Motion and Flow by Jacques Vanneste
2010/2011 Notes of Paul Boeck
Last changes: November 26, 2010
Contents
I Scalar and vector fields 2
I.1 Notation . . . 2
I.2 Gradient . . . 2
I.3 Divergence. . . 3
I.4 Curl . . . 4
II Line, surface and volume integrals 5 II.1 Line integrals. . . 5
II.2 Surface integrals . . . 6
II.3 Gauß’ and Stokes’ theorem . . . 7
IV Solutions of Laplace’s equation (dipole) 10 V PDEs for continuous media 11 V.1 Introduction: heat equation. . . 11
V.2 Motion of an inviscid fluid . . . 12
d) Vorticity eqn for barotropic fluids . . . 14
Kelvin’s circulation thm (barotropic fluids) . . . 14
e) Bernoulli’s eqn and applications . . . 15
V.3 Wave eqn . . . 16
b) String under tensionT . . . 16
d) Standing waves . . . 17
V.4 Viscous fluids . . . 18
I SCALAR AND VECTOR FIELDS
Motivation
Mathematical description ofcontinous models, physical models in which properties vary contiously in time and space.
Example 1 a river is best modelled as a continuum with
• density̺(x, t) = lim∆V→0∆M
∆V,
• a velocityu(x, t) = lim∆V→0 P
imiui
∆V
I Scalar and vector fields
I.1 Notation
pointP ∈R3(Euclidean space) withr=OP= position vectors =xi+yj+zk.
The natural objects are:
• scalar fields: f =f(r, t) defines a scalar property at ptrand timet
• vector fields: F=F(r, t) defines a vector at each ptrand timet
I.2 Gradient
The gradient of ascalar field f(r) is the vector field
gradf =∇f =∂xfi+∂yfj+∂zfk Example 2
f(r) =g(r) where r=|r|=p
x2+y2+z2
∇f =g′(r)
∂r
∂xi+∂y∂rj+∂r∂zk
=g′(r)
r
xi+yrj+rzk
=g′(r)r
r =g′(r)ˆr (unit vetor in direction ofr) Meaning of gradient: CurveCand a scalar field f along it.
f(r+δr) =f(r) +∂f∂xδx+∂f∂yδy+∂f∂zδz+O(|δr|2)
=f(r) +∇f·δr+O(|δr|2) If the curve is parametricised,C:x=x(s), y=y(s), z=z(s), s∈R
df ds = lim
δs→0∇f· δr
δs =∇f· dr
ds=∇f· t
tangent|{z}
toCatr
Thus for anyt,∇f·tmeasures the rate of change off in the direction oft.
Ifsis arclength,|t|= 1.
Remark
(i) ∇f is perpendicular to the surfacesf(r) =c. Taketto be tangent to f(r) =c, then df
ds = 0 =∇f·t =⇒ ∇f⊥t
I.3 Divergence I SCALAR AND VECTOR FIELDS
Example 3 surfaces of constant pressurep(r) =p(r) are (almost) sperical.
∇p=p′(r)ˆr
(ii) dfds =∇f·t=|∇f||t|cosθ is maxf orθ= 0. So∇f gives the direction of maximum growth off.
Example 4 topology: heightz=f(x, y), the steepest ascent curves are||to∇f.
Example 5 (Newton’s law of gravitation) observation indicate that the force exerted by a massM on a mass mis:
F=−GM m
r2 ˆr=−GM m r3 r
whereGis the gravitational constant. If there are several massesM1, M2, . . . , Mn
F=−G· Xn
i=1
Mim
|r−ri|3(r−ri) The gravitational fieldE=mF =−GMr2 ˆr
Observe that:
E=−∇φ with φ=−GM
r the gravitational potential
∇φ=φ′(r)ˆr= GM r2 ˆr The potential ofN masses is φ=−GX
i
Mi
|r−ri| a continous distribution of mass with densityρ(r).
φ=−G ZZZ
V
ρ(r)dr′
|r−r′|
Example 6 (Electrostatics) Coulomb’s law for the force between 2 chargesqandQis F= 1
4πε0
r2ˆr repulsive force field E= 1
4πε0
Q
r2ˆr=−∇φ φ= Q 4πε0|r|
I.3 Divergence
The divergence of a vector fieldF= (F1, F2, F3) is
∇ ·F= ∂F1
∂x +∂F2
∂y +∂F3
∂z
∇ ·Fmeasures the rate of expansion (¿0) (compression (¡0)) described by a vector field.
Example 7 • v=ar. a radial vector field. ∇ ·v= 3a
• v=f(r)r.
∇ ·v= ∂
∂x(f(r)x) + ∂
∂y(f(r)y) + ∂
∂z(f(r)z)
= 3f(r) +f′(r)
x∂r
∂x+y∂r
∂y +z∂r
∂z
= 3f(r) +f′(r) In particular,f(r) =rn,∇ ·v= 3rn+nrn= (3 +n)rn. n=−3,∇ ·v=∇(rr3) = 0
I.4 Curl I SCALAR AND VECTOR FIELDS
Interpretation as a rate of compression: take a small volume (area) ABCD. ρis a constant.
Flux of mass through AB is ρv2(x, y)dx DC is −ρv2(x, y+dy)dx AD is ρv1(x, y)dy BC is −ρv1(x+dx, y)dy
Net flux is ρ(v2(x, y)−v2(x, y+dy))dx+ρ(v1(x, y)−v1(x+dx, y))dy
=−ρ∂v2
∂y dxdy−ρ∂v1
∂xdxdy=−ρ ∂v1
∂x +∂v2
∂y
dxdy Remark ∇ ·(fF) =∇f·F+f∇F.
