• Keine Ergebnisse gefunden

Reconfiguration of DNA methylation in aging

N/A
N/A
Protected

Academic year: 2022

Aktie "Reconfiguration of DNA methylation in aging"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

MechanismsofAgeingandDevelopment151(2015)60–70

ContentslistsavailableatScienceDirect

Mechanisms of Ageing and Development

j o ur na l h o me p a g e:w w w . e l s e v i e r . c o m / l o c a te / m e c h a g e d e v

Reconfiguration of DNA methylation in aging

Michele Zampieri

a,b,1

, Fabio Ciccarone

a,b,1

, Roberta Calabrese

a,b

, Claudio Franceschi

c

, Alexander Bürkle

d

, Paola Caiafa

a,b,∗

aDepartmentofCellularBiotechnologiesandHematology,“Sapienza”UniversityofRome,Rome00161,Italy

bPasteurInstitute-FondazioneCenciBolognetti,Rome00161,Italy

cDepartmentofExperimentalPathology,AlmaMaterStudiorum,UniversityofBologna,Bologna40126,Italy

dMolecularToxicologyGroup,DepartmentofBiology,UniversityofKonstanz,KonstanzD-78457,Germany

a r t i c l e i n f o

Articlehistory:

Availableonline20February2015

Keywords:

DNAmethylation Aging

Epigeneticreprogramming 5-Methylcytosine 5-Hydroxymethylcytosine

a b s t r a c t

Acomplexinterplaybetweenmultiplebiologicaleffectsshapestheagingprocess.Theadventofgenome- widequantitativeapproachesintheepigeneticfieldhashighlightedtheeffectiveimpactofepigenetic deregulation,particularlyofDNAmethylation,onaging.Age-associatedalterationsinDNAmethyla- tionarecommonlygroupedinthephenomenonknownas“epigeneticdrift”whichischaracterized bygradual extensive demethylation of genome and hypermethylation of a number of promoter- associatedCpGislands.Surprisingly,specificDNAregionsshowdirectionalepigeneticchangesinaged individualssuggestingtheimportanceoftheseeventsfortheagingprocess.However,theepigenetic informationobtaineduntilnowinagingneedsare-considerationduetotherecentdiscoveryof5- hydroxymethylcytosine,anewDNAepigeneticmarkpresentongenome.Arecapitulationofthefactors involvedintheregulationofDNAmethylationandthechangesoccurringinagingwillbedescribedin thisreviewalsoconsideringthedataavailableon5hmC.

©2015TheAuthors.PublishedbyElsevierIrelandLtd.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction... 61

2. GenomicDNAmethylationpatterns... 61

2.1. DNArepetitiveelements... 61

2.2. CpGislands... 61

3. IntroductionandremovalofDNAmethylationmark... 62

3.1. EstablishmentandmaintenanceofDNAmethylationpatterns... 62

3.2. DNAdemethylation... 62

4. EffectsofenvironmentalexposureandlifestyleonDNAmethylation... 62

4.1. SAM/SAHratio... 62

4.2. DNMTregulation... 63

5. ChangesofDNAmethylationpatternsinaging... 64

5.1. DNAhypomethylationevents... 64

5.2. DNAhypermethylationevents... 66

Abbreviations: DNMTs,DNAmethyltransferases;SAM,S-adenosyl-methionine;CGIs,CpGislands;5mC,5-methylcytosine;LTR,long-terminalrepeat;LINE,longinter- spersednuclearelement;SINE,shortinterspersednuclearelement;DMRs,differentiallymethylatedregions;5hmC,5-hydroxymethylcytosine;TET,ten-eleventranslocation;

5fC,5-formylcytosine;5caC,5-carboxylcytosine;BER,baseexcisionrepair;SAH,S-adenosylhomocysteine;ROS,reactiveoxygenspecies;WGBS,whole-genomebisulfite sequencing.

Correspondingauthorat:DepartmentofCellularBiotechnologiesandHematology,“Sapienza”UniversityofRome,Rome00161,Italy.Tel.:+39649976530;

fax:+39644231961.

E-mailaddress:caiafa@bce.uniroma1.it(P.Caiafa).

1 Theseauthorscontributedequallytothiswork.

http://dx.doi.org/10.1016/j.mad.2015.02.002

0047-6374/©2015TheAuthors.PublishedbyElsevierIrelandLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-312460 Erschienen in: Mechanisms of Ageing and Development ; 151 (2015). - S. 60-70

https://dx.doi.org/10.1016/j.mad.2015.02.002

(2)

6. 5hmCandaging ... 66

7. Conclusionsandperspectives... 67

Acknowledgements... 67

References... 67

1. Introduction

Longevityisnotuniformthroughouthumansanditislargely influencedbyenvironmentandlifestylechoices.Thereisanover- whelmingscientificconsensusthatdirectionalepigeneticchanges contributetoagingandalterthelifespan(Huidobroetal.,2013;

Issa,2014;VlamingandvanLeeuwen,2012).Infact,onlyabout 20–30% of humanlifespan seemsto be attributable togenetic effects,whichimpliesthatthemajorpartofthevariationisdue tonon-geneticfactors(Herskindetal.,1996;Mitchelletal.,2001;

Poulsenetal.,2007).Itisbecomingincreasinglyclearthatsome aging-associated diseases have an epigenetic origin (Huidobro etal.,2013;Issa,2014;VlamingandvanLeeuwen,2012).Undoubt- edly, consideringthatepigenetic regulationis indispensablefor many aspectsof genomefunctions,the alterationof epigenetic landscapescouldpotentiallyaccount forthecomplex natureof aging by explaining theperturbation of themultitude of gene families andcellularpathwaysthat areknowntocontributeto thisprocess(DeCarvalhoetal.,2010;Kirkwood,2005).Therefore, expectationsarerunninghighforinsightsintotheepigeneticbasis oftheagingprocess.

2. GenomicDNAmethylationpatterns

DNAmethylationisthefirstepigeneticmodificationidentified onDNA.TheenzymesdeputedtotheDNAmethylationreaction belongtothefamilyoftheDNAmethyltransferases(DNMTs)which introduceontotheC5positionofcytosineresidueamethylgroup derivingfromS-adenosyl-methionine (SAM)(Fig.1A). In mam- mals,thethreeactiveDNMTenzymes,namelyDNMT1,DNMT3A andDNMT3B,preferentiallymodifycytosinefollowedbyagua- nineresidue,commonlyknownasCpGdinucleotide(Bird,2002;

Jurkowskaetal.,2011;MirandaandJones,2007;SuzukiandBird, 2008).However,inembryonicstemcellsmethylatedcytosinecan alsobepresentinnon-CpGpositions,mainlyinCpAcontext,thanks totheaction ofDNMT3A/3B enzymesinconcertwithDNMT3L (Arandetal.,2012;Zilleretal.,2011).

