r t h d e n o t e t h e s u b s e t o f ^?(M) c o n s i s t i n g o f a l l open s e m i a l g e b r a i c s u b s e t s o f M by

T(M) . N o t i c e t h a t ?-(M) = f(M) i f and o n l y i f M i t s e l f i s s e m i a l g e b r a i c .

We c l e a r l y have t h e f o l l o w i n g r e l a t i o n s between the s e t s r(M) and CT(M) .

a) A s u b s e t W o f M b e l o n g s t o IT(M) i f and o n l y i f f o r e v e r y

( U}I A € A ) € C o vM( U ) , U € f(M) , a l l the i n t e r s e c t i o n s W D a r e e l e m e n t s o f ?(M) and W flU i s c o v e r e d by f i n i t e l y many s e t s W D .

b) A s u b s e t U o f M b e l o n g s t o f(M) i f and o n l y i f U PI W € y-(M) f o r e v e r y W€ f(M) . A l s o U € f(M) i f and o n l y i f U O M ^ fi(M) f o r e v e r y a € I .

I t i s a l s o an e a s y consequence o f our d e f i n i t i o n s , i n p a r t i c u l a r o f the axioms v i ) , v i i ) , v i i i ) i n D e f i n i t i o n 1 , t h a t T(M) d e t e r m i n e s the s e t Cov^ i n t h e f o l l o w i n g way:

c) A f a m i l y ( U ^ I A € A ) i n T'(M) b e l o n g s t o Cov^ i f and o n l y i f f o r e v e r y W € T(M) the i n t e r s e c t i o n W D U o f Wwith the u n i o n U o f the f a m i l y i s c o v e r e d by f i n i t e l y many s e t s W D U^,AGA. In f a c t , i t s u f f i c e s t h a t f o r e v e r y a € l t h e i n t e r s e c t i o n n U i s c o v e r e d by f i n i t e l y many s e t s M n u > , A € A .

(23)

D e f i n i t i o n 4. A f a m i l y ( X^ | A € A ) o f s u b s e t s o f M i s c a l l e d l o c a l l y f i n i t e i f any W€ s{M) meets o n l y f i n i t e l y many X^, i n o t h e r w o r d s „ i f W n X^ * 0 f o r o n l y f i n i t e l y many A € A . A g a i n i t i s o n l y n e c e s s a r y t o c h e c k t h a t , f o r e v e r y a € I , t h e s e t Ma meets o n l y f i n i t e l y many .

As a s p e c i a l c a s e o f o u r o b s e r v a t i o n ( c ) , we have

P r o p o s i t i o n 1 . 1 . E v e r y l o c a l l y f i n i t e f a m i l y i n T(M) i s an e l e m e n t o f Cov^. I n p a r t i c u l a r , t h e u n i o n o f t h i s f a m i l y i s an e l e m e n t o f T(M) .

F o r e v e r y x € M, t h e s t a l k ^ i s a l o c a l r i n g and t h e n a t u r a l map from R t o t h e r e s i d u e c l a s s f i e l d 0 /+* o f (9„ i s an i s o m o r p h i s m .

M,x M,x M,x

Indeed, t h i s i s known t o be t r u e f o r a l l t h e s e m i a l g e b r a i c s p a c e s ( Ma,<0Ml Ma) and t h u s a l s o h o l d s f o r ( M , ©M) . We i d e n t i f y ©M X/ * *M x w i t h t h e f i e l d R. I f U 6 f(M) and f GO (U) t h e n f y i e l d s an R - v a l u e d f u n c t i o n f : U -> R, which maps e v e r y x C U t o t h e n a t u r a l image o f f i n

©M xAl'M x« T n e e l e m e n t f € ©M( U ) i s u n i q u e l y d e t e r m i n e d by t h i s f u n c - t i o n f , s i n c e t h e c o r r e s p o n d i n g f a c t i s known t o be t r u e f o r a l l t h e r e s t r i c t i o n s r^J p M ( f ) € ( 9M( u n Ma) o f f . We i d e n t i f y f w i t h f . Thus

a

we r e g a r d a s a s u b s h e a f o f t h e s h e a f o f a l l R - v a l u e d f u n c t i o n s on M. I n p a r t i c u l a r t h e r e s t r i c t i o n maps r ^ : ®M( U ) -><9M(V) a r e now t h e n a i v e r e s t r i c t i o n maps f »->f|v f o r f u n c t i o n s . From now on we w i l l c a l l t h e e l e m e n t s o f ^M( U ) t h e l o c a l l y s e m i a l g e b r a i c f u n c t i o n s on U