I.4 Curl
The curl of a vector fieldF= (F1, F2, F3) is
∇ ×F= curlF= ∂F3
∂y −∂F2
∂z
i− ∂F1
∂z −∂F3
∂x
j+ ∂F2
∂x −∂F1
∂y
k
=
i j k
∂x ∂y ∂z F1 F2 F3
εijk∂jFk
Here we use
• Einstein’s notation: εijk∂jFk meansP3 j=1
P3
k=1εijk∂jFk ”Repeated indices are summed”
• εijk is the permutation symbol
= 1 if i= 1, j= 2, k= 3 or 312 or 231
=−1 if i= 1, j= 3, k= 2 or 213 or 321
= 0 otherwise
• εijk =−εikj etc
• εijkεilm=δjlδkm−δjmδkl
The curl measures the amount of rotation inF.
Remark
∇ ×(fF) =∇f ×F+f∇ ×F check: (∇ ×(fF))1= ∂
∂y(f F3)− ∂
∂z(f F2)
= ∂
∂yf F3− ∂
∂zf F2+f( ∂
∂yF3− ∂
∂zF2)
= (∇f×F)1+f(∇ ×F)1
Example 8
∇ ×(f(r)r) =∇f×r+f∇ ×r
=f(r) ˆr×r
| {z }
0
+f ×0 = 0 rigid body rotating with angular velocityw=wk.
|v|=wr v=
−wy wx
0
∇ ×v=
i j k
∂x ∂y ∂z
−wy wx 0
= 0i+ 0j+ 2wk
Remark • ∇ ×E= 0 (gravitational/electric field).
II LINE, SURFACE AND VOLUME INTEGRALS
• More generally,∇ × ∇φ= 0 since
εijk∂j∂kφ=εijk∂jk2 φ= 1
2(εijk∂jk2 φ+εikj∂jk2 φ) =1
2(εijk+εikj)
| {z }
=0
∂2jkφ
and∇ ·(∇ ×F) = 0 since∂(εijk∂jF k) = 0.
Successive applications of∇
• ∇ · ∇f =∇2f = ∆f =∂xx2 f +∂2yyf+∂zz2 f (Laplacian)
• ∇ × ∇f = 0
• ∇(∇ ·F
• ∇ ·(∇ ×F) = 0
• ∇ ×(∇ ×F) =∇(∇ ·F)− ∇2F
| {z }
∇2F1i+∇2F2j+∇2F3k
Example 9 since∇ ·E= 0, E=−∇φ =⇒ ∇2φ= 0. (check directly∇2(1r) = 0 atr6= 0).
Terminology
• a vector field s.t. F=∇φis said to beconservative
• a conservative cector field satisfies ∇ ×F= 0 curlfree
• in R3, if∇ ×F= 0,F=∇φprovidesFdecays asr→ ∞.
• if∇F= 0, solenoidal (divergence free)
II Line, surface and volume integrals
II.1 Line integrals
LetCbe a curve in R3 andFa vector field. Parametrise C:r(t) =
x(t) y(t) z(t)
, t∈[a, b]
The line integral ofFalongC is Z
C
F·dr= Z b
a
F·dr dtdt=
Z b a
(F1
dx dt +F2
dy dt +F3
dz dt)dt Example 10 F=
z x y
andC:r(t) =
cost sint 3t
, 0≤t≤2π(helix)
Z
C
F·dr= Z 2π
0
z x y
·
−sint cost
3
dt
= Z 2
0
π
3t cost sint
·
−sint cost
3
dt= Z 2π
0
(−3tsint+ cos2t+ 3 sintdt
= [3tcost]2π0 +π= 7π Remark if the curve is closed, we use the special notation
I
C
F·dr In fluid mechanics,H
Cu·dris the circulation.
II.2 Surface integrals II LINE, SURFACE AND VOLUME INTEGRALS
Example 11 ConservativeF, i.e. F=∇φ, (t∈[a, b]) then Z
C
Fdr= Z b
a
∇φdr dtdt=
Z b a
∂φ
∂x dx dt +∂φ
∂y dy dt +∂φ
∂z dz dt
= Z b
a
dφ
dtdt=φ(b)−φ(a) independant ofC (endpoints only) in particular
I
C
Fdr= I
C
∇φdr= 0
Example 12 in physics, ifFis a force acting on a particle with positionr(t), the work done by the force W =
Z
C
Fdr= Z b
a
Fdr dtdt=
Z b a
Fvdt Newton’s law: mdvdt =F
W =m Z t=b
t=a
dv
dtvdt= m 2
Z b a
d
dtkvk2dt=m
2 kv(b)k2− kv(a)k2 Work = change in kinetic energy
In particular, ifFis conservative, there is no change in kinetic energy along closed paths.
II.2 Surface integrals
A surface is defined:
• explicitly: z=f(x, y)
• implicitly: g(x, y, z) = 0
• parametrically: r=r(u, v) =
x(u, v) y(u, v) z(u, v)
Example 13 A sphere of radiusa:
z=±p
a2−(x2+y2) a2=x2+y2+z2
x y z
=
acosφsinθ asinφsinθ
acosθ
0≤θ < π 0≤φ≤2π Normal to a surface
• forg(x, y, z) = 0, the normal is||to∇gn= k∇gk∇g
• forz=f(x, y) the normal is||to
−fx
−fy
1
• forr=r(u, v), 2 tangent vectors are ∂u∂r,∂r∂v and the normal isn= k∂r∂u∂r×∂r∂v
∂u×∂r∂vk
Example 14 sphere (i) g=z−p
a2−x2−y2= 0n||
x/z y/z 1
=⇒ n||r.