CpGdinucleotidedensityisgenerallylowinthebulkofgenome butlargelyincreasinginspecificregionsreferredtoasCpGislands

(CGIs). Notably, mammalian genome is dominated by methyl- atedDNAwhileCGIs,which accountforonly1–2%oftotal CpG dinucleotides,aregenerally depletedofDNAmethylation mark.

Methylatedcytosine,knownas5-methylcytosine(5mC),is con- sideredthefifthbaseofDNAduetoitsnon-randomdistribution ingenomewhichintroducesanepigeneticcode(Bird,2002;Jones andTakai,2001;SuzukiandBird,2008;TakaiandJones,2002).

2.1. DNArepetitiveelements

CpGmethylationofthebulkofgenomeassuresgenomicsta- bility through the control of DNA repetitiveelements, suchas interspersedandtandemrepeats,whichcompriseatleasthalfof thehumanDNA(JonesandTakai,2001;Landeretal.,2001).The interspersedrepeats,includinglong-terminalrepeats(LTR),long interspersednuclearelements(LINE),shortinterspersednuclear elements(SINE),areretrotransposableelementsmaintainedinac- tive through DNA methylation to avoid the risk of insertional mutagenesis (Robertson and Wolffe, 2000; Yoder et al., 1997).

Tandem repeats are present in centromeric, pericentromeric, andsubtelomericregionsandarealsoconstitutivelymethylated (Jurkowskaetal.,2011;SuzukiandBird,2008)(Fig.1B).DNAmeth- ylationof centromericregions hasbeendemonstrated toavoid centromererecombinationandabnormalcentromerelength(Jaco etal.,2008).Inthesameway,DNAmethylationisanimportant repressorofDNArecombinationattelomeresandanegativereg- ulatoroftelomerelength(Blasco,2007;Gonzaloetal.,2006).In addition,CpGmethylationisfundamentalfortheinactivationof the X chromosome and the establishment and maintenance of mono-allelicexpressionofimprintedgenes(ChaligneandHeard, 2014;Changetal.,2006;MirandaandJones,2007;Weaverand Bartolomei,2014).

2.2. CpGislands

CGIsareDNAregionsofmorethan500basepairscharacter- ized byat least 50% of GC content.60% of CGIsare associated withannotatedgenepromotersand areunmethylatedallowing thetranscriptionofthecorrelatedgene(Jones,2012;Suzukiand

Fig.1.DNAmethylationreactionandpatterns.A.Conversionofcytosine(C)to5mCbyDNMTenzymeswhichcatalyzethetransferofamethylgroup(CH3)fromSAMto the5-carbonpositionofcytosine.Oxidationof5mCandformationof5hmCbytheFe(II)and␣-ketoglutarate(␣-KG)-dependentTETenzymes.B.Schematicrepresentation ofDNAmethylationpatternsthroughoutachromosome,showingrepetitiveelementsandanexampleofgenewithCGI-promoter.Arrowsindicatetranscriptionstartsites, withbluecolorindicatingactivetranscription,whileredcolorindicatesrepressedtranscription.Whitecircles,unmethylatedCpGs;blackcircles,methylatedCpGs.(For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(3)

Bird,2008;TakaiandJones,2002).Onthecontrary,themethyl- ationstateofCpGdinucleotideslocalizedingenebodydoesnot affectgenetranscriptionbut probablyimpedestheactivationof alternativepromoters(Maunakeaetal.,2010).Theremaining40%

ofCGIsis localizedinintergenicandintragenicregionsand are definedas “orphan CGIs” becausetheyare notassociated with annotatedpromotersalthoughpresentingpromoter-likefeatures (Illingworthetal.,2010).Upto2KbdistantfrompromoterCGIs, particularregionscharacterizedbyalowerdensityofCpGs(around 1/10ofCGI)anddefinedasCGIshoresarealsoinvolvedinreg- ulationofgeneexpression.CGIshoresoftenoverlapwithtissue specific-differentiallymethylatedregions(DMRs)innormaltissues (Doietal.,2009;Irizarryetal.,2009)(Fig.1B).

3. IntroductionandremovalofDNAmethylationmark

DNA methylation patterns – characterized by widespread genomicmethylation punctuatedwithunmethylatedregulative regions,suchasCGIs–needtobepreserved.Thelossofthebulkof genomemethylationand/ortheintroductionofanomalousmethyl groupsontogenerallyunmethylatedregionsoccurphysiologically inagingbutalsoinseveralpathologicalstates(Bacalinietal.,2014;

Calabreseetal.,2012;KulisandEsteller,2010;Luetal.,2013).

3.1. EstablishmentandmaintenanceofDNAmethylationpatterns

Inmammals,DNAmethylationpatternsareestablishedduring embryonicdevelopmentafterawaveofgenome-widedemethyla- tionoccurringinpreimplantationembryosoonafterfertilization aimedatrestoring totipotency (Feng et al.,2010; Santoset al., 2002). A second wave of DNA demethylation followed by re- methylationoccurs duringgermline developmentin primordial germcells forthegenerationoftotipotentgameteswithproper specificgenomicimprints(Ciccaroneetal.,2012;Fengetal.,2010;

Hajkova,2011).TheestablishmentofDNAmethylationseemsto bepreferentiallydue totheaction ofthedenovoDNMT3Aand DNMT3Benzymes,alsoincooperationwithDNMT3Lasobserved ingametogenesisforimprintedgenesandrepetitiveelements(Jia etal.,2007;Katoetal.,2007).Onceintroduced,DNAmethylation patternsmustbemaintainedduringcelldivisioninordertopre- serve cellidentity.DNMT1 isconsidered themaintenance DNA methyltransferasebeingrecruitedduringreplicationontheneo- synthetizedDNAfilamentbyPCNAandUHRF1/NP95tocopythe methylationpatterns(Bosticketal.,2007;Jurkowskaetal.,2011;

Schneideretal.,2013).However,recentevidencehasclarifiedthat DNMT3AandDNMT3Barealsoinvolvedinmaintenanceofmeth- ylationpatternsacrossspecificDNAregionswhileDNMT1canalso functionasdenovomethyltransferase(Feltusetal.,2003;Jairetal., 2006;Liangetal.,2002;Sharmaetal.,2011).

TogetherwiththemaintenanceofDNAmethylationacrosscell division,thepreservationoftheunmethylatedstateofDNAregu- lativeregionsisalsonecessary.Inparticular,severalmechanisms have beenidentified for the control of unmethylatedCGIs and unmethylatedallelesof imprintedDMRs,suchasintrinsic DNA sequencesandstructures(Ginnoetal.,2012;Horietal.,2002),the presenceofepigeneticmarksassociatedwithactivechromatincon- formation(Jinetal.,2014;Ooietal.,2007;Williamsetal.,2011) andtheabilityofpost-translationalmodificationsandtranscrip- tionfactorstoavoidtheactionofDNMTenzymes(Brandeisetal., 1994;Ciccaroneetal.,2014;Fedoriwetal.,2004;Guastafierroetal., 2013;Zampierietal.,2012).