( w i t h r e s p e c t t o M). N o t i c e t h a t , i n t h e s p e c i a l c a s e where U i s a s e m i a l g e b r a i c open s u b s e t o f M, t h e s e f u n c t i o n s a r e j u s t t h e s e m i - a l g e b r a i c f u n c t i o n s on t h e s e m i a l g e b r a i c s p a c e ( U , ©MI U ) . Thus i n t h i s c a s e t h e f CO^(\J) w i l l a l s o be d e s i g n a t e d as t h e " s e m i a l g e b r a i c f u n c - t i o n s o n U" .

Now l e t (N,0N) be a s e c o n d l o c a l l y s e m i a l g e b r a i c s p a c e o v e r R.

(24)

D e f i n i t i o n 5. A l o c a l l y s e m i a l g e b r a i c map from (M,^) t o (N,£>N) i s a m o r p h i s m ( f : (M,e?M) (N,#N) i n the c a t e g o r y o f r i n g e d s p a c e s o v e r R ( c f . D e f . 2 a b o v e ) .

The f o l l o w i n g theorem i s known f o r s e m i a l g e b r a i c s p a c e s [DK2,Th.7.2]

and e x t e n d s i m m e d i a t e l y t o l o c a l l y s e m i a l g e b r a i c s p a c e s .

Theorem 1.2. L e t ( f , J) : (M, 6?M) -> (N,O^) be a l o c a l l y s e m i a l g e b r a i c map. F o r any open s e t s U and V o f M and N w i t h f (U) c V and any h e e ?N( V ) we have

v( h ) (x) = h ( f (x) ) f o r a l l x € U.

Thus (f,?) i s d e t e r m i n e d by i t s f i r s t component f and w i l l hence- f o r t h be i d e n t i f i e d w i t h t h e map f from t h e s e t M t o t h e s e t N. C l e a r l y a map f:M -* N i s l o c a l l y s e m i a l g e b r a i c i f and o n l y i f f i s c o n t i n u o u s ( c f . Def. 2 a b o v e ) , and i f f o r e v e r y U € 'f(N) and e v e r y h € #N( U ) t h e

_ i

f u n c t i o n h * f i s l o c a l l y s e m i a l g e b r a i c on f (U). N o t i c e t h a t , i n c a s e M and N a r e s e m i a l g e b r a i c s p a c e s , t h e l o c a l l y s e m i a l g e b r a i c maps from M t o N a r e j u s t the s e m i a l g e b r a i c maps from M t o N as d e f i n e d i n [DK2,§7], I n g e n e r a l t h e f o l l o w i n g P r o p o s i t i o n 1.3 g i v e s a good h o l d on l o c a l l y s e m i a l g e b r a i c maps i n terms o f s e m i a l g e b r a i c maps.

N o t i c e t h a t f o r e v e r y c o n t i n u o u s map f:M -> N and e v e r y a d m i s s i b l e c o v e r i n g (N^|p€J) o f N by open s e m i a l g e b r a i c s e t s t h e r e c e r t a i n l y e x i s t s a c o v e r i n g (M^jaCI) o f M w i t h t h e p r o p e r t i e s needed i n t h e p r o p o s i t i o n .

P r o p o s i t i o n 1.3. L e t f:M N be a ( s e t t h e o r e t i c a l ) map. L e t ( Mal a € I ) and (NplftCJ) be a d m i s s i b l e c o v e r i n g s o f M and N by open s e m i a l g e b r a i c s u b s e t s . Assume t h a t t h e r e i s a map y: I -» J such t h a t f {M^) cNp (a) f o r e v e r y a € I . Then f i s l o c a l l y s e m i a l g e b r a i c i f and o n l y i f t h e

(25)

r e s t r i c t i o n f l M :M ->N , , o f f t o M i s a s e m i a l g e b r a i c mao f o r a a y ( a ) a ^ e v e r y a E I .

