• Keine Ergebnisse gefunden

# Motion and Flow by Jacques Vanneste 2010/2011 Notes of Paul Boeck

N/A
N/A
Protected

Aktie "Motion and Flow by Jacques Vanneste 2010/2011 Notes of Paul Boeck"

Copied!
19
0
0

Volltext

(1)

### Motion and Flow by Jacques Vanneste

2010/2011 Notes of Paul Boeck

Last changes: November 26, 2010

### Contents

I Scalar and vector fields 2

I.1 Notation . . . 2

I.2 Gradient . . . 2

I.3 Divergence. . . 3

I.4 Curl . . . 4

II Line, surface and volume integrals 5 II.1 Line integrals. . . 5

II.2 Surface integrals . . . 6

II.3 Gauß’ and Stokes’ theorem . . . 7

IV Solutions of Laplace’s equation (dipole) 10 V PDEs for continuous media 11 V.1 Introduction: heat equation. . . 11

V.2 Motion of an inviscid fluid . . . 12

d) Vorticity eqn for barotropic fluids . . . 14

Kelvin’s circulation thm (barotropic fluids) . . . 14

e) Bernoulli’s eqn and applications . . . 15

V.3 Wave eqn . . . 16

b) String under tensionT . . . 16

d) Standing waves . . . 17

V.4 Viscous fluids . . . 18

(2)

I SCALAR AND VECTOR FIELDS

Motivation

Mathematical description ofcontinous models, physical models in which properties vary contiously in time and space.

Example 1 a river is best modelled as a continuum with

• density̺(x, t) = lim∆V→0∆M

∆V,

• a velocityu(x, t) = lim∆V→0 P

imiui

∆V

### I.1 Notation

pointP ∈R3(Euclidean space) withr=OP= position vectors =xi+yj+zk.

The natural objects are:

• scalar fields: f =f(r, t) defines a scalar property at ptrand timet

• vector fields: F=F(r, t) defines a vector at each ptrand timet

The gradient of ascalar field f(r) is the vector field

f(r) =g(r) where r=|r|=p

x2+y2+z2

∇f =g(r)

∂r

∂xi+∂y∂rj+∂r∂zk

=g(r)

r

xi+yrj+rzk

=g(r)r

r =g(r)ˆr (unit vetor in direction ofr) Meaning of gradient: CurveCand a scalar field f along it.

f(r+δr) =f(r) +∂f∂xδx+∂f∂yδy+∂f∂zδz+O(|δr|2)

=f(r) +∇f·δr+O(|δr|2) If the curve is parametricised,C:x=x(s), y=y(s), z=z(s), s∈R

df ds = lim

δs→0∇f· δr

δs =∇f· dr

ds=∇f· t

tangent|{z}

toCatr

Thus for anyt,∇f·tmeasures the rate of change off in the direction oft.

Ifsis arclength,|t|= 1.

Remark

(i) ∇f is perpendicular to the surfacesf(r) =c. Taketto be tangent to f(r) =c, then df

ds = 0 =∇f·t =⇒ ∇f⊥t

(3)

I.3 Divergence I SCALAR AND VECTOR FIELDS

Example 3 surfaces of constant pressurep(r) =p(r) are (almost) sperical.

∇p=p(r)ˆr

(ii) dfds =∇f·t=|∇f||t|cosθ is maxf orθ= 0. So∇f gives the direction of maximum growth off.

Example 4 topology: heightz=f(x, y), the steepest ascent curves are||to∇f.

Example 5 (Newton’s law of gravitation) observation indicate that the force exerted by a massM on a mass mis:

F=−GM m

r2 ˆr=−GM m r3 r

whereGis the gravitational constant. If there are several massesM1, M2, . . . , Mn

F=−G· Xn

i=1

Mim

|r−ri|3(r−ri) The gravitational fieldE=mF =−GMr2 ˆr

Observe that:

E=−∇φ with φ=−GM

r the gravitational potential

∇φ=φ(r)ˆr= GM r2 ˆr The potential ofN masses is φ=−GX

i

Mi

|r−ri| a continous distribution of mass with densityρ(r).

φ=−G ZZZ

V

ρ(r)dr

|r−r|

Example 6 (Electrostatics) Coulomb’s law for the force between 2 chargesqandQis F= 1

4πε0

qQ

r2ˆr repulsive force field E= 1

4πε0

Q

r2ˆr=−∇φ φ= Q 4πε0|r|

### I.3 Divergence

The divergence of a vector fieldF= (F1, F2, F3) is

∇ ·F= ∂F1

∂x +∂F2

∂y +∂F3

∂z

∇ ·Fmeasures the rate of expansion (¿0) (compression (¡0)) described by a vector field.

Example 7 • v=ar. a radial vector field. ∇ ·v= 3a

• v=f(r)r.

∇ ·v= ∂

∂x(f(r)x) + ∂

∂y(f(r)y) + ∂

∂z(f(r)z)

= 3f(r) +f(r)

x∂r

∂x+y∂r

∂y +z∂r

∂z

= 3f(r) +f(r) In particular,f(r) =rn,∇ ·v= 3rn+nrn= (3 +n)rn. n=−3,∇ ·v=∇(rr3) = 0

(4)

I.4 Curl I SCALAR AND VECTOR FIELDS

Interpretation as a rate of compression: take a small volume (area) ABCD. ρis a constant.

Flux of mass through AB is ρv2(x, y)dx DC is −ρv2(x, y+dy)dx AD is ρv1(x, y)dy BC is −ρv1(x+dx, y)dy

Net flux is ρ(v2(x, y)−v2(x, y+dy))dx+ρ(v1(x, y)−v1(x+dx, y))dy

=−ρ∂v2

∂y dxdy−ρ∂v1

∂xdxdy=−ρ ∂v1

∂x +∂v2

∂y

dxdy Remark ∇ ·(fF) =∇f·F+f∇F.