3.2. DNAdemethylation

FailureofDNAmethyltransferaseactionduringDNAreplication inducesa lossof 5mCmarkknownaspassiveDNA demethyla-

tionprocess(Fengetal.,2010;Jurkowskaetal.,2011).Multiple mechanismscanbeinvolvedinpassiveDNAdemethylationinclud- ingdown-regulationofDNMTenzymes(Odaetal.,2013;Reichard etal.,2007;Zampierietal.,2009),cytosoliclocalizationofDNMT (CardosoandLeonhardt,1999;Jurkowskaetal.,2011),impairment ofDNMTrecruitmentonDNA(Bosticketal.,2007;Odaetal.,2013), decreaseoftheDNMTsubstrateSAM(Ulreyetal.,2005),inhibition ofDNMTenzymaticactivity(Caiafaetal.,2009;Fangetal.,2007) (Fig.2A).

Onlyrecently,severalpieces ofevidence havesustainedthe existenceofmolecularmechanismsinvolvedintheactiveremoval of 5mC through the formation of 5-hydroxymethylcytosine (5hmC).5hmCis catalyzedby threeFe(II) and␣-ketoglutarate- dependentDNAhydroxylases,theten-eleventranslocation(TET) familyenzymes(Fig.1),anditisapivotalintermediateofactive DNA demethylation (Delatte et al., 2014; Pastor et al., 2013).

DNMT3AandDNMT3Barepossiblyabletoconvert5hmCdirectly intocytosine(Chenetal.,2012a),althoughmuchmoreevidence suggeststheneedoffurthermodificationsof5mCand5hmCin ordertotriggerDNAdamageresponseforthereintroductionof unmethylatedcytosynes(Pastoretal.,2013).Consistently,itera- tivemodificationsof5hmCbyTETproteinsinto5-formylcytosine (5fC)andthen5-carboxylcytosine(5caC)canbeactivelyremoved bythebaseexcisionrepair(BER)pathway(Hashimotoetal.,2012;

Itoetal.,2011).Anadditionalmechanism,althoughstillcontrover- sial,involvesthedeaminationof5mCand5hmCbythedeaminase enzymesAID/APOBEC(Hashimotoetal.,2012;Nabeletal.,2012;

Pastoretal.,2013)(Fig.2B).Notably,5hmCisnotrecognizedby DNMT1enzyme leadingalsoto apassive lossof 5mC.In addi- tion, 5fC and 5caC can undergo replication-dependent dilution (Inoueetal.,2011;Pastoretal.,2013;ValinluckandSowers,2007) (Fig.2A).

4. EffectsofenvironmentalexposureandlifestyleonDNA methylation

DNA methylation studies carried out on monozygotic twins highlightedthatgenomeofyoungpairsisepigeneticallysimilar whilethepatternsofagedonesareclearlydissimilar(Fragaetal., 2005).Notably,aging-associatedDNAmethylationchangesarepar- ticularlyevidentinmonozygotictwinswhohadspentalongperiod oftheirlivesapart,suggestingwhytheirmedicalhistoriesaredif- ferent(FeilandFraga,2012;Poulsenetal.,2007).DNAmethylation changescanbemediatedbyseveralextrinsicfactorsderivingfrom lifestyle,dietandenvironmentalexposure.

Factors that can positively or negatively affect lifespan are knowntoinfluenceDNAmethylationpatterns.Forexample,smok- ingattitudemayhavepro-agingeffectsinducingDNAmethylation changesofgenesinvolvedinage-associateddiseasessuchascar- diovascularpathologiesandcancer(BesingiandJohansson,2014;

Breitlingetal.,2011;LeeandPausova,2013;Noreenetal.,2014).

Onthecontrary,physicalactivity,antioxidantintakeandcaloric restrictionmayexertanti-agingactionalsobycounteractingdetri- mentalDNA methylationchanges(Fangetal., 2007;Ionsetal., 2013;LiandTollefsbol,2010;Miyamuraetal.,1993;Rönnetal., 2013).

Part of these factors influences DNA methylation patterns alteringtheavailabilityoftheDNMTcofactorSAMordirectlyinter- feringwiththeregulationofDNMTenzymes(Fangetal.,2007;Lee andPausova,2013;Martinez-ZamudioandHa,2011;Ulreyetal., 2005).

4.1. SAM/SAHratio

SAMis themethyldonorinthereactionof DNMTenzymes.

Asthefinal productofreactionistheS-adenosylhomocysteine

(4)

Fig.2.DNAdemethylationprocesses.A.MechanismsaffectingDNMTactionduringDNAreplicationandthusinducingpassiveDNAdemethylation.B.Mechanismsinvolved intheactiveremovalof5mCviaenzymaticmodificationsandactivationofDNArepairpathways.

(SAH),theSAM/SAHratioisfundamentalforproperDNAmethyl- ationreactionsandisguaranteedbytheefficiencyofone-carbon metabolismcomprisingenzymesinvolvedinthesynthesisofSAM, e.g.,methioninesynthase(MTR),andcatabolismofSAH,e.g.,cys- tathioninesynthase(CS).Inappropriateintakeofdietarymolecules involvedinSAM synthesisorSAHdegradation,suchasmethio- nine,choline,betaine,folicacid,B6andB12vitamins,caninfluence DNAmethylationpatterns(Ulreyetal.,2005).Moreover,several environmentalandnutritionalcompoundsarealsoabletoaffect SAM/SAHratiobybecomingmethylatedthemselves(e.g.,arsenic) (ReichardandPuga,2010)orbyinhibitingone-carbonmetabolism enzymes(e.g.,theeffectofalcoholonMTRenzyme)(Varela-Rey etal.,2013).

Arsenic is a common toxic environmental contaminant of water, soiland food.Apartfromubiquitouspresence inearth’s crust,humanactivities,mainlymassiveindustrialization,havecon- tributed to increase arsenic contamination (Sharma and Sohn, 2009). After entering the cells, arsenic undergoes methylation reactionbythearsenitemethyltransferase(AS3MT)enzymepro- ducingseveralmethylatedarseniccompounds(Kojimaetal.,2009).