P r o o f . The " o n l y i f " d i r e c t i o n i s o b v i o u s . So assume t h a t f l M : M_ -»N , * i s s e m i a l g e b r a i c f o r a l l ot€I. L e t U E t?(N) . Then f o r e v e r y aEI

f -1( U ) n Ma = f "1( Ny(a) n u ) n Ma = ( f l M , , ) -1^ ^ n u )

i s an open s e m i a l g e b r a i c s u b s e t o f M . Hence, by axiom ( v i i i ) i n De- f i n i t i o n 1, f ~1( U ) E 7(M). L e t now (U^IAEA) be an a d m i s s i b l e c o v e r i n g o f U E 'f(N) . Then f o r e v e r y a£I

( f ~1 (Ux) fl MaIXEA) = ( (f l Ma) "1 ( Ux fl Ny(a) ) I AEA)

i s an a d m i s s i b l e c o v e r i n g o f f ~1 (U) 0 Ma = (f i MQ) "1 (U fl (q }), i . e . i t p o s s e s s e s a f i n i t e r e f i n e m e n t . We c o n c l u d e t h a t (f 1( U ^ ) I A E A ) i s an

_ i

a d m i s s i b l e c o v e r i n g o f f ( U ) . Thus f i s c o n t i n u o u s . F o r a g i v e n f u n c t i o n h E <^(U) a l l t h e r e s t r i c t i o n s h l U D N ,&€J, a r e s e m i a l g e b r a i c f u n c t i o n s . S i n c e t h e maps f l M a : M a -* Ny (a)a r e s e m i a l g e b r a i c we see t h a t a l l t h e f u n c t i o n s h * f | f ~1( U ) flM ,a€I, a r e s e m i a l g e b r a i c . Thus h - f E e? (f""1u) .

q.e.d.

C o r o l l a r y 1.4. L e t (M,e? ) be a l o c a l l y s e m i a l g e b r a i c space over R and U an open s u b s e t o f M. Then t h e l o c a l l y s e m i a l g e b r a i c maps from U t o t h e s e m i a l g e b r a i c s t a n d a r d space (R,(?_) a r e j u s t t h e f u n c t i o n s f € ©M( U ) .

T h i s i s e v i d e n t from P r o p o s i t i o n 1.3 and t h e c o r r e s p o n d i n g f a c t f o r s e m i a l g e b r a i c s p a c e s . S i m i l a r l y , t h e l o c a l l y s e m i a l g e b r a i c maps from

(M,C?M) t o t h e s e m i a l g e b r a i c space ( Rn, 0R n) (n > 1) a r e t h e n - t u p l e s (f<l' •••/ fn) o f l o c a l l y s e m i a l g e b r a i c f u n c t i o n s f . , f on M.

(26)

C o r o l l a r y 1.5, L e t (M,£>M) be a s e m i a l g e b r a i c space and (N,ct?N) a l o - c a l l y s e m i a l g e b r a i c space o v e r R. L e t (N^I3GJ) be an a d m i s s i b l e c o - v e r i n g o f N by open s e m i a l g e b r a i c s u b s e t s . Then a map f:M -> N i s l o - c a l l y s e m i a l g e b r a i c i f and o n l y i f t h e r e e x i s t s a f i n i t e s u b s e t J ' o f J such t h a t f(M) i s c o n t a i n e d i n t h e u n i o n N1 o f t h e s e t s w i t h

3EJ' and the map f from M t o t h e open s e m i a l g e b r a i c subspace N' o f N i s s e m i a l g e b r a i c .