### I.4 Curl

The curl of a vector fieldF= (F1, F2, F3) is

∇ ×F= curlF= ∂F3

∂y −∂F2

∂z

i− ∂F1

∂z −∂F3

∂x

j+ ∂F2

∂x −∂F1

∂y

k

=

i j k

∂x ∂y ∂z F1 F2 F3

εijk∂jFk

Here we use

• Einstein’s notation: εijkjFk meansP3 j=1

P3

k=1εijkjFk ”Repeated indices are summed”

• εijk is the permutation symbol

= 1 if i= 1, j= 2, k= 3 or 312 or 231

=−1 if i= 1, j= 3, k= 2 or 213 or 321

= 0 otherwise

• εijk =−εikj etc

• εijkεilmjlδkm−δjmδkl

The curl measures the amount of rotation inF.

Remark

∇ ×(fF) =∇f ×F+f∇ ×F check: (∇ ×(fF))1= ∂

∂y(f F3)− ∂

∂z(f F2)

= ∂

∂yf F3− ∂

∂zf F2+f( ∂

∂yF3− ∂

∂zF2)

= (∇f×F)1+f(∇ ×F)1

Example 8

∇ ×(f(r)r) =∇f×r+f∇ ×r

=f(r) ˆr×r

| {z }

0

+f ×0 = 0 rigid body rotating with angular velocityw=wk.

|v|=wr v=

−wy wx

0

∇ ×v=

i j k

xyz

−wy wx 0

= 0i+ 0j+ 2wk

Remark • ∇ ×E= 0 (gravitational/electric field).

(5)

II LINE, SURFACE AND VOLUME INTEGRALS

• More generally,∇ × ∇φ= 0 since

εijkjkφ=εijkjk2 φ= 1

2(εijkjk2 φ+εikjjk2 φ) =1

2(εijkikj)

| {z }

=0

2jkφ

and∇ ·(∇ ×F) = 0 since∂(εijkjF k) = 0.

Successive applications of∇

• ∇ · ∇f =∇2f = ∆f =∂xx2 f +∂2yyf+∂zz2 f (Laplacian)

• ∇ × ∇f = 0

• ∇(∇ ·F

• ∇ ·(∇ ×F) = 0

• ∇ ×(∇ ×F) =∇(∇ ·F)− ∇2F

| {z }

2F1i+∇2F2j+∇2F3k

Example 9 since∇ ·E= 0, E=−∇φ =⇒ ∇2φ= 0. (check directly∇2(1r) = 0 atr6= 0).

Terminology

• a vector field s.t. F=∇φis said to beconservative

• a conservative cector field satisfies ∇ ×F= 0 curlfree

• in R3, if∇ ×F= 0,F=∇φprovidesFdecays asr→ ∞.

• if∇F= 0, solenoidal (divergence free)

### II.1 Line integrals

LetCbe a curve in R3 andFa vector field. Parametrise C:r(t) =

 x(t) y(t) z(t)

, t∈[a, b]

The line integral ofFalongC is Z

C

F·dr= Z b

a

F·dr dtdt=

Z b a

(F1

dx dt +F2

dy dt +F3

dz dt)dt Example 10 F=

 z x y

andC:r(t) =

 cost sint 3t

, 0≤t≤2π(helix)

Z

C

F·dr= Z

0

 z x y

·

−sint cost

3

dt

= Z 2

0

π

 3t cost sint

·

−sint cost

3

dt= Z

0

(−3tsint+ cos2t+ 3 sintdt

= [3tcost]0 +π= 7π Remark if the curve is closed, we use the special notation

I

C

F·dr In fluid mechanics,H

Cu·dris the circulation.

(6)

II.2 Surface integrals II LINE, SURFACE AND VOLUME INTEGRALS

Example 11 ConservativeF, i.e. F=∇φ, (t∈[a, b]) then Z

C

Fdr= Z b

a

∇φdr dtdt=

Z b a

∂φ

∂x dx dt +∂φ

∂y dy dt +∂φ

∂z dz dt

= Z b

a

dtdt=φ(b)−φ(a) independant ofC (endpoints only) in particular

I

C

Fdr= I

C

∇φdr= 0

Example 12 in physics, ifFis a force acting on a particle with positionr(t), the work done by the force W =

Z

C

Fdr= Z b

a

Fdr dtdt=

Z b a

Fvdt Newton’s law: mdvdt =F

W =m Z t=b

t=a

dv

dtvdt= m 2

Z b a

d

dtkvk2dt=m

2 kv(b)k2− kv(a)k2 Work = change in kinetic energy

In particular, ifFis conservative, there is no change in kinetic energy along closed paths.

### II.2 Surface integrals

A surface is defined:

• explicitly: z=f(x, y)

• implicitly: g(x, y, z) = 0

• parametrically: r=r(u, v) =

 x(u, v) y(u, v) z(u, v)

Example 13 A sphere of radiusa:

z=±p

a2−(x2+y2) a2=x2+y2+z2

 x y z

=

acosφsinθ asinφsinθ

acosθ

 0≤θ < π 0≤φ≤2π Normal to a surface

• forg(x, y, z) = 0, the normal is||to∇gn= k∇gk∇g

• forz=f(x, y) the normal is||to

−fx

−fy

1

• forr=r(u, v), 2 tangent vectors are ∂u∂r,∂r∂v and the normal isn= k∂r∂u∂r×∂r∂v

∂u×∂r∂vk

Example 14 sphere (i) g=z−p

a2−x2−y2= 0n||

 x/z y/z 1

 =⇒ n||r.