Arsenicmethylationwasinitiallybelieved tobeadetoxification reaction(Gebel,2002),butmorerecentevidenceinvalidatedsuch anhypothesisshowinganincreasedtoxicityofspecificmethyl- ated intermediate metabolites (Kojima et al., 2009; Sun et al., 2014).ConsideringthatSAMisthemethyldonorcofactoralsofor arsenicmethylation,excessivearseniclevelsin acellcanlower theSAM/SAHratioinducingDNAhypomethylation(Reichardand Puga,2010).Besidesarsenic and othermetals suchas bismuth andselenium(Hirnerand Rettenmeier,2010), alsodietarycon- stituentscanundergoenzymaticmethylationinthecell.Thisis thecaseofcatecholstructure-containingcompoundssuchasthe mostabundantpolyphenolingreentea,the(−)-epigallocatechin- 3-gallate (EGCG), and the coffee polyphenols caffeic acid and

chlorogenicacid,which arereadilymethylatedbythecatechol- O-methyltransferase(COMT)(Fangetal.,2007;LeeandZhu,2006) (Fig.3).

CigarettesmokingisalsodeeplyinvolvedinalterationofDNA methylation patternsand it is an environmentalrisk factor for chronicdiseases(Leeand Pausova,2013;Zeilingeretal.,2013).

EventsofDNAhypomethylationcausedbycigarettesmokecanpar- tiallydependonarsenic,whichisoneofthecarcinogensderiving fromsmoking.Demethylationofspecificgeneshasbeensignif- icantlyassociatedwithcigarette smokingattitudesothatF2RL3 geneisconsideredapromisingbiomarkerofcurrentandlifetime smokingexposure(LeeandPausova,2013;Zhangetal.,2014).An associationbetweentobaccosmokingandanincreasedincidence ofaberrantpromotermethylationofthep16INK4AandMGMTgenes hasbeenalsodescribed(Liuetal.,2006).Itisinterestingthatthe samegeneshavebeenshowntoundergohypomethylationandre- expressionaftertreatmentwiththepolyphenolEGCG(Fangetal., 2003;LiandTollefsbol,2010)suggestingthatdifferentcompounds mayhavedifferentoutcomesonthemethylationstateofaspe- cificDNAlocus.Theseeventsarerelevantinthecaseofp16INK4A andMGMTconsideringthattheyarefrequentlyhypermethylated incancerbutalsoinaging(Liuetal.,2006;Matsubayashietal., 2005;Soetal.,2006)

4.2. DNMTregulation

Besides an indirect regulation of DNA methylation patterns through modulationof SAM pools,severalcompoundscan also directlyinfluencetheexpressionoractivityofDNMTs.Evidence ofacompetitiveinhibitionofDNMTactivityaffectingtheentryof cytosineintoactivesitehasbeendemonstratedforEGCG,curcumin andthesoy-beanisoflavongenistein(Fangetal.,2005,2003;Lee etal.,2005;Liuetal.,2009;Xieetal.,2014).Nutritional(e.g.,cur-

(5)

Fig.3. Environment,dietandlifestyleinfluenceDNAmethylation.NutritionalandenvironmentalcompoundsareabletoaffectDNAmethylationreactiondiminishing SAM/SAHratioorregulatingexpression,activity,recruitmentofDNMTenzymes.

cumin,alchol)andenvironmentalfactors(e.g.,arsenic,cadmium) havealsobeendemonstratedtoderegulatetheexpressionofDNMT geneswithunknownmechanismformostofthem.Accordingto timeanddoseofexposuretospecificcompounds,theeffectson DNAmethylationpatternscanvaryfromextensiveDNAhypometh- ylationtolocalizedhypermethylation(Martinez-ZamudioandHa, 2011;Reichardetal.,2007;Varela-Reyetal.,2013;Yuetal.,2013).

AmongthemechanismsabletoinduceDNAhypermethylation,the effectofDNAdamagemediatedbygenotoxicagentsandreactive oxygenspecies(ROS)hastobeconsidered.Accordingly,itiswell acceptedthatDNMTsarerecruitedtoDNArepairsitesinducing methylationofCpGsneighboringDNAbreaks(Cuozzoetal.,2007;

Moranoetal.,2014;Mortusewiczetal.,2005).Inthiscontext,sev- eralDNAdamagingcarcinogensalsopresentincigarettesmoking mayinduceaberrantDNAhypermethylation(Huangetal.,2013;

LeeandPausova,2013).Anindirectcontributiontothismecha- nismcanbemediatedbycadmium,aweakgenotoxiccarcinogen highlyaccumulatedintobaccoleaves(SatarugandMoore,2004).

Cadmiumexposurehasbeenassociatedwithhypermethylation- dependentsilencingofDNA repair enzymes(Zhou etal., 2012) andcadmiumcanalsocompetewithzincbindingofDNArepair enzymesdelayinginthiswaytheirturnover/activity(Faturetal., 2003;Lutzenetal.,2004)andpossiblyfavoringDNMTactionat DNAbreaks(Fig.3).

5. ChangesofDNAmethylationpatternsinaging

Severalstudiesfromthelastthreedecadeshaveclearlydemon- stratedthatchangesinDNAmethylationpatternsassociatewith chronologicalagingacrossnearlytheentirehumanlifespan(Alisch etal.,2012;Belletal.,2012;Bocklandtetal.,2011;Boksetal.,2009;

Bollatietal.,2009;Christensenetal.,2009;Florathetal.,2013;

Garagnanietal.,2012;Gentilinietal.,2013;Hannumetal.,2013;

Heynetal.,2012;McClayetal.,2014;Rakyanetal.,2010).This phenomenon,commonly defined as“epigenetic drift”,accounts fortheevidencethatepigeneticsimilaritiesbetweenyoungindi-

viduals are lost over time leading to divergent methylomes in elderlypopulation(Boksetal.,2009;Fragaetal.,2005;Heynetal., 2012).DNAmethylationdriftisanon-directionalchangeofmethy- lomeasitinvolvesbothhypermethylationandhypomethylation eventsandithasbeenassociatedwiththeprogressiveaccumu- lationof epigenetic damagedue toenvironmentalfactorsorto spontaneousstochastic errorsin theprocess of transmissionof theepigenetic information.Thisphenomenon leadstobasically unpredictabledifferences in the methylome among aging indi- viduals.Theseobservationsseemtodenythepossibilitythatthe driftmayreflectaprogrammedchangeofthemethylationcode.

However,partofmethylationchangesthatareobservedwithage involvespecificregionsofthegenomeandaredirectional.Infact, severalstudiesindicatetheexistenceof aging-associateddiffer- entiallymethylatedregions(a-DMRs),clustersofconsecutiveCpG siteswhichexhibitchangeovertime inthesamedirection.The existenceofa-DMRsindicatesthatpartofmethylationchangesis notstochastic,butinsteadtheycouldbeassociatedwithbiological mechanismscloselyinvolvedintheagingprocessorlongevity.

Most of the initial analyses in aging have been focused on candidateloci withpotentialrelevanceforage-related diseases.