A g a i n t h i s i s e v i d e n t from P r o p o s i t i o n 1.3. We w i l l o f t e n c a l l t h e l o c a l l y s e m i a l g e b r a i c maps from a s e m i a l g e b r a i c space (M,C^) t o a l o c a l l y s e m i a l g e b r a i c space (N,C>N) t h e " s e m i a l g e b r a i c maps from

(M,C?M) t o (N,fl>N)"

We a r e ready f o r a d i s c u s s i o n o f axiom ( v i i i ) i n t h e d e f i n i t i o n o f a g e n e r a l i z e d t o p o l o g i c a l space (Def. 1 ) . We have seen i n t h e p r o o f o f P r o p o s i t i o n 1.3 t h a t t h i s axiom i s i m p o r t a n t t o o b t a i n a s l i c k d e s c r i p t i o n o f l o c a l l y s e m i a l g e b r a i c maps i n terms o f s e m i a l g e b r a i c maps and spaces. On t h e o t h e r hand one may v e r i f y t h e f o l l o w i n q ob- s e r v a t i o n c o n c e r n i n g o u r d e f i n i t i o n . Assume we had d e f i n e d l o c a l l y s e m i a l g e b r a i c s p a c e s u s i n g axioms ( i ) - ( v i i ) o m i t t i n g ( v i i i ) , and t h a t (M, # ( M ) , C o vM, ® ) were a l o c a l l y s e m i a l g e b r a i c space i n t h i s new s e n s e . Then we c o u l d o b t a i n a l o c a l l y s e m i a l g e b r a i c space

(M, f* (M),Cov^,C^) i n t h e o l d sense as f o l l o w s . L e t f(M) be t h e s e t of a l l U £ f(M) such t h a t e v e r y (U lcc€I) € C o vM( U ) has a f i n i t e r e f i n e - ment. D e f i n e 'f1 (M) as t h e s e t o f a l l U c M w i t h U H W € f(M) f o r e v e r y W 6 j-(M) , and d e f i n e Cov^ as t h e s e t o f a l l f a m i l i e s (Ual<x€I) i n f (M) such t h a t the u n i o n U o f t h e Ua i s an e l e m e n t o f *f' (M), and such t h a t f o r e v e r y W€ r(M) t h e s e t U flW c a n be c o v e r e d by f i n i t e l y many U . Then (M, 5* (M),Cov^) f u l f i l l s a l l t h e axioms ( i ) - ( v i i i ) . Moreover, e v e r y sheaf ^ on t h e s i t e (M, f (M),CovM) e x t e n d s u n i q u e l y t o a s h e a f 7' on t h e new s i t e (M, f ' (M) ,Cov^) . C l e a r l y (M, tf1 (M) , C o v ^ , ^ ) | w

(27)

= (M, Cf(M) ,Cov^, O ) |w f o r e v e r y W€ ^(M) , and t h e s e spaces a r e s e m i a l - g e b r a i c . In p a r t i c u l a r (M,'J1 (M) , C o v ^ , ^ ) i s l o c a l l y s e m i a l g e b r a i c i n t h e o l d s e n s e .

Thus, d e s p i t e i t s i m p o r t a n c e , t h e axiom ( v i i i ) s h o u l d be r e g a r d e d as an axiom which does not r e s t r i c t the g e n e r a l i t y o f our c o n c e p t o f l o - c a l l y s e m i a l g e b r a i c s p a c e s .

Referenzen

ÄHNLICHE DOKUMENTE

This illustrated edition of the Universal Declaration of Human Rights (UDHR) is published by the United Nations in Arabic, Chinese, English, French, Russian, and Spanish..

During AMO+/ENSO+ events see Table 1, years indicated in bold both sub-continental indices of Drought index and burnt area across boreal regions of western North America.. This

We suggest that this adjusted and further adaptable metric, which included the organic carbon concentration (SOC) in the upper 20 cm of the soil (including the

Our observed phenological shifts in spring green-up are a likely underlying mechanism for the observed individual plant increases in biomass in warmed plots, as individuals may

The increase in nutrient concentrations for both total and dissolved nutrients created by moose disturbance was not significantly different for P nor N from the effect size created

These images are analysed to determine the relative percentages of snow covered ice, new ice and open water, to deter- mine fracture patterns in newly formed leads (relevant to

We highlight the need for a systems approach, in assessing options and developing policy for forest bioenergy, that: 1 considers the whole life cycle of bioenergy systems,

Enables the 82596 to receive multiple individual address frames using the same hashing mechanism as used for multicast address filtering. A list of addresses may be specified with