(ii) in polar spherical coordinates:

∂r

∂φ =

−asinφsinθ acosφsinθ

acosθ

, ∂r

∂θ =

acosφcosθ asinφcosθ

−asinθ

N= ∂r

∂φ×∂r

∂θ =· · ·=−asinθ(xi+yj+zk) =−a2sinθˆr

(7)

II.3 Gauß’ and Stokes’ theorem II LINE, SURFACE AND VOLUME INTEGRALS

Definition 1

The surface integral of a vector field F ZZ

S

F·ndS, wheredS is the area element is called the fluxof Fthrough S.

Interpretationifq(=ρu) is the amount of a quantity flowing inR3 per unit area and unit time (q·n)δS= amount of mass crossing the small surfaceδS

Computation:

n=

∂r

∂u×∂r∂v

k k dS=

∂r

∂u×∂r

∂v dudv Hence

ZZ

S

F·ndS= ZZ

F·n

∂r

∂u×∂r

∂v dudv

= ZZ

F·Ndudv with N= ∂r

∂u ×∂r

∂v

### II.3 Gauß’ and Stokes’ theorem

Theorem 2 (Gauß’ Theorem (divergence thm))

Let V be a volume in R3,∂V be its boundary and Fa vector field. Then ZZZ

V

∇ ·FdV = ZZ

∂V

F·ndS

Remark TakingF=

 ψ

0 0

gives ZZZ

V

xψV = ZZ

∂V

ψn1dS. SimilarlyF=

 0 ψ 0

gives ZZZ

V

yψdV = ZZ

∂V

ψn2dS.

Theorem 3 (Green’s identities) Consider two scalar fields φandψ.

Since ∇ ·(ψ∇φ) =∇ψ∇φ˙ +ψ∇2φ ZZZ

V

∇ ·(ψ∇φ)dV = ZZZ

V

(∇ψ·) Swapping the roles ofψ andφand subtracting gives

ZZZ

V

(ψ∇2φ−φ∇2ψ)dV = ZZ

∂V

(ψ∂φ

∂n−φ∂ψ

∂n)dS Theorem 4 (Stokes)

Let S be a surface and∂S be its boundary. Letnbe the normal to S anddlbe the line element on the curve∂S.

ZZ

S

(∇ ×F)·ndS= Z

∂S

F·dl The orientation ofnanddlare related by the ”right hand rule”.

Remark • RR

S(∇ ×F)ndS depends in∂S only.

• RR

∂V(∇ ×F·ndS= 0 (surface without boundary) Theoretical applications

(i) Given the scalar fieldφ= 1r, the flux of∇φis the same through any sphere centred at the origin.

n= ˆr ∇φ=φ(r)ˆr=−1

r2ˆr ∇φ·n=−1 r2 Hence

ZZ

∂S

∇φ·ndS=−1 r2

ZZ

∂S

dS=−1 r2

4

πr2=−4π

(8)

II.3 Gauß’ and Stokes’ theorem II LINE, SURFACE AND VOLUME INTEGRALS

(ii) The flux of∇φis in fact the same through any surface enclosing the origin.

• geometrically:

Show that ∇φ·n∂S=∇φ·ˆr∂S Sphere of Radiusr

∇φ·n∂S=−ˆr

r2 ·n∂S=−cosθ

r2 ∂S=−∂S

=−∂S Hence RR

∂V(∇φ·n)dS=−4π.

• using Gauß’ thm: compare the flux through∂V with the flux through the unit sphere ZZ

∂V

(∇φ·n)dS− ZZ

Sphere

(∇φ·n)dS

= ZZ

∂shell

(∇φ·n)dS= ZZZ

shell

= ZZZ

shell

2φdV = 0

Index notation & Einstein’s notation Coordinates:

 x y z

=

 x1

x2

x3

and Basis vectorsi=e1,j=e2,k=e3

Position: r=xi+yj+zk=P3

i=1xiei=xiei (repeated indices are summed over) Gradient: ∇φ=∂xφi+∂yφj+∂zφk=P3

i=1

∂φ

∂xiei=P3

i=1iφei=∂iφei

Dot Product: a·b=P3 i=1aiei

·P3 j=1bjej

=P3 i=1

P3

j=1aibj(ei·ej) =P3 i=1

P3

j=1aibjδij =P3 i=1ai

P3 j=1bjδij

= P3

i=1aibi=aibi

Short: a·b=aiei·bjej =aibjei·ej=aibjδij =aibi

Cross product: (a×b)iijkajbk (sum over j&k). a×b=εijkajbkei(Sum over i,j,k)

Example: a×(b×c) =a×(εijkbjckei) =εlmiamεijkbjckelijkεlmiambjckelijkεilmamb−jckel= (δjlδkm− δjmδlk)ambjckel=akbjckej−akbjckek = (a·c)b−(a·b)c

SummaryFor the gravitational fieldE=−GMr2 ˆrandE=−∇φwithφ=−GMr ZZ

∂V

E·ndS=

(−4πGM ifM ∈V

0 ifM /∈V

This generalises to a number of masses:

ZZ

∂V

E·ndS=−4πG X

i mi∈V

mi

For a continuos distribution of mass:

ZZ

∂V

E·ndS=−4πG ZZZ

V

ρ(r)dv Using Gauß’s thm

ZZZ

V

|{z}∇E

−∇2φ

dv=−4πG ZZZ

V

ρ(r)dv

Hence,−∇2φ=−4πGρ ⇐⇒ ∇2φ= 4πGρPoisson equation.

Remark • this is a generalisation of ∇2φ= 0 (Laplace eqn) which holds whereρ= 0.