Collectively,thesestudiesshowedthataging, similartocancer, associateswithgradualbutprofoundchangesinDNAmethylation where epigenomeis markedby genome-widehypomethylation togetherwithsite-specifichypermethylationpreferentiallyoccur- ringatCGIpromoters.Notably,althoughthefunctionalimportance of both events in aging progression and outcome remains to beascertained,theseobservationssupportthenotionthatthese changesmayconcomitantlycontributetodevelopmentofaging- associateddiseases.

5.1. DNAhypomethylationevents

GlobaldeclineofgenomicCpGmethylationisthepredominant eventin aging.Thischangeis widespreadasit typicallyoccurs atrepetitivesequencesdispersedthroughoutthegenomesuchas

(6)

Fig.4.Age-associatedchangesofDNAmethylome.SchematicrepresentationofDNAmethylationpatternsinyoung(A)vsolder(B)people.ThetoplinerepresentsDNA containingthreegenesandthreeclassesofinterspersedrepeats.Arrowsindicatetranscriptionstartsites,withbluecolorindicatingactivetranscription,whileredcolor indicatesrepressedtranscription.Exonsareshownindarkblue.EachbottomlinerepresentsthemethylationstateofDNAasdetectedforasingleindividual.White circles,unmethylatedCpGs;blackcircles,methylatedCpGs.Hypomethylatedandhypermethylatedaging-associatedDMRsarehighlightedinblueandred,respectively.(For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

SINEs(i.e.,Aluelements)andLTR(i.e.,HERV-K)(Bollatietal.,2009;

Christensenetal.,2009;JintaridthandMutirangura,2010).How- ever,age-relatedlossofmethylationdoesnotaffectrepetitiveDNA equally.HypomethylationofAluandHERV-Ksequencesoccursat differentageswhileitdoesnotaffectLINE-1repeatssignificantly (Fig.4)(Bollatietal.,2009;JintaridthandMutirangura,2010).It isreasonabletoassumethatthiseventaccountsfortheincreased genomeinstabilityobservedintheelderly(VijgandDolle,2007).

However,progressiveage-dependentlossofmethylationalsocon- cernsspecificgenepromoters,includingITGALandIL17RCwhose demethylation-dependenttranscriptionalactivationhasbeenpro- posedtotriggerautoimmuneresponses(Weietal.,2012;Zhang etal.,2002).

More recently, the application of novel next-generation sequencing technologies for genome-wide assessment of DNA methylation levels in aging research haspermitted the confir- mationof theseearlier observations. Studiesinvestigating DNA methylationonthewholehavebeenparticularlyinstructivefor DNA hypomethylationevents(Heyn et al.,2012; McClayet al., 2014).Infact,bywhole-genomebisulfitesequencing(WGBS),Heyn etal.(2012)comparedtheDNAmethylationstateofmorethan90%

ofallCpGspresentinthegenomebetweennewbornandnonage- narian/centenariansamples.AsignificantlossofmethylatedCpGs wasfoundinthecentenarianvsnewbornDNAs.Thiswasobserved for allchromosomes and concernedall genomiccompartments suchaspromoters,exonic,intronicandintergenicregions.Most ofthesechangeswerefocalandtheagedgenomewasthusless homogeneouslymethylatedwithrespecttothenewbornaccording totheage-dependentepigeneticdrift.

However, a part of methylation changes involved several neighboringCpGs.Amorerefinedsearchofdomainscontaining consecutiveCpGunitsshowingunidirectionalmethylationchanges actuallyrevealedthatabout2.2%oftotalgenomicCGsiteswere locatedinregionsthatweredifferentiallymethylatedinthecente-

narianwithrespecttothenewborn.Inagreementwithprevious observations,most oftheseDMRswere locatedinintronic and intergenic regionsand commonly colocalizedwithinterspersed repetitiveDNAelements.Interestingly,DMRsoftencorresponded tolaminaassociateddomains(LADs),wherecancer-specificmeth- ylation changes had been observed (Berman et al., 2011).The functionalsignificanceofLADs’hypomethylationincancerandin agingremainstobedefined.However,afar-reachingimpactofthis eventontheepigeneticregulationofgenomecanbeenvisaged.

Infact,theLADsdefinelargeheterochromatincompartmentsof thegenomewhichembedkeydevelopmentalandcell-typespe- cificgenesthataremaintainedinanepigeneticallyrepressedstate (Guelenetal.,2008;Harretal.,2015;Peric-Hupkesetal.,2010;

Reddyetal.,2008).Hence,aneventofhypomethylationofthese regionsmaycauseorreflectafault ofthemechanismsthatare centraltothedevelopmentandconservationofnormalstatesof differentiationandtissue-specificpatternsofgeneexpression.

Concerningregulatoryorcodingsequences,suchaspromoters and exons, onlyabout 20%of theDMRscolocalized withthese regions and more than 80% of them underwent hypomethyla- tionin theelderly.Thisevent,however, waslargelydependent on promoter CpG content being much more common in CpG- poor/tissue-specific gene promoters than in CGI/housekeeping genepromoters.Significantly,someoftheseDMRscolocalizedwith promotersofgenesinvolvedintheagingprocesssuchasSirtuins andIGFsignalingpathwaycomponents(Heynetal.,2012).

Recently,this findinghasbroadlybeenvalidatedin acohort of morethan 700individualsaged 25–92years. In fact,alsoin thiscase,agingwaspredominantlyfoundassociatedwithmeth- ylationdeficit.About60%ofage-associatedDMRsactuallyshowed age-relatedhypomethylationandcolocalizedwithbindingsitesfor chromatinregulatoryproteins,suchasCTCFand Polycombpro- teins,orspecifichistonemodificationstypicallyassociated with active chromatin (McClay et al., 2014). These findings indicate

(7)

thatage-relatedhypomethylationmayleadtoglobalchromatin changesofpotentialfunctionalrelevancefortranscriptionalregu- lation.

5.2. DNAhypermethylationevents

Besides extensive genome-wide hypomethylation, aging involvesaprogressivegainofDNAmethylationthatmarkstheloss ofexpressionofspecificgenes.Infact,themajorityofage-related hypermethylated sites corresponds to CGI-promoters, where methylation often correlates withsuppression of transcription.

Thisaspectis ofparticular interestasit conferstomethylation changes,which accompany aging,the featuresof an epigenetic reprogramming.

Drivenbytheaccidentalobservationthatcancer-relatedhyper- methylationoftheCGI-promoterofestrogenreceptor(ER)gene arisesasadirectfunctionofageinnormaltissues(Issaetal.,1994), themajorityofinitialinvestigationsintoCGImethylationinaging focusedonspecificgenesselectedonthebasisoftheirinvolve- mentinthepathogenesisofcancerorotherage-relateddiseases.