(ii) in polar spherical coordinates:
∂r
∂φ =
−asinφsinθ acosφsinθ
acosθ
, ∂r
∂θ =
acosφcosθ asinφcosθ
−asinθ
N= ∂r
∂φ×∂r
∂θ =· · ·=−asinθ(xi+yj+zk) =−a2sinθˆr
II.3 Gauß’ and Stokes’ theorem II LINE, SURFACE AND VOLUME INTEGRALS
Definition 1
The surface integral of a vector field F ZZ
S
F·ndS, wheredS is the area element is called the fluxof Fthrough S.
Interpretationifq(=ρu) is the amount of a quantity flowing inR3 per unit area and unit time (q·n)δS= amount of mass crossing the small surfaceδS
Computation:
n=
∂r
∂u×∂r∂v
k k dS=
∂r
∂u×∂r
∂v dudv Hence
ZZ
S
F·ndS= ZZ
F·n
∂r
∂u×∂r
∂v dudv
= ZZ
F·Ndudv with N= ∂r
∂u ×∂r
∂v
II.3 Gauß’ and Stokes’ theorem
Theorem 2 (Gauß’ Theorem (divergence thm))
Let V be a volume in R3,∂V be its boundary and Fa vector field. Then ZZZ
V
∇ ·FdV = ZZ
∂V
F·ndS
Remark TakingF=
ψ
0 0
gives ZZZ
V
∂xψV = ZZ
∂V
ψn1dS. SimilarlyF=
0 ψ 0
gives ZZZ
V
∂yψdV = ZZ
∂V
ψn2dS.
Theorem 3 (Green’s identities) Consider two scalar fields φandψ.
Since ∇ ·(ψ∇φ) =∇ψ∇φ˙ +ψ∇2φ ZZZ
V
∇ ·(ψ∇φ)dV = ZZZ
V
(∇ψ·) Swapping the roles ofψ andφand subtracting gives
ZZZ
V
(ψ∇2φ−φ∇2ψ)dV = ZZ
∂V
(ψ∂φ
∂n−φ∂ψ
∂n)dS Theorem 4 (Stokes)
Let S be a surface and∂S be its boundary. Letnbe the normal to S anddlbe the line element on the curve∂S.
ZZ
S
(∇ ×F)·ndS= Z
∂S
F·dl The orientation ofnanddlare related by the ”right hand rule”.
Remark • RR
S(∇ ×F)ndS depends in∂S only.
• RR
∂V(∇ ×F·ndS= 0 (surface without boundary) Theoretical applications
(i) Given the scalar fieldφ= 1r, the flux of∇φis the same through any sphere centred at the origin.
n= ˆr ∇φ=φ′(r)ˆr=−1
r2ˆr ∇φ·n=−1 r2 Hence
ZZ
∂S
∇φ·ndS=−1 r2
ZZ
∂S
dS=−1 r2
4
πr2=−4π
II.3 Gauß’ and Stokes’ theorem II LINE, SURFACE AND VOLUME INTEGRALS
(ii) The flux of∇φis in fact the same through any surface enclosing the origin.
• geometrically:
Show that ∇φ·n∂S=∇φ·ˆr∂S Sphere of Radiusr
∇φ·n∂S=−ˆr
r2 ·n∂S=−cosθ
r2 ∂S=−∂S
r2 sphere of Radiusr
=−∂S Hence RR
∂V(∇φ·n)dS=−4π.
• using Gauß’ thm: compare the flux through∂V with the flux through the unit sphere ZZ
∂V
(∇φ·n)dS− ZZ
Sphere
(∇φ·n)dS
= ZZ
∂shell
(∇φ·n)dS= ZZZ
shell
= ZZZ
shell
∇2φdV = 0
Index notation & Einstein’s notation Coordinates:
x y z
=
x1
x2
x3
and Basis vectorsi=e1,j=e2,k=e3
Position: r=xi+yj+zk=P3
i=1xiei=xiei (repeated indices are summed over) Gradient: ∇φ=∂xφi+∂yφj+∂zφk=P3
i=1
∂φ
∂xiei=P3
i=1∂iφei=∂iφei
Dot Product: a·b=P3 i=1aiei
·P3 j=1bjej
=P3 i=1
P3
j=1aibj(ei·ej) =P3 i=1
P3
j=1aibjδij =P3 i=1ai
P3 j=1bjδij
= P3
i=1aibi=aibi
Short: a·b=aiei·bjej =aibjei·ej=aibjδij =aibi
Cross product: (a×b)i=εijkajbk (sum over j&k). a×b=εijkajbkei(Sum over i,j,k)
Example: a×(b×c) =a×(εijkbjckei) =εlmiamεijkbjckel=εijkεlmiambjckel=εijkεilmamb−jckel= (δjlδkm− δjmδlk)ambjckel=akbjckej−akbjckek = (a·c)b−(a·b)c
SummaryFor the gravitational fieldE=−GMr2 ˆrandE=−∇φwithφ=−GMr ZZ
∂V
E·ndS=
(−4πGM ifM ∈V
0 ifM /∈V
This generalises to a number of masses:
ZZ
∂V
E·ndS=−4πG X
i mi∈V
mi
For a continuos distribution of mass:
ZZ
∂V
E·ndS=−4πG ZZZ
V
ρ(r)dv Using Gauß’s thm
ZZZ
V
|{z}∇E
−∇2φ
dv=−4πG ZZZ
V
ρ(r)dv
Hence,−∇2φ=−4πGρ ⇐⇒ ∇2φ= 4πGρPoisson equation.
Remark • this is a generalisation of ∇2φ= 0 (Laplace eqn) which holds whereρ= 0.