• the electrostatic equivalent replaces Gby−4πε10 Then∇ ·E=ερ0,∇2φ=−ερ0 (ρcharge density.) and ZZ

∂V

E·ndS= 1 ε0

ZZZ

V

ρdv= 1 ε0

total charge inV

• The solution φ=−GMr can be interpreted as the solution of ∇2φ= 4πGM δ(r). RRR

V δ(rdv= 1.

(9)

II.3 Gauß’ and Stokes’ theorem II LINE, SURFACE AND VOLUME INTEGRALS

Practical applications

Gauß’ thm + symmetry arguments can be used to computeEfor simple mass distributions.

1) Gravitational field of a spherical planet: Assume the densityρ(r) =ρ(|r|) for 0≤r≤aandρ= 0 forr≥a (i) Show thatφ(r) =−GMr whereM = 4πRa

0 ρ(r)r2dris the total mass of the planet, forr≥a.

(ii) Relateφ(r) toρ(r) for 0≤r≤a (iii) Findφ(r) ifρ(r) =ρ0= const.

(i)

ZZ

∂V

E·ndS=−4πG ZZZ

V

φ(r)dV

∂V: sphere of sizer > a. Bexause of spherical symmetry, we will assume thatφ=φ(r). E=−∇φ=−φ(r)·ˆr.

∂V =Sr2,dS=r2sinθdθdϕ=r2dΩ2 andn= ˆr.

(1) = ZZ

S2r

(−φ2(r)) ˆrˆr

|{z}1

r2dΩ2

=−r2φ(r)4π=−4πG ZZZ

Vr

f(r)dV =−4πG Z a

0

dr Z π

0

dθ Z

0

dϕρ(r)r2sinθ≡Mp

4πr2φ(R) = 4πGMp φ(r) = GMp

r2 φ(r) =−GMp

r +C (φ(r)→0 =⇒ C= 0)

Conclusion: For any (spherical) distribution of matter the gravitational field outside the object is the same as a point particle ofM =Mtotal located at the origin.

(ii) ∂V: sphere of sizer < a. Same symmetry: E=−φ(r)ˆr,n= ˆr,dS=r2sinθdθdϕ.

(1) =−r2φ(r)4π=−4πGM(r) where M(r) = 4π Z r

0

r′2ρ(r)dr φ(r) = GM(r)

r2 φ(r) =

Z rGM(r) r′2 dr+C (iii) ρ(r) =ρ0 const. M(r) =ρ0r33. φ+(r) =23πGρ0r2+ ˜C.

Requiring continuity of φ(r)|r=a φ+(a) =−GMap(a) =⇒ fixes ˜C=−32GMap. Conclusion:

φ(r) = (GM

p

2a (ar22 −3) for 0≤r≤a

GMrp forr≥a 2) Electric fields of a sharped sphere:

E=−∇φ= 1 4πε0

Z ρ(r)

|r−r|3(¯r−r¯)d3r φ= 1

4πε0

Z ρ(r)

|¯r−r¯|d3r φ(r)≡ charge density Gauß’ thm, when applied to electric fields:

ZZ

∂V

E·ndS= 1 ε0

Z

V

ρ(r)d3r≡Q

Question: Consider a spherical metallicconductor of radiusawith total chargeQ. Its charge is distributeduniformly over its surface. (density of charge = 4πaQ2). FindE andφoutside and inside of the conductor.

Same symmetry, same considerations as before. Let’s have a look atr > a.

(1) = ZZ

∂V

EndS=|E|4πr2= 1 ε0

Q =⇒ same as beforeφ∼Q r +C Inside: r < a.

(1) =|E|4πr2= 0 =⇒ |Ein|= 0 =⇒ φin=const.

(10)

IV SOLUTIONS OF LAPLACE’S EQUATION (DIPOLE)

Remark • E is⊥conductor surface (⊥to surface of constantφ).

• φconst. on the surface

• φconst. in the interior of conductor (∇2φ= 0)

• |Ein= 0.

### IV Solutions of Laplace’s equation (dipole)

The potentialsφ=−GMr andφ=4πε1

0

Q

r are solutions of Laplace’s equation

2φ= 0 for r6= 0 with

ZZ

sphere

∇φndS=

(4πGM

εQ

0

This can be written as ∇2φ= (GM

εQ

0

×δ(r)

Dirac–distribution RRR

volume enclosing 0

δ(r)dv= 1 ZZZ

V

2φdv= ZZ

∂V

∇φ·ndS=

(4πGM

εQ

0

There are other useful soultions.

Dipole:

Consider two chargesQand−Qat positionsr=±ak. The total electrostatic potential is given by:

φ(r) = Q 4πε0

1

|r−ak|− 1 r+ak|

Note: |r∓ak|=s

r2+a2∓2ar·k

|{z}ζ

=p

r2+a2∓2ζ

φ(r) = Q 4πε0

1

pr2+a2−2aζ − 1 r2+a2+ 2aζ

!

For a

r ≪1 , 1

r2+a2∓2aζ =1 r

1 q

1∓2r2 +ar22

=1 r

1±aζ

r2 +O a2

r2

Hence φ(r) = Q 4πε0

2aζ

r3 +O(ar32) Take the limita→0 with 2Q=pfixed. Then

φ(r) = pζ

4πε0r3 dipole solution withpdipole strengh In general: φ(r) = p(r−r0)

4πε0|r−r0|3. the dipole strengthpis vector,r0 is the location of the dipole.

The dipole potential clearly solves Laplace’s eqn (r 6=r0). Its form follows from the fact that if φis a solution of

2φ= 0, so is−p· ∇φfor anyp. Withφ= 1r

−p· ∇φ= p·r

r3 dipole Carrying on, we can findmultipole solutions.

Qijij2φ=Qij

3rirj−r2δij

r5

Note that the trace of 3rirjr−r5 3δii =3r2r−r523 = 0. tr∂ij2φ=∂2iiφ=∇2φ= 0.