Thisstrategyhighlightedthatagingviolates,inatime-dependent manner,theunmethylatedstateofCGIsofgenesinvolvedintumor suppression(p16INK4A(Soetal.,2006),CHD1(Wakietal.,2003), RASSF1(Wakietal.,2003),LOX(Soetal.,2006),RUNX3(Soetal., 2006),N33(Ahujaetal.,1998)andTIG1(Soetal.,2006)),genome stabilityandrepair (hTERT(Silvaetal.,2008),MLH1(Nakagawa etal.,2001),MGMT(Matsubayashietal.,2005)andOGG(Madrigano etal., 2012)),metabolism (e.g., COX7A1 (Ronn etal., 2008) and CRAT(Madriganoetal.,2012)),differentiationandgrowth(MYOD1 (Ahuja et al.,1998), c-Fos (Choiet al., 1996), IGF-2 (Issa et al., 1996)), regulationofimmune response(INFG(Madrigano etal., 2012)), coagulation (F3 (Madrigano et al., 2012)) and connec- tivetissue homeostasis(CollagenI(Takatsu etal.,1999)).Taken together, these studies also suggested that physiological aging couldpredisposeonetoage-relatedpathologicalphenotypesvia amethylation-relatedgenesilencing.Itisinterestingtoobserve thathypermethylationinage-relateddiseasesaffectsessentially allCpGsites withina CGI, whereas themethylation pattern in physiologically-agednormalindividuals ispartialandheteroge- neous.Therefore,partialmethylationchangesaccumulatinginthe aginggenome maypredispose one tothedevelopmentof age- relateddisease,inwhichthemethylationchangesarethereafter aggravatedbyamethylationspreadingmechanism(Wongetal., 1999).Examplesofsuchaprecursor-productrelationshipofaging andage-relateddiseaseshavebeenproposedforprostate,bladder, coloncancersandAlzheimer’sdisease(Florletal.,2004;Neuhausen etal.,2006;Shenetal.,2005;Siegmundetal.,2007).

Later genome-wide investigations further confirmed that age-associated hypermethylation happens preferentially at CGI promoters(Alischetal.,2012;Belletal.,2012;Bocklandtetal., 2011;Christensenetal.,2009;Florathetal.,2013;Garagnanietal., 2012;Gentilinietal.,2013;Hannumetal.,2013;Heynetal.,2012;

McClayetal.,2014;Rakyanetal.,2010;XuandTaylor,2014).Of note,thischangedoesnotequallyimpactCGIshoreregions,which insteadundergosimilarproportionsofhyper-andhypomethyla- tionevents(Florathetal.,2013;McClayetal.,2014).

Althoughtheuseofarray-basedtechniquesfocusingmainlyon genepromotersandCGIsindicatedhypermethylationasprevalent eventinaging(Alischetal.,2012;Belletal.,2012;Bocklandtetal., 2011;Boksetal.,2009;Christensenetal.,2009;Florathetal.,2013;

Hannumetal.,2013;Rakyanetal.,2010;XuandTaylor,2014),age- associatedhypermethylationseemsaphenomenon ofrelatively lowmagnitude.Fewerthana hundredCpGshaveactuallybeen observedtomethylatewithageoveraboutatotalamountof37,000 CGIsinthehaploidhumangenome,confirmingthatCGIhyper- methylationinagingisrelativelyuncommon.Thisclearlyemerges

fromthestudiesthatinterrogatedthegenomeasawhole(Heyn etal.,2012;McClayetal.,2014).Forexample,astudybasedon WGBSshowedthatonlyabout13%ofageassociatedDMRswere hypermethylatedincentenarianscomparedtonewborns,thussug- gestingthathypomethylationispredominantinaging(Heynetal., 2012).

Despitethis, aging-associatedDMRsaremore likelytobein CGIsundergoingmethylationwithage(McClayetal.,2014).Consis- tently,hypermethylationfrequentlyoccursatgeneswithpotential relevance for age-related phenotypes/diseases including genes involvedindevelopment(protocadherins,homeoboxgenes)and signaling(MAPKpathways’members,ryanodinereceptors)asso- ciatedwithcancer,longevity,senescenceandneurodegeneration (Belletal.,2012;Hannumetal.,2013;McClayetal.,2014;Rakyan et al., 2010; Xu and Taylor, 2014). It is interesting toobserve that,althoughmostanalyseshavebeenperformedonbloodcells, hypermethylatedaging-relatedDMRsseemtobelargelyshared by multiple tissues (Horvath et al., 2012; Rakyan et al., 2010;

Teschendorffetal.,2010).ThissupportstheviewthatDNAmeth- ylationchangesdonotoccurrandomlyinthecontextofthehuman genomebutaredirectedtoregionssharingcommonfeatures.

Notably,age-associatedhypermethylatedDMRsin differenti- atedtissuesoftenoverlapwithpromotersofgenesthatinstemcells havebivalentchromatinmarks(H3K4me3andH3K27me3)andare targetofthepolycombrepressivecomplex2(PRC2)(Hannumetal., 2013;Heynetal.,2012;Rakyanetal.,2010;Teschendorffetal., 2010;XuandTaylor,2014).Manyofthesegenesencodetranscrip- tionfactorsnecessaryfordifferentiationandarealreadytargetof epigeneticderegulationinstemcells duringaging,likelyunder- lyingtheobserveddeclineofstemcellfunction(Beermanetal., 2013;Borketal.,2010;BrackandRando,2007).Thiswouldsuggest thattheage-associatedmethylationdefectsobservedindifferen- tiatedtissuesmayreflectchangesoccurringintheagedstemcell population.Moreover,thesamestemcell-likebivalentmarksand PRC2occupancyhavebeenrecognizedtopredisposetumorsup- pressorgenepromoterstoDNAhypermethylationincancer.Infact, thereissignificantcorrespondencebetweenthosegenesunder- goinghypermethylationinagingandgenesundergoingthesame eventincancer(Teschendorffetal.,2010)andincancer-associated conditionssuchasobesity,inflammationandsmokingaddiction (Issa,2011;Issaetal.,2001;Selamatetal.,2012;Suzukietal.,2009;

Xuetal.,2013).Theseobservationslinkstemcellagingtocancer riskandsuggestthatagingmayelicitanepigeneticswitchfromless stablehistone-basedgenerepressioninstemcellstopermanent DNAmethylation-basedgene repressionincancercells (Xuand Taylor,2014).Takingcancerasanexample,thisepigeneticmech- anismcouldbeamodelexplaininghowtheagingprocesscould predisposeonetoage-specificphenotypes/diseases.