• the electrostatic equivalent replaces Gby−4πε10 Then∇ ·E=ερ0,∇2φ=−ερ0 (ρcharge density.) and ZZ
∂V
E·ndS= 1 ε0
ZZZ
V
ρdv= 1 ε0
total charge inV
• The solution φ=−GMr can be interpreted as the solution of ∇2φ= 4πGM δ(r). RRR
V δ(rdv= 1.
II.3 Gauß’ and Stokes’ theorem II LINE, SURFACE AND VOLUME INTEGRALS
Practical applications
Gauß’ thm + symmetry arguments can be used to computeEfor simple mass distributions.
1) Gravitational field of a spherical planet: Assume the densityρ(r) =ρ(|r|) for 0≤r≤aandρ= 0 forr≥a (i) Show thatφ(r) =−GMr whereM = 4πRa
0 ρ(r)r2dris the total mass of the planet, forr≥a.
(ii) Relateφ(r) toρ(r) for 0≤r≤a (iii) Findφ(r) ifρ(r) =ρ0= const.
(i)
ZZ
∂V
E·ndS=−4πG ZZZ
V
φ(r)dV
∂V: sphere of sizer > a. Bexause of spherical symmetry, we will assume thatφ=φ(r). E=−∇φ=−φ′(r)·ˆr.
∂V =Sr2,dS=r2sinθdθdϕ=r2dΩ2 andn= ˆr.
(1) = ZZ
S2r
(−φ2(r)) ˆrˆr
|{z}1
r2dΩ2
=−r2φ′(r)4π=−4πG ZZZ
Vr
f(r′)dV′ =−4πG Z a
0
dr′ Z π
0
dθ Z 2π
0
dϕρ(r′)r2sinθ≡Mp
4πr2φ′(R) = 4πGMp φ′(r) = GMp
r2 φ(r) =−GMp
r +C (φ(r)→0 =⇒ C= 0)
Conclusion: For any (spherical) distribution of matter the gravitational field outside the object is the same as a point particle ofM =Mtotal located at the origin.
(ii) ∂V: sphere of sizer < a. Same symmetry: E=−φ′(r)ˆr,n= ˆr,dS=r2sinθdθdϕ.
(1) =−r2φ′(r)4π=−4πGM(r) where M(r) = 4π Z r
0
r′2ρ(r′)dr′ φ′(r) = GM(r)
r2 φ(r) =
Z rGM(r′) r′2 dr′+C (iii) ρ(r) =ρ0 const. M(r) =ρ04πr33. φ+(r) =23πGρ0r2+ ˜C.
Requiring continuity of φ(r)|r=a φ+(a) =−GMap =φ−(a) =⇒ fixes ˜C=−32GMap. Conclusion:
φ(r) = (GM
p
2a (ar22 −3) for 0≤r≤a
−GMrp forr≥a 2) Electric fields of a sharped sphere:
E=−∇φ= 1 4πε0
Z ρ(r′)
|r−r′|3(¯r−r¯′)d3r′ φ= 1
4πε0
Z ρ(r′)
|¯r−r¯′|d3r′ φ(r′)≡ charge density Gauß’ thm, when applied to electric fields:
ZZ
∂V
E·ndS= 1 ε0
Z
V
ρ(r′)d3r′≡Q
Question: Consider a spherical metallicconductor of radiusawith total chargeQ. Its charge is distributeduniformly over its surface. (density of charge = 4πaQ2). FindE andφoutside and inside of the conductor.
Same symmetry, same considerations as before. Let’s have a look atr > a.
(1) = ZZ
∂V
EndS=|E|4πr2= 1 ε0
Q =⇒ same as beforeφ∼Q r +C Inside: r < a.
(1) =|E|4πr2= 0 =⇒ |Ein|= 0 =⇒ φin=const.
IV SOLUTIONS OF LAPLACE’S EQUATION (DIPOLE)
Remark • E is⊥conductor surface (⊥to surface of constantφ).
• φconst. on the surface
• φconst. in the interior of conductor (∇2φ= 0)
• |Ein= 0.
IV Solutions of Laplace’s equation (dipole)
The potentialsφ=−GMr andφ=4πε1
0
Q
r are solutions of Laplace’s equation
∇2φ= 0 for r6= 0 with
ZZ
sphere
∇φndS=
(4πGM
−εQ
0
This can be written as ∇2φ= (GM
−εQ
0
×δ(r)
Dirac–distribution RRR
volume enclosing 0
δ(r)dv= 1 ZZZ
V
∇2φdv= ZZ
∂V
∇φ·ndS=
(4πGM
−εQ
0
There are other useful soultions.
Dipole:
Consider two chargesQand−Qat positionsr=±ak. The total electrostatic potential is given by:
φ(r) = Q 4πε0
1
|r−ak|− 1 r+ak|
Note: |r∓ak|=s
r2+a2∓2ar·k
|{z}ζ
=p
r2+a2∓2ζ
φ(r) = Q 4πε0
1
pr2+a2−2aζ − 1 r2+a2+ 2aζ
!
For a
r ≪1 , 1
r2+a2∓2aζ =1 r
1 q
1∓2aζr2 +ar22
=1 r
1±aζ
r2 +O a2
r2
Hence φ(r) = Q 4πε0
2aζ
r3 +O(ar32) Take the limita→0 with 2Q=pfixed. Then
φ(r) = pζ
4πε0r3 dipole solution withpdipole strengh In general: φ(r) = p(r−r0)
4πε0|r−r0|3. the dipole strengthpis vector,r0 is the location of the dipole.
The dipole potential clearly solves Laplace’s eqn (r 6=r0). Its form follows from the fact that if φis a solution of
∇2φ= 0, so is−p· ∇φfor anyp. Withφ= 1r
−p· ∇φ= p·r
r3 dipole Carrying on, we can findmultipole solutions.