(11)

V PDES FOR CONTINUOUS MEDIA

The multipole solutions arise when computing approximation to the potential caused by a distribution of charges.

φ(r) = 1 4πε0

ZZZ

V

ρ(r)

|r−r|dv To find and approximation for larger, we use Taylor expansion nearr= 0.

Solutions of Laplace’s eqn∇2φ= 0: multipoles φm= 1

4πε0

1

r monopole

φd= 1 4πε0

p·r

r3 dipole

φq = 1 4πε0

Qij

(3rirj−r2δij)

Response to a distribution of charges:

φ(r) = 1 4πε0

ZZZ

V

ρ(r)

|r−r|dv

At a large distancer, we find using a Taylor expansion of|r−r|−1 nearr= 0:

4piε0φ(r) = Z

V

ρ(r)

|r| dv+ Z

V

φ(r)ri

∂ri r=0

1

|r−r

dv+1 2

Z

V

ρ(r)·rirj2

∂ri∂rj r=0

(r−r|)dv+· · ·

= 1

|r|

Z

V

ρ(r)dv− ∂

∂ri

1

|r|

Z

V

riρ(r)dv+1 2

2

∂ri∂rj

1

|r|

Z

V

rirjρ(r)dv+· · ·

= 1 r

Z

V

ρ(r)dv+ Z

V

riρ(r)dv· ri

r3 + Z

V

rirjρ(r)dv

3rirj−r2δij

r5

= Q r +p·r

r3 +Qij

3rirjr2δij

r5 +· · · where Q=

Z

ρ(r)dv= total charge and p= Z

rρ(r)dv= dipole strength and Qij =

Z

V

Remark Since Laplaces eqn is linear, various solns (e.g. monopoles and dipole) can be superposed.

Ifφ1 andφ2 are solns, then so isφ12. (∇2φ1= 0,∇2φ2= 0 =⇒ ∇212) = 0).

Example 15 earthed spherical conductor in an electric field.

E→E0k as r→ ∞

What isφandE? We need to imposeφ= 0 on the spherer= 0 (=earthed). We try superposing (∇φ=−E).

φ=−E0z +Az

r3 (dipole) whereAis to be determinded φ−(r= 0) = 0

z=acosθ =⇒ −E0acosθ+Aacosθ

a3 = 0 =⇒ A=Ea3 Hence φ=−E0z(1−ar33) solves ∇2φ= 0

E=−∇φ=−E0(1−ar33)k−3ar35E0zr

### V.1 Introduction: heat equation

Many media can be described using a continuous description. The properties are described by (average) densities:

f(r, t) =





mass density at ptr,f(r, t) =ρ(r, t) momentum density in x–direction =ρ(r, t)u(r, t)

energy density =ε(r, t)

(12)

V.2 Motion of an inviscid fluid V PDES FOR CONTINUOUS MEDIA

Together with the densityf(r, t), we are given a flux: q(r, t).

The evolution of the density is governed by aconservation law: balance between rate of change of the property in a volumeV and its flux across∂V.

d dt

ZZZ

V

f(r, t)dv=− ZZ

∂V

q(r, t)·ndS

⇐⇒

ZZZ

V

∂f

∂tdv=− ZZZ

V

∇ ·qdv

This holds for anyV, hence

∂f

∂t +∇ ·q= 0 source - sink conservation off This is a PDE which can be solved forf given initial and boundary conditions.

Remark Ifq·n= 0 on∂V thenRRR

V f(r, t) =const.

Example 16 (heat conduction) The energy of the material is conserved. The energy densityε(r, t) can be related to the temperature: ε(r, t) =cT(r, t). c specific heat, taken as a constant. The flux of heat is modeled by Fourier’s law:

q=−k∇T, k >0 The conservation law reads:

d dt

ZZZ

V

ε(r, t)dv=− ZZ

∂V

q·ndS d

dt ZZZ

V

(cT)dv=− ZZZ

V

∇ ·qdv =⇒ c∂T

∂t +∇ ·q= 0 c∂T

∂t =∇ ·(k∇T) ifkis independent ofr.

∂T

∂t = k

c∇2T heat eqn

### V.2 Motion of an inviscid fluid

a) Mass conservation

Consider a fixed volumeV of a fluid. The mass isM =RRR

V ρ(r, t)dvand the flux of mass across∂V isRRR

q·ndS. q is given by

q(r, t) =ρ(r, t)(r, t) Then

d dt

ZZZ

V

ρ(r, t)dv= ZZ

q·ndS=− ZZZ

V

∇ ·qdv=− ZZZ

V

∇ ·(ρu)dv Hence

∂ρ

∂t +∇ ·(ρu) = 0 b) Pressure

In a fluid there is a force acting on any surface in the direction of the normal. The pressure p(r, t) s this (negative) force per unit area.

force =−pndS Integral of−pnover some ∂V gives the total force acting onV.

B=− ZZ

∂V

pndS=− ZZZ

V

(∇p)·dv

(13)

V.2 Motion of an inviscid fluid V PDES FOR CONTINUOUS MEDIA

In the presence of gravity,Bbalances the gravitational force. −M gk, where M =RRR

V ρdvis the mass ofV. Hence B−M gk= 0

− ZZZ

V

∇pdv− ZZZ

V

gkρdv= 0

Since this holds for anyV: ∇p=−ρgk. Hencep=p(z) and dpdz =−ρg.

−g Z

ρdz+c=p hydrostatic relation

Example 17 (i) Pressure in a container for a constant density fluid. ρ=ρ0=const. dpdz =−ρ0g =⇒ p=−ρ·gz+c at z= 0, p0=c. Hence p=p0−ρ0gz. At the bottomz=−h,p=p00gh.