Allinall,itisevident thatsomespecificDNAregionsdirec- tionallyundergoDNAmethylationchangesacrossagedindividuals probablyas aconsequence ofsharedchromatinfeatures. How- ever,thesesite-specificeventsco-existwiththeepigeneticdrift accordingtowhichdeviationofinter-individualgenomicmethyl- ationpatternsoccursovertime(Fig.4).Onepossibleexplanation isthatagingmightprimarilyintroduceageneraldisorderinthe methylationpatternswhichcouldbethenfollowedbytheselection andclonalexpansionofthosecellsbearingmethylationdefectsin specificregionsofthegenomewherethesedefectswouldbetoler- atedandgivethecellsadvantagesofsurvivalorproliferation(Issa, 2014).

6. 5hmCandaging

TheidentificationofthenewDNAepigeneticmark5hmCopens newperspectivesforthestudyof epigeneticreprogrammingin

(8)

aging.OurknowledgeofDNAmethylationpatternsinbothphys- iologicalandpathologicalconditionsindeedneedsarevaluation afterthediscoveryof5hmC.Thisisduetothefactthatconventional bisulfitesequencingmethod,whichhasbeengenerallyconsidered thegoldstandardmethodforDNAmethylationanalysis,isnotable todiscriminatebetween5mCand5hmC.Therefore,studiesbased onconventionalbisulfitemodificationactuallymaskthecontribu- tionof5hmC(Huangetal.,2010).

Information regarding 5hmC in aging process is currently limited.Onlyfewreportshaveaddressedthisissuefocusingatten- tion on 5hmC changes in aged mice. Mouse cerebellum and hippocampusshowanincreaseof5hmClevelswithagingwhich canbepreventedbycaloricrestriction,awell-knownphenomenon associated withlongevity(Chen etal., 2012b; Chouliarasetal., 2012; Szulwachet al.,2011).Anincrease in 5hmC signalswas observedingenesactivatedinoldmicewithrespecttoyoungones demonstratingthat5hmCisacquiredindevelopmentallyactivated genes(Szulwachetal.,2011).Age-dependentincreaseof5hmCin mousehippocampuswasalsoobservedonthe5-LOXgene,whose expressionisknowntoincreaseduringaging(Chenetal.,2012b).

Theinterestfor5hmCisnowgrowingenormouslyconsidering itsinvolvement not onlyin physiological states, suchasdevel- opmentand aging,butalsoinpathologicalconditionsincluding cancer,autoimmuneandneurodegenerativedisorders(Calabrese etal.,2014;Chenetal.,2012b;Chengetal.,2014;Pfeiferetal., 2014;Putirietal.,2014;Villar-Menendezetal.,2013).

7. Conclusionsandperspectives

Over the last years, a growing body of research has ledto the progressive and sharp description of the impact of aging onthemethylome,especially as a resultof therecent applica- tionof genome-wideanalyses.From thiswork,it emergesthat aging-relatedchangesinvolveverydifferentphenomenasuchas epigeneticdrifttogetherwithdirectionalmethylationchangesof specificgenomeregions,leadingtotheclearperceptionthatthe methylomeisadynamiclandscapethatreflectsavarietyofchrono- logicalcomplex changes.Relevantchallengefor futureresearch wouldbetodetermineifthesechangescanbemodeledtotrace underlyingmechanisms.In this context, it would beextremely importanttoshedlightontherelationshipsthatlinkage-associated methylationchanges withdeficitof themethylationmachinery (Casillasetal.,2003;Xiaoetal.,2008)andenvironmentalexpo- sure.Inthis researchframework, moreattentionshouldalsobe addressed tothe contributionof DNA hydroxymethylation and TETenzymes.Tounderstandthemechanisticbasisofage-related methylationchangesitwouldberelevantnotonlytoclarifythe molecularfeaturesofaging,butalsotosetthestageforthedevel- opmentofstrategiestocounteractitspathologicalphenotypes.

AnotherpromisingfieldofresearchseesDNAmethylationasa markerofagingtobeusedtopredictandmonitorage-associated physiologicaldeclineanddiseases.Consistently,pioneeringstud- iesrevealedthatmethylationchangesofcertaingenescanserve todetectdifferentratesofhumanaging(Bocklandtetal.,2011;

Garagnanietal.,2012;Hannumetal.,2013;Horvath,2013).From thispointofview,itwillbeinterestingtotestthesebiomarkersin relationtoclinicalandenvironmentalvariablesthatimpactaging rate.Thiswould allowfortheapplication ofDNA methylation- basedmarkerstoevaluatequalityoflifeintheagingpopulation.

Acknowledgements

Thisstudy wassupported bythe EuropeanUnion’s Seventh FrameworkProgramundergrantagreementNHEALTH-F4-2008-

200880MARK-AGE and the Italian Ministry of University and Research(MIUR)(P.C.:FIRB-RBIN06E9Z8003).

References

Ahuja,N.,Li,Q.,Mohan,A.L.,Baylin,S.B.,Issa,J.P.,1998.AgingandDNA methylationincolorectalmucosaandcancer.CancerRes.58,5489–5494.

Alisch,R.S.,Barwick,B.G.,Chopra,P.,Myrick,L.K.,Satten,G.A.,Conneely,K.N., Warren,S.T.,2012.Age-associatedDNAmethylationinpediatricpopulations.

GenomeRes.22,623–632.

Arand,J.,Spieler,D.,Karius,T.,Branco,M.R.,Meilinger,D.,Meissner,A.,Jenuwein, T.,Xu,G.,Leonhardt,H.,Wolf,V.,Walter,J.,2012.InvivocontrolofCpGand non-CpGDNAmethylationbyDNAmethyltransferases.PLoSGenet.8, e1002750.

Bacalini,M.G.,Friso,S.,Olivieri,F.,Pirazzini,C.,Giuliani,C.,Capri,M.,Santoro,A., Franceschi,C.,Garagnani,P.,2014.Presentandfutureofanti-ageingepigenetic diets.Mech.AgeingDev.136–137,101–115.

Beerman,I.,Bock,C.,Garrison,B.S.,Smith,Z.D.,Gu,H.,Meissner,A.,Rossi,D.J., 2013.Proliferation-dependentalterationsoftheDNAmethylationlandscape underliehematopoieticstemcellaging.CellStemCell12,413–425.

Bell,J.T.,Tsai,P.C.,Yang,T.P.,Pidsley,R.,Nisbet,J.,Glass,D.,Mangino,M.,Zhai,G., Zhang,F.,Valdes,A.,Shin,S.Y.,Dempster,E.L.,Murray,R.M.,Grundberg,E., Hedman,A.K.,Nica,A.,Small,K.S.,Dermitzakis,E.T.,McCarthy,M.I.,Mill,J., Spector,T.D.,Deloukas,P.,2012.Epigenome-widescansidentifydifferentially methylatedregionsforageandage-relatedphenotypesinahealthyageing population.PLoSGenet.8,e1002629.