Qij∂ij2φ=Qij
3rirj−r2δij
r5
Note that the trace of 3rirjr−r5 3δii =3r2r−r523 = 0. tr∂ij2φ=∂2iiφ=∇2φ= 0.
V PDES FOR CONTINUOUS MEDIA
The multipole solutions arise when computing approximation to the potential caused by a distribution of charges.
φ(r) = 1 4πε0
ZZZ
V
ρ(r′)
|r−r′|dv′ To find and approximation for larger, we use Taylor expansion nearr′= 0.
Solutions of Laplace’s eqn∇2φ= 0: multipoles φm= 1
4πε0
1
r monopole
φd= 1 4πε0
p·r
r3 dipole
φq = 1 4πε0
Qij
(3rirj−r2δij)
r5 quadrupole
Response to a distribution of charges:
φ(r) = 1 4πε0
ZZZ
V
ρ(r′)
|r−r′|dv′
At a large distancer, we find using a Taylor expansion of|r−r′|−1 nearr′= 0:
4piε0φ(r) = Z
V
ρ(r′)
|r| dv′+ Z
V
φ(r′)ri′ ∂
∂ri′ r′=0
1
|r−r′
dv′+1 2
Z
V
ρ(r′)·r′ir′j ∂2
∂ri′∂r′j r′=0
(r−r′|)dv′+· · ·
= 1
|r|
Z
V
ρ(r′)dv′− ∂
∂ri
1
|r|
Z
V
ri′ρ(r′)dv′+1 2
∂2
∂ri∂rj
1
|r|
Z
V
r′irj′ρ(r′)dv′+· · ·
= 1 r
Z
V
ρ(r)dv′+ Z
V
ri′ρ(r)dv′· ri
r3 + Z
V
r′irj′ρ(r)dv′
3rirj−r2δij
r5
= Q r +p·r
r3 +Qij
3rirjr2δij
r5 +· · · where Q=
Z
ρ(r′)dv′= total charge and p= Z
r′ρ(r′)dv′= dipole strength and Qij =
Z
V
ri′r′jρ(r′)dv′ = quadrupole (moment)
Remark Since Laplaces eqn is linear, various solns (e.g. monopoles and dipole) can be superposed.
Ifφ1 andφ2 are solns, then so isφ1+φ2. (∇2φ1= 0,∇2φ2= 0 =⇒ ∇2(φ1+φ2) = 0).
Example 15 earthed spherical conductor in an electric field.
E→E0k as r→ ∞
What isφandE? We need to imposeφ= 0 on the spherer= 0 (=earthed). We try superposing (∇φ=−E).
φ=−E0z +Az
r3 (dipole) whereAis to be determinded φ−(r= 0) = 0
z=acosθ =⇒ −E0acosθ+Aacosθ
a3 = 0 =⇒ A=Ea3 Hence φ=−E0z(1−ar33) solves ∇2φ= 0
E=−∇φ=−E0(1−ar33)k−3ar35E0zr
V PDEs for continuous media
V.1 Introduction: heat equation
Many media can be described using a continuous description. The properties are described by (average) densities:
f(r, t) =
mass density at ptr,f(r, t) =ρ(r, t) momentum density in x–direction =ρ(r, t)u(r, t)
energy density =ε(r, t)
V.2 Motion of an inviscid fluid V PDES FOR CONTINUOUS MEDIA
Together with the densityf(r, t), we are given a flux: q(r, t).
The evolution of the density is governed by aconservation law: balance between rate of change of the property in a volumeV and its flux across∂V.
d dt
ZZZ
V
f(r, t)dv=− ZZ
∂V
q(r, t)·ndS
⇐⇒
ZZZ
V
∂f
∂tdv=− ZZZ
V
∇ ·qdv
This holds for anyV, hence
∂f
∂t +∇ ·q= 0 source - sink conservation off This is a PDE which can be solved forf given initial and boundary conditions.
Remark Ifq·n= 0 on∂V thenRRR
V f(r, t) =const.
Example 16 (heat conduction) The energy of the material is conserved. The energy densityε(r, t) can be related to the temperature: ε(r, t) =cT(r, t). c specific heat, taken as a constant. The flux of heat is modeled by Fourier’s law:
q=−k∇T, k >0 The conservation law reads:
d dt
ZZZ
V
ε(r, t)dv=− ZZ
∂V
q·ndS d
dt ZZZ
V
(cT)dv=− ZZZ
V
∇ ·qdv =⇒ c∂T
∂t +∇ ·q= 0 c∂T
∂t =∇ ·(k∇T) ifkis independent ofr.
∂T
∂t = k
c∇2T heat eqn
V.2 Motion of an inviscid fluid
a) Mass conservation
Consider a fixed volumeV of a fluid. The mass isM =RRR
V ρ(r, t)dvand the flux of mass across∂V isRRR
q·ndS. q is given by
q(r, t) =ρ(r, t)(r, t) Then
d dt
ZZZ
V
ρ(r, t)dv= ZZ
q·ndS=− ZZZ
V
∇ ·qdv=− ZZZ
V
∇ ·(ρu)dv Hence
∂ρ
∂t +∇ ·(ρu) = 0 b) Pressure
In a fluid there is a force acting on any surface in the direction of the normal. The pressure p(r, t) s this (negative) force per unit area.
force =−pndS Integral of−pnover some ∂V gives the total force acting onV.
B=− ZZ
∂V
pndS=− ZZZ
V
(∇p)·dv
V.2 Motion of an inviscid fluid V PDES FOR CONTINUOUS MEDIA
In the presence of gravity,Bbalances the gravitational force. −M gk, where M =RRR
V ρdvis the mass ofV. Hence B−M gk= 0
− ZZZ
V
∇pdv− ZZZ
V
gkρdv= 0
Since this holds for anyV: ∇p=−ρgk. Hencep=p(z) and dpdz =−ρg.