(ii) A (perfect) gas at constant temperature satisfiesp=αρ,α=const. What is the hydrostatic pressure?

dp

dz =−ρg=−pg α − g

αz p=Cegαz=p0eαgz (iii) Force on an immersed body. The fluid exerts a force:

F=− ZZ

∂V

pndS=g ZZZ

V

ρdv whereρis the fluid density

= weight of the displaced fluid Archimedes’ principle, Heureka!!

c) Momentum conservation

Newtons law dtd(mu) = Force, states what the rate of change of the momentum (mass× velocity) is equal to the force acting. It can be applied to continuous media, for inviscid fluids, the only force acting is pressure.

Consider a volumeV Let’s write the balance ofx–momentum

• x–momentum density: ρu

• x–momentum flux: ρu·uwith =(u, v, w).

Then

d dt

ZZZ

V

ρudv

| {z }

rate of change of momentum

=− ZZ

∂V

ρuu·ndS

| {z }

flux of momentum

− ZZ

∂V

pndS

·i

| {z }

Force in x–direction

ZZZ

V

∂t(ρu)dv=− ZZZ

V

∇ ·(ρuu)dv− ZZZ

V

∇pdV ·i

Hence





∂t(ρu) +∇(ρuu) =−∂xp (1)

∂t(ρv) +∇(ρvu) =−∂yp (2)

∂t(ρw) +∇(ρwu) =−∂zp (3) Note: ∂

∂t(ρu) +∇ ·(u·ρu) =ρ∂u

∂t +u∂ρ

∂t +ρu· ∇u+u∇ ·(ρu)

∇ ·(aF) =F· ∇a+a∇ ·F=ρ(∂u

∂t +u∇u) +u(∂ρ

∂t +∇ ·(ρu))

| {z }

=0 mass conservation

(1),(2),(3) becomes





∂u

∂t+u· ∇u=−1ρxp

∂v

∂t +u· ∇v=−1ρyp

∂w

∂t +u· ∇w=−1ρzp

∂u

∂t +u· ∇u=−1 ρ∇p

(14)

V.2 Motion of an inviscid fluid V PDES FOR CONTINUOUS MEDIA

In summary: compressibleEuler equations

∂ρ

∂t +∇ ·(ρu) = 0 ∂u

∂t +u· ∇u=−1 ρ∇p

This is complemented by anequation of state relatingρto pand other quantities (e.g. temperature) Remark ∂u

∂t +u· ∇u= du

dt, where d dt = ∂

∂t+u· ∇denotes thematerial derivative, i.e. time derivative following particles moving with velocityu. Particles moving atu have position position r(t), s.t.

dr

dt =u(r, t) dx

dt =u dy

dt =v dz dt =w Material derivative off(r, t):

d

dtf(r(t), t) =∂f

∂t +dr

dt · ∇f =∂f

∂t +u· ∇f = ∂

∂t +u· ∇

f

The momentum eqn can be written as ρd

dtu=−∇p (Newton’s law applied to a fluid particle) Simple equations of states:

• p=p(ρ): pressure is a function of density alone,barotropic fluid.

Note: defining w= Z dp

ρ, the eqn of momentum becomes du

dt =−∇w=−1 ρ∇p.

• ρ=const=ρ0: incompressible fluid. The Euler eqn become (d

dtu =−∇(p/ρ0)

∇ ·u = 0 Euler equations

d) Vorticity eqn for barotropic fluids

Define thevorticity ω=∇ ×u. Note that ω×u=u· ∇u−12∇|u|2. We can rewrite the momentum eqn as

∂u

∂t +ω×u=−∇(w+1 2|u|2) Take curl:

∂ω

∂t +∇ ×(w×u) = 0 ω=∇ ×u

Remark ifω(r,0) = 0, thenω(r, t) = 0, for all t >0. So ifω is zero initially, it remains zero: irrotational flow = potential flow. Irrotational flows are described using a potentialφsinceω=∇ ×u= 0, thenu=∇φ.

If in addition, the fluid is incompressible,∇ ·u= 0 =⇒ ∇2φ= 0: Laplace’s eqn.

φ6= 0 if boundary conditions imposeu6= 0 on boundaries.

Kelvin’s circulation thm (barotropic fluids)

Consider a material (moves with the fluid) closed curve. We’re interested in the circulation I

C(t)

u·dl Now

d dt

I

C(t)

u·dl= I

C(t)

d

dt(u·dl) = I

C(t)

du

dt ·dl+ud dt(dl) =

I

−∇w·dl+n·du= I

−∇w·dl+d(|u|2/2)

= 0 Hence the circulationH

C(t)u·dl= const.

(15)

V.2 Motion of an inviscid fluid V PDES FOR CONTINUOUS MEDIA

e) Bernoulli’s eqn and applications

Consider the steady flow∂t·= 0) of a barotropic fluid (p=p(ρ)). It satisfies u· ∇u=−∇w w=

Z dp ρ ω×u=−∇(w+12|u|2) (∗) Taking·(∗) gives 0 =u· ∇(w+12|u|2) Recall: n· ∇f =∂n f is the derivative in the direction ofn.

w+12|u|2= constant along particle trajectories i.e. streamlines. For an incompressible flow:

p ρ0

+12|u|2= const. along streamlines Applications:

• flow over an obsticale

• Pitot tubep+12u2=ptube+02

For potential flows (ω= curlu= 0,u=∇φ), Bernoulli’s eqn has a simpler form:

∇(w+12|u|2) = 0 sinceω= 0 =⇒ w+12|u|2= const everywhere For incompressible fluids replace ρp

0 +12|u|2=const.