Berman,B.P.,Weisenberger,D.J.,Aman,J.F.,Hinoue,T.,Ramjan,Z.,Liu,Y., Noushmehr,H.,Lange,C.P.,vanDijk,C.M.,Tollenaar,R.A.,VanDenBerg,D., Laird,P.W.,2011.RegionsoffocalDNAhypermethylationandlong-range hypomethylationincolorectalcancercoincidewithnuclearlamina-associated domains.Nat.Genet.44,40–46.

Besingi,W.,Johansson,A.,2014.Smoke-relatedDNAmethylationchangesinthe etiologyofhumandisease.Hum.Mol.Genet.23,2290–2297.

Bird,A.,2002.DNAmethylationpatternsandepigeneticmemory.GenesDev.16, 6–21.

Blasco,M.A.,2007.Theepigeneticregulationofmammaliantelomeres.Nat.Rev.8, 299–309.

Bocklandt,S.,Lin,W.,Sehl,M.E.,Sanchez,F.J.,Sinsheimer,J.S.,Horvath,S.,Vilain,E., 2011.Epigeneticpredictorofage.PloSOne6,e14821.

Boks,M.P.,Derks,E.M.,Weisenberger,D.J.,Strengman,E.,Janson,E.,Sommer,I.E., Kahn,R.S.,Ophoff,R.A.,2009.TherelationshipofDNAmethylationwithage, genderandgenotypeintwinsandhealthycontrols.PloSOne4,e6767.

Bollati,V.,Schwartz,J.,Wright,R.,Litonjua,A.,Tarantini,L.,Suh,H.,Sparrow,D., Vokonas,P.,Baccarelli,A.,2009.DeclineingenomicDNAmethylationthrough aginginacohortofelderlysubjects.Mech.AgeingDev.130,234–239.

Bork,S.,Pfister,S.,Witt,H.,Horn,P.,Korn,B.,Ho,A.D.,Wagner,W.,2010.DNA methylationpetternchangesuponlong-termcultureandagingofhuman mesenchymalstromalcells.AgingCell9,54–63.

Bostick,M.,Kim,J.K.,Esteve,P.O.,Clark,A.,Pradhan,S.,Jacobsen,S.E.,2007.UHRF1 playsaroleinmaintainingDNAmethylationinmammaliancells.Science317, 1760–1764,NewYork,N.Y.

Brack,A.S.,Rando,T.A.,2007.Intrinsicchangesandextrinsicinfluencesof myogenicstemcellfunctionduringaging.StemCellRev.3,226–237.

Brandeis,M.,Frank,D.,Keshet,I.,Siegfried,Z.,Mendelsohn,M.,Nemes,A.,Temper, V.,Razin,A.,Cedar,H.,1994.Sp1elementsprotectaCpGislandfromdenovo methylation.Nature371,435–438.

Breitling,L.P.,Yang,R.,Korn,B.,Burwinkel,B.,Brenner,H.,2011.

Tobacco-smoking-relateddifferentialDNAmethylation:27Kdiscoveryand replication.Am.J.Hum.Genet.88,450–457.

Caiafa,P.,Guastafierro,T.,Zampieri,M.,2009.Epigenetics:poly(ADP-ribosyl)ation ofPARP-1regulatesgenomicmethylationpatterns.FASEBJ.23,672–678.

Calabrese,R.,Valentini,E.,Ciccarone,F.,Guastafierro,T.,Bacalini,M.G.,Ricigliano, V.A.,Zampieri,M.,Annibali,V.,Mechelli,R.,Franceschi,C.,Salvetti,M.,Caiafa, P.,2014.TET2geneexpressionand5-hydroxymethylcytosinelevelinmultiple sclerosisperipheralbloodcells.Biochim.Biophys.Acta1842,1130–1136.

Calabrese,R.,Zampieri,M.,Mechelli,R.,Annibali,V.,Guastafierro,T.,Ciccarone,F., Coarelli,G.,Umeton,R.,Salvetti,M.,Caiafa,P.,2012.Methylation-dependent PAD2upregulationinmultiplesclerosisperipheralblood.MultipleSclerosis 18,299–304(HoundmillsBasingstoke,England).

Cardoso,M.C.,Leonhardt,H.,1999.DNAmethyltransferaseisactivelyretainedin thecytoplasmduringearlydevelopment.J.Cellbiol.147,25–32.

CasillasJr.,M.A.,Lopatina,N.,Andrews,L.G.,Tollefsbol,T.O.,2003.Transcriptional controloftheDNAmethyltransferasesisalteredinagingand

neoplastically-transformedhumanfibroblasts.Mol.Cell.Biochem.252,33–43.

Chaligne,R.,Heard,E.,2014.X-chromosomeinactivationindevelopmentand cancer.FEBSLett.588,2514–2522.

Chang,S.C.,Tucker,T.,Thorogood,N.P.,Brown,C.J.,2006.Mechanismsof X-chromosomeinactivation.Front.Biosci.11,852–866.

Chen,C.C.,Wang,K.Y.,Shen,C.K.,2012a.ThemammaliandenovoDNA methyltransferasesDNMT3AandDNMT3BarealsoDNA

5-hydroxymethylcytosinedehydroxymethylases.J.Biol.Chem.287, 33116–33121.

Chen,H.,Dzitoyeva,S.,Manev,H.,2012b.Effectofagingon

5-hydroxymethylcytosineinthemousehippocampus.RestorativeNeurol.

Neurosci.30,237–245.

Referenzen

ÄHNLICHE DOKUMENTE

Genomic levels and patterns of DNA methylation across insects.. substantially higher levels of DNA methylation compared to Holometabola both within genes and genome-wide. Gene body

Alternatively, methyl-CpG binding domain proteins (MBDs) have been proposed to bind arrays of methylated CpGs and induce chromatin compaction by recruiting histone

To be able to compare effect sizes of BET exposure to those of other predictors, we checked for association between DNA methylation (DNAm) levels and factors previously reported to

By IPA pathway analysis, those genes impacted in passage 5 but not yet in passage 3 were assignable to the domain of “Cellular Development, Cellular Function” and “Maintenance,

CpG islands  are  characterized  by  an  elevated  density  of  CpG dinucleotides  that   can  be  targeted  by  DNA  methylation  (elevated  relative  to  the  rest

The relationship between methylation and gene expression is complex. High levels of gene expression are often associated with. low promoter methylation but elevated gene

low promoter methylation but elevated gene body methylation. The causality relationships between expression levels and DNA methylation have not yet been determined. Wagner et

Co-methylated gene pairs on the same chromosome have higher functional similarity (determined by FunSimMat) than that between random pairs of genes Not the case for co-methylated