−g Z
ρdz+c=p hydrostatic relation
Example 17 (i) Pressure in a container for a constant density fluid. ρ=ρ0=const. dpdz =−ρ0g =⇒ p=−ρ·gz+c at z= 0, p0=c. Hence p=p0−ρ0gz. At the bottomz=−h,p=p0+ρ0gh.
(ii) A (perfect) gas at constant temperature satisfiesp=αρ,α=const. What is the hydrostatic pressure?
dp
dz =−ρg=−pg α − g
αz p=Ce−gαz=p0e−αgz (iii) Force on an immersed body. The fluid exerts a force:
F=− ZZ
∂V
pndS=g ZZZ
V
ρdv whereρis the fluid density
= weight of the displaced fluid Archimedes’ principle, Heureka!!
c) Momentum conservation
Newtons law dtd(mu) = Force, states what the rate of change of the momentum (mass× velocity) is equal to the force acting. It can be applied to continuous media, for inviscid fluids, the only force acting is pressure.
Consider a volumeV Let’s write the balance ofx–momentum
• x–momentum density: ρu
• x–momentum flux: ρu·uwith =(u, v, w).
Then
d dt
ZZZ
V
ρudv
| {z }
rate of change of momentum
=− ZZ
∂V
ρuu·ndS
| {z }
flux of momentum
− ZZ
∂V
pndS
·i
| {z }
Force in x–direction
ZZZ
V
∂
∂t(ρu)dv=− ZZZ
V
∇ ·(ρuu)dv− ZZZ
V
∇pdV ·i
Hence
∂
∂t(ρu) +∇(ρuu) =−∂xp (1)
∂
∂t(ρv) +∇(ρvu) =−∂yp (2)
∂
∂t(ρw) +∇(ρwu) =−∂zp (3) Note: ∂
∂t(ρu) +∇ ·(u·ρu) =ρ∂u
∂t +u∂ρ
∂t +ρu· ∇u+u∇ ·(ρu)
∇ ·(aF) =F· ∇a+a∇ ·F=ρ(∂u
∂t +u∇u) +u(∂ρ
∂t +∇ ·(ρu))
| {z }
=0 mass conservation
(1),(2),(3) becomes
∂u
∂t+u· ∇u=−1ρ∂xp
∂v
∂t +u· ∇v=−1ρ∂yp
∂w
∂t +u· ∇w=−1ρ∂zp
∂u
∂t +u· ∇u=−1 ρ∇p
V.2 Motion of an inviscid fluid V PDES FOR CONTINUOUS MEDIA
In summary: compressibleEuler equations
∂ρ
∂t +∇ ·(ρu) = 0 ∂u
∂t +u· ∇u=−1 ρ∇p
This is complemented by anequation of state relatingρto pand other quantities (e.g. temperature) Remark ∂u
∂t +u· ∇u= du
dt, where d dt = ∂
∂t+u· ∇denotes thematerial derivative, i.e. time derivative following particles moving with velocityu. Particles moving atu′ have position position r(t), s.t.
dr
dt =u(r, t) dx
dt =u dy
dt =v dz dt =w Material derivative off(r, t):
d
dtf(r(t), t) =∂f
∂t +dr
dt · ∇f =∂f
∂t +u· ∇f = ∂
∂t +u· ∇
f
The momentum eqn can be written as ρd
dtu=−∇p (Newton’s law applied to a fluid particle) Simple equations of states:
• p=p(ρ): pressure is a function of density alone,barotropic fluid.
Note: defining w= Z dp
ρ, the eqn of momentum becomes du
dt =−∇w=−1 ρ∇p.
• ρ=const=ρ0: incompressible fluid. The Euler eqn become (d
dtu =−∇(p/ρ0)
∇ ·u = 0 Euler equations
d) Vorticity eqn for barotropic fluids
Define thevorticity ω=∇ ×u. Note that ω×u=u· ∇u−12∇|u|2. We can rewrite the momentum eqn as
∂u
∂t +ω×u=−∇(w+1 2|u|2) Take curl:
∂ω
∂t +∇ ×(w×u) = 0 ω=∇ ×u
Remark ifω(r,0) = 0, thenω(r, t) = 0, for all t >0. So ifω is zero initially, it remains zero: irrotational flow = potential flow. Irrotational flows are described using a potentialφsinceω=∇ ×u= 0, thenu=∇φ.
If in addition, the fluid is incompressible,∇ ·u= 0 =⇒ ∇2φ= 0: Laplace’s eqn.
φ6= 0 if boundary conditions imposeu6= 0 on boundaries.
Kelvin’s circulation thm (barotropic fluids)
Consider a material (moves with the fluid) closed curve. We’re interested in the circulation I
C(t)
u·dl Now
d dt
I
C(t)
u·dl= I
C(t)
d
dt(u·dl) = I
C(t)
du
dt ·dl+ud dt(dl) =
I
−∇w·dl+n·du= I
−∇w·dl+d(|u|2/2)
= 0 Hence the circulationH
C(t)u·dl= const.