Example 18 consider a two–dimensional flow of an irrotational, incompressible fluid around a cylinder. Velocity of the flow is u = (u, v). Incompressible means, that ∂xu+∂yv = 0. We can introduce a streamfunction ψ s.t.

u=−∂yψ andv=∂xψ. R∇ψwithR= rotation by π2.

Since the flow is irrotational, ω= (∂xv−∂yu)·k= 0 and therefore∇2ψ= 0. ψ also satisfies: ψ =const forr=a (the radius of the cylinder) andψ∼ −U y forr→ ∞.

A possibleψ isψ=−U y(1−ar22)−γlogr(check that∇2ψ= 0). Hence u=U(2−a2

r2) +2U y2a2 r4 +γy

r2 v=2U xya2

r4 −γx r2 Atr=a,x=acosθ, y=asinθ

u= 2Usin2θ+γ asinθ v=−2Ucosθsinθ−γ

acosθ Use Bernoulli: p

ρ0

+12U2= p ρ0

+12h

2Usinθ+γ a

i2

Hence p(cylinder) = ρ 2

U2

2Usinθ+γ a

2 +p

The force (per unit length) resulting from this pressure is F=−

Z

Z 0

(U2−(2Usinθ+γ

a) +p)·(cosθi+ sinθj)dθ

= 2πρU γj is the left on the cylinder

In the presence of a force per unit mass f, −∇p is replaced by −∇p+ρf. If the force derives from a potential:

f =−∇φ, then−∇pis replaced by−(∇p+ρ∇φ). Bernoulli’s thm for an compressible fluid becomes p

ρ0

+12|u|2+φ= const Example 19

f =−gk φ=gz p

ρ0

+12|u|2+gz= const

(16)

V.3 Wave eqn V PDES FOR CONTINUOUS MEDIA

### V.3 Wave eqn

a) Acoustic waves

tρ+∇ ·(ρ(u) = 0

tu+u· ∇u=−1 ρ∇p

p=p(ρ) (barotropic) Consider small–amplitude perturbations to a constant–density state of rest:

ρ=ρ0 ρ≪ρ0

u=u

p=p(ρ0) =p(ρ0) +dp

dρ(ρ0+· · ·=p(ρ0) +c2ρ+· · ·, where c= s

dp dρ(ρ0)

| {z }

sound speed

Introducing into (∗) and ignoring quadratic terms

(∂tρ0∇ ·u= 0

tu=−ρc2

0∇ρ withu=∇φ ∂tρ02φ= 0,∂t∇φ=−ρc2

0∇ρ =⇒ ∂tφ=−cρ2

0ρ.

Finally, ∂tt2 =−c22φ the wave equation In spatial dimensionφ(x, t) satisfies∂ttφ=c2xx2 φ(eg. gas in a tube).

b) String under tension T

y=η(x, t) is the displacement. y–component of Newton’s law:

| {z }

mass

tt2η

|{z}

acceleration

=ATsin(θ(x+dx))−ATsin(θ(x)) (†)

Small displacements: sinθ(x) =θ(x) andθ(x) = tanθ(x) =∂x∂η(x).

Hence sin(θ(x+dx))−sinθ(x) = ∂η∂x(x+dx)−∂η∂x(x) = ∂x2η(x)dxas dx→0.

(†) becomes ρA∂2ttη=AT ∂xx2 η

2ttη=c2xx2 η with c= s

T

ρ wave speed

Properties of the one–dimensional wave eqn

i) d’Alemtant’s solution: The general soln in an∞te domain is

φ(x, t) =f(x−ct) +g(x+ct) = superposition of right and left traveling waves ii) Seperable solns Solutions can be sought in the form

φ(x, t) =X(x)T(t) In∂tt2φ=c22xxφ

XT′′=c2X′′T =⇒ T′′

T =c2X′′

X =β = const

(17)

V.3 Wave eqn V PDES FOR CONTINUOUS MEDIA

d) Standing waves

Waves in bounded domainsx∈[0, L]. Boundary conditions:

• string, attached at both ends: η(0, t) =η(L, t) = 0

• string, attached atx= 0 only: η(0, t) = 0∂xη(L, t) = 0.

• gas in a tube, both ends are closedφ(x, t),u=∂xφ. u(0, t) =u(L, t) = 0, i.e. ∂xφ(0, t) =∂xφ(L, t) = 0.

• open end atx=L,p(L,0) = 0

tt2η=c22xxη,η(ρ, t) =η(L, t) = 0. Solve by separation: η(x, t) =X(x)T(t) XT′′=c2X′′T T′′

T =c2X′′

X =β = const if β >0 : X =Acosh(

qβ

c2x) +Bsinh(

qβ c2x) X(0) = 0 =X(L) =⇒ A=B= 0

β = 0 X =Ax+B, X(0) =X(L) = 0 =⇒ A=B= 0 β <0 X =Acos(

q−β

c2x) +Bsin(

q−β c2 x)

X(0) = 0 =⇒ A= 0 X(L) = 0 =⇒ Bsin(

q−β c2L) = 0 Hence

q−β

c2 L=nπ,n= 1,2, . . .. ie. β =−c2(L)2 andX(x) = sin(nπxL ) =Xn(x).

T′′−βT = 0,T′′+c2(L)2T = 0 =⇒ Tn(t) =αncos(nπcL t+φn) =αncos(ωt+φn).

whereωnπcL is the ’angular frequency’. αn is the amplitude andφn is the phase and both are arbitrary constants.