V.2 Motion of an inviscid fluid V PDES FOR CONTINUOUS MEDIA
e) Bernoulli’s eqn and applications
Consider the steady flow∂t·= 0) of a barotropic fluid (p=p(ρ)). It satisfies u· ∇u=−∇w w=
Z dp ρ ω×u=−∇(w+12|u|2) (∗) Taking·(∗) gives 0 =u· ∇(w+12|u|2) Recall: n· ∇f =∂n∂ f is the derivative in the direction ofn.
w+12|u|2= constant along particle trajectories i.e. streamlines. For an incompressible flow:
p ρ0
+12|u|2= const. along streamlines Applications:
• flow over an obsticale
• Pitot tubep∞+12u2∞=ptube+02
For potential flows (ω= curlu= 0,u=∇φ), Bernoulli’s eqn has a simpler form:
∇(w+12|u|2) = 0 sinceω= 0 =⇒ w+12|u|2= const everywhere For incompressible fluids replace ρp
0 +12|u|2=const.
Example 18 consider a two–dimensional flow of an irrotational, incompressible fluid around a cylinder. Velocity of the flow is u = (u, v). Incompressible means, that ∂xu+∂yv = 0. We can introduce a streamfunction ψ s.t.
u=−∂yψ andv=∂xψ. R∇ψwithR= rotation by π2.
Since the flow is irrotational, ω= (∂xv−∂yu)·k= 0 and therefore∇2ψ= 0. ψ also satisfies: ψ =const forr=a (the radius of the cylinder) andψ∼ −U y forr→ ∞.
A possibleψ isψ=−U y(1−ar22)−γlogr(check that∇2ψ= 0). Hence u=U(2−a2
r2) +2U y2a2 r4 +γy
r2 v=2U xya2
r4 −γx r2 Atr=a,x=acosθ, y=asinθ
u= 2Usin2θ+γ asinθ v=−2Ucosθsinθ−γ
acosθ Use Bernoulli: p∞
ρ0
+12U2= p ρ0
+12h
2Usinθ+γ a
i2
Hence p(cylinder) = ρ 2
U2−
2Usinθ+γ a
2 +p∞
The force (per unit length) resulting from this pressure is F=−
Z
pnadθ=ρ 2
Z 2π 0
(U2−(2Usinθ+γ
a) +p∞)·(cosθi+ sinθj)dθ
= 2πρU γj is the left on the cylinder
In the presence of a force per unit mass f, −∇p is replaced by −∇p+ρf. If the force derives from a potential:
f =−∇φ, then−∇pis replaced by−(∇p+ρ∇φ). Bernoulli’s thm for an compressible fluid becomes p
ρ0
+12|u|2+φ= const Example 19
f =−gk φ=gz p
ρ0
+12|u|2+gz= const
V.3 Wave eqn V PDES FOR CONTINUOUS MEDIA
V.3 Wave eqn
a) Acoustic waves
Start with the compressible Euler eqns
∂tρ+∇ ·(ρ(u) = 0
∂tu+u· ∇u=−1 ρ∇p
p=p(ρ) (barotropic) Consider small–amplitude perturbations to a constant–density state of rest:
ρ=ρ0+ρ′ ρ′≪ρ0
u=u′
p=p(ρ0+ρ′) =p(ρ0) +dp
dρ(ρ0)ρ′+· · ·=p(ρ0) +c2ρ′+· · ·, where c= s
dp dρ(ρ0)
| {z }
sound speed
Introducing into (∗) and ignoring quadratic terms
(∂tρ′+ρ0∇ ·u′= 0
∂tu′=−ρc2
0∇ρ′ withu′=∇φ ∂tρ′+ρ0∇2φ= 0,∂t∇φ=−ρc2
0∇ρ′ =⇒ ∂tφ=−cρ2
0ρ.
Finally, ∂tt2 =−c2∇2φ the wave equation In spatial dimensionφ(x, t) satisfies∂ttφ=c2∂xx2 φ(eg. gas in a tube).
b) String under tension T
y=η(x, t) is the displacement. y–component of Newton’s law:
ρAdx
| {z }
mass
∂tt2η
|{z}
acceleration
=ATsin(θ(x+dx))−ATsin(θ(x)) (†)
Small displacements: sinθ(x) =θ(x) andθ(x) = tanθ(x) =∂x∂η(x).
Hence sin(θ(x+dx))−sinθ(x) = ∂η∂x(x+dx)−∂η∂x(x) = ∂∂x2η(x)dxas dx→0.
(†) becomes ρA∂2ttη=AT ∂xx2 η
∂2ttη=c2∂xx2 η with c= s
T
ρ wave speed
Properties of the one–dimensional wave eqn
i) d’Alemtant’s solution: The general soln in an∞te domain is
φ(x, t) =f(x−ct) +g(x+ct) = superposition of right and left traveling waves ii) Seperable solns Solutions can be sought in the form
φ(x, t) =X(x)T(t) In∂tt2φ=c2∂2xxφ
XT′′=c2X′′T =⇒ T′′
T =c2X′′
X =β = const
V.3 Wave eqn V PDES FOR CONTINUOUS MEDIA
d) Standing waves
Waves in bounded domainsx∈[0, L]. Boundary conditions:
• string, attached at both ends: η(0, t) =η(L, t) = 0
• string, attached atx= 0 only: η(0, t) = 0∂xη(L, t) = 0.
• gas in a tube, both ends are closedφ(x, t),u=∂xφ. u(0, t) =u(L, t) = 0, i.e. ∂xφ(0, t) =∂xφ(L, t) = 0.
• open end atx=L,p′(L,0) = 0
∂tt2η=c2∂2xxη,η(ρ, t) =η(L, t) = 0. Solve by separation: η(x, t) =X(x)T(t) XT′′=c2X′′T T′′
T =c2X′′
X =β = const if β >0 : X =Acosh(
qβ
c2x) +Bsinh(
qβ c2x) X(0) = 0 =X(L) =⇒ A=B= 0
β = 0 X =Ax+B, X(0) =X(L) = 0 =⇒ A=B= 0 β <0 X =Acos(
q−β
c2x) +Bsin(
q−β c2 x)
X(0) = 0 =⇒ A= 0 X(L) = 0 =⇒ Bsin(
q−β c2L) = 0 Hence
q−β
c2 L=nπ,n= 1,2, . . .. ie. β =−c2(nπL)2 andX(x) = sin(nπxL ) =Xn(x).
T′′−βT = 0,T′′+c2(nπL)2T = 0 =⇒ Tn(t) =αncos(nπcL t+φn) =αncos(ωt+φn).
whereωnπcL is the ’angular frequency’. αn is the amplitude andφn is the phase and both are arbitrary constants.
We have the solution
ηn(x, t) =αncos(ωnt+φn) sin(nπx
L standing wave standing waves:
• periodic solutions with period T =ω2π
n = 2πLnπc
• ηn(x, t) = 0∀tat the nodesx=kLn ,k= 0,1,2, . . . , n General soln is a superposition of standing waves:
η(x, t) = X∞
n=1
ancos(ωnt) +bnsin(ωnt) sin(nπx L
With initial conditionsη(x,0) =f(x) and∂t(x,0) =g(x) an= 2
L Z L
0
f(x) sin(nπx L dx bn= 2
L Z L
0
g(x) sin(nπx L )dx
Remark relation between standing waves and d’Alemtat’s soln ηn(x, t) =αncos(ωnt+φn) sin(nπx
L )
= αn
2
sin(nπx
L +ωn+φn) + sin(nπx
L −ωnt−φn)
= αn
2
sin(nπ
L (x+ct) +φn) + sin(nπ
L (x−ct)−φn)
= superposition of 2 traveling waves
V.4 Viscous fluids V PDES FOR CONTINUOUS MEDIA
V.4 Viscous fluids
In ideal fluids, the only force exerted by the fluid particles is the pressure force−pn, normal to any surface.
In a viscous fluid, particles also exert a frictional force which has a tangential component. The frictional force is specified by a thestress tensor σij,i, j= 1,2,3 st. σ·n=σijnjei is the frictional force per unit surface in a surface with normaln.
Some physical input is necessary to model the stress tensorσ. The simplest model is as follows:
since σ is caused by differential motion, we expect σ to depend on velocity gradients ∂u∂xji. The simplest relation betweenσand ∂u∂xi
j is linear. σij=α∂u∂xi
j +β∂u∂xj
i +γ∂u∂xk
kδij. Sinceσ= 0 for pure rotationu=Ω×r.
This leads to the model σij =α
∂ui
∂xj
+∂uj
∂xi
+γ∂uk
∂xk
δij =η ∂ui
∂xj
+∂uj
∂xi
−2 3
∂uk
∂xk
δij
+ζ∂uk
∂xk
δij
whereη is the shear viscosity andζ is the bulk viscosity.
Momentum eqn.
d dt
ZZZ
V
ρuidv=− ZZ
S
ρuiujnjds− ZZ
S
pnidS+ ZZ
S
σijnjdS ZZZ
V
∂
∂t(ρui)dv=− ZZZ
V
∂
∂xj
(ρuiuj)− ∂
∂xi
p+ ∂
∂xj
(σij)dv Hence ∂
∂t(ρui) + ∂
∂xj
(ρuiuj) =− ∂
∂xi
p+ ∂
∂xj
(σij) ρ(∂
∂tui+u· ∇ui) =− ∂
∂xi
p+µ(∇2ui+ ∂
∂xi
(∇ ·u)−2 3
∂
∂xi
(∇ ·u) +ζ ∂
∂xi
(∇ ·u)
We thus the compressible Navier–Stokes:
(ρ ∂u∂t +u· ∇u
=−∇p+µ∇2u+ (ζ+13µ)∇(∇ ·u)
∂ρ
∂t +∇ ·(ρu) = 0 For an incompressible fluid: ρ=const,∇ ·u= 0
∂u
∂t +u· ∇u=−∇p+ν∇2u and ∇ ·u= 0 with ν =µ
ρ and p→ p ρ Boundary conditions: u= 0 at the boundaries.
Example 20 (of viscous flows) Steady flows, so∂t= 0, incompressible (i) Flow in a pipe: Assumeu=u(z)i. Then 0 =−∂p∂x+ν∂∂z2u2
• Plane Corette: p=const,u(H) =U (moving upper boundary) andu(0) = 0. Then u(z) =U zH.
• Plane Poiseuille: ∂x∂p = dpdx =const. Then ∂∂z2u2 = 1νdxdp, u(0) =u(H) = 0 and we getu(z) = ν1dpdxz(z−H).
The pressure gradient dpdx can be related to the mass fluxQ=ρRH
0 u(z)dz=−ρ12νH3dxdp.
(ii) Axisymetric Poiseuille flow. u=u(r)i, ∇2u = 1r∂r∂ (r∂u∂r)i ∂θ, ∂z = 0 (cylindrical coordinates). The NS eqns reduce to:
0 =−∂p
∂x+ν1 r
∂
∂r(r∂u
∂r)
V.4 Viscous fluids V PDES FOR CONTINUOUS MEDIA
Assuming ∂p∂x == dpdx =const.
d dr(rdu
dr) = 1 ν
dp dxr rdu
dr = 1 ν
dp dx(r2
2 +C) du
dr = 1 ν
dp dx(r
2 +C
r) C= 0 foru(0) finite u(r) = 1
ν dp dx(r2
4 +D)
Imposeu(R) = 0
u(r) = 1 4ν
dp
dx r2−R2 Mass flux Q=ρ
Z R 0
Z 2π 0
u(r)rdrdθ=2πρ 4ν
dp dx
Z R 0
(r2−R2)rdr
=−πρR4 8ν
dp dx