We have the solution

ηn(x, t) =αncos(ωnt+φn) sin(nπx

L standing wave standing waves:

• periodic solutions with period T =ω

n = 2πLnπc

• ηn(x, t) = 0∀tat the nodesx=kLn ,k= 0,1,2, . . . , n General soln is a superposition of standing waves:

η(x, t) = X

n=1

ancos(ωnt) +bnsin(ωnt) sin(nπx L

With initial conditionsη(x,0) =f(x) and∂t(x,0) =g(x) an= 2

L Z L

0

f(x) sin(nπx L dx bn= 2

L Z L

0

g(x) sin(nπx L )dx

Remark relation between standing waves and d’Alemtat’s soln ηn(x, t) =αncos(ωnt+φn) sin(nπx

L )

= αn

2

sin(nπx

L +ωnn) + sin(nπx

L −ωnt−φn)

= αn

2

sin(nπ

L (x+ct) +φn) + sin(nπ

L (x−ct)−φn)

= superposition of 2 traveling waves

(18)

V.4 Viscous fluids V PDES FOR CONTINUOUS MEDIA

### V.4 Viscous fluids

In ideal fluids, the only force exerted by the fluid particles is the pressure force−pn, normal to any surface.

In a viscous fluid, particles also exert a frictional force which has a tangential component. The frictional force is specified by a thestress tensor σij,i, j= 1,2,3 st. σ·n=σijnjei is the frictional force per unit surface in a surface with normaln.

Some physical input is necessary to model the stress tensorσ. The simplest model is as follows:

since σ is caused by differential motion, we expect σ to depend on velocity gradients ∂u∂xji. The simplest relation betweenσand ∂u∂xi

j is linear. σij∂u∂xi

j∂u∂xj

i∂u∂xk

kδij. Sinceσ= 0 for pure rotationu=Ω×r.

This leads to the model σij

∂ui

∂xj

+∂uj

∂xi

+γ∂uk

∂xk

δij =η ∂ui

∂xj

+∂uj

∂xi

−2 3

∂uk

∂xk

δij

+ζ∂uk

∂xk

δij

whereη is the shear viscosity andζ is the bulk viscosity.

Momentum eqn.

d dt

ZZZ

V

ρuidv=− ZZ

S

ρuiujnjds− ZZ

S

pnidS+ ZZ

S

σijnjdS ZZZ

V

∂t(ρui)dv=− ZZZ

V

∂xj

(ρuiuj)− ∂

∂xi

p+ ∂

∂xj

ij)dv Hence ∂

∂t(ρui) + ∂

∂xj

(ρuiuj) =− ∂

∂xi

p+ ∂

∂xj

ij) ρ(∂

∂tui+u· ∇ui) =− ∂

∂xi

p+µ(∇2ui+ ∂

∂xi

(∇ ·u)−2 3

∂xi

(∇ ·u) +ζ ∂

∂xi

(∇ ·u)

We thus the compressible Navier–Stokes:

∂u∂t +u· ∇u

=−∇p+µ∇2u+ (ζ+13µ)∇(∇ ·u)

∂ρ

∂t +∇ ·(ρu) = 0 For an incompressible fluid: ρ=const,∇ ·u= 0

∂u

∂t +u· ∇u=−∇p+ν∇2u and ∇ ·u= 0 with ν =µ

ρ and p→ p ρ Boundary conditions: u= 0 at the boundaries.

Example 20 (of viscous flows) Steady flows, so∂t= 0, incompressible (i) Flow in a pipe: Assumeu=u(z)i. Then 0 =−∂p∂x∂z2u2

• Plane Corette: p=const,u(H) =U (moving upper boundary) andu(0) = 0. Then u(z) =U zH.

• Plane Poiseuille: ∂x∂p = dpdx =const. Then ∂z2u2 = 1νdxdp, u(0) =u(H) = 0 and we getu(z) = ν1dpdxz(z−H).

The pressure gradient dpdx can be related to the mass fluxQ=ρRH

0 u(z)dz=−ρ12νH3dxdp.

(ii) Axisymetric Poiseuille flow. u=u(r)i, ∇2u = 1r∂r (r∂u∂r)i ∂θ, ∂z = 0 (cylindrical coordinates). The NS eqns reduce to:

0 =−∂p

∂x+ν1 r

∂r(r∂u

∂r)

(19)

V.4 Viscous fluids V PDES FOR CONTINUOUS MEDIA

Assuming ∂p∂x == dpdx =const.

d dr(rdu

dr) = 1 ν

dp dxr rdu

dr = 1 ν

dp dx(r2

2 +C) du

dr = 1 ν

dp dx(r

2 +C

r) C= 0 foru(0) finite u(r) = 1

ν dp dx(r2

4 +D)

Imposeu(R) = 0

u(r) = 1 4ν

dp

dx r2−R2 Mass flux Q=ρ

Z R 0

Z 0

u(r)rdrdθ=2πρ 4ν

dp dx

Z R 0

(r2−R2)rdr

=−πρR4

dp dx

Referenzen

ÄHNLICHE DOKUMENTE

Pollpeter finds that Xu’s quest for “air and space security” is intrinsically bound with the PLAAF’s concept of integrated air and space operations, which envisions the air

In comparison to the situation before (0.1 µN and 40 °C), the surface after rubbing is much cleaner. This cleaning effect is the result from particle removed by the AFM probe.

The temperature displayed at the temperature controller of the shielding box was read for 26 minutes at four readings per minute. The temperature showed essentially no drift. Since

The hydrodynamic channel test was set up to measure the load –time relation at the instant of impact of fluid force by using only water in stead of debris flow model as a

Although the setup described here may seem rather spe- cial at first sight, it is in fact just one incarnation of a very generic nonlinear nonequilibrium situation: On the most

The objective of force planning is to create a future force structure of the right size and the right composition (force mix) to achieve the nation’s security goals , in

The special operations capability is an important military option for the Australian Government, designed for missions that conventional forces can’t undertake, such as operating in

This leads to an additional dichotomy within the urban sector, resulting in a small number of rapidly growing major cities, often overgrown in size, in distinet contrast to the