• Keine Ergebnisse gefunden

Some Problems on the Stochastic Flood Control

N/A
N/A
Protected

Academic year: 2022

Aktie "Some Problems on the Stochastic Flood Control"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

SOME PROBLEMS ON THE STOCHASTIC FLOOD CONTROL

Y u r i A . Rosanov

J u n e 1974

R e s e a r c h Memoranda a r e i n f o r m a l p u b l i c a t i o n s r e l a t i n g t o o n g o i n g o r p r o j e c t e d a r e a s o f r e - s e a r c h a t IIASA. The v i e w s e x p r e s s e d a r e t h o s e o f t h e a u t h o r , a n d d o n o t n e c e s s a r i l y r e f l e c t t h o s e o f IIASA.

(2)
(3)

Some Problems on t h e S t o c h a s t i c Flood C o n t r o l Y u r i A . Rosanov

1. Let us c o n s i d e r a s y s t e m o f n w a t e r r e s e r v o i r s

Ria.. .

> R n . F o r a g e n e r a l i t y l e t u s assume t h e y a r e cori- n e c t e d i n s u c h a way t h a t we c a n t r a n s f e r an amount o f w a t e r

from Ri t o R d u r i n g t h e t i m e p e r i o d [to,T] and a n amount j

o f w a t e r

from Ri t o o u t s i d e where c o n t r o l p a r a m e t e r s u i j , i , j = 1,

...,

n s a t i s f y t o c o n s t r a i n t s

T h e r e w i t h a i j , b i j a r e g i v e n n o n - n e g a t i v e c o n s t a n t s - - f o r e x a m p l e , aii i s d e t e r m i n e d w i t h r e s p e c t t o minim~lm demands and bii means t h e l e v e l u n d e r which e x c e e d i n g i t might

c a u s e a l o t of damage. Thus, t h e t o t a l amount o f w a t e r t h a t p a s s e s t h r o u g h t h e r e s e r v o i r R i n a "normal way" d u r i n g

i t h e t i m e p e r i o d [ t O , ~ ] i s

(4)

where c o n v e n t i o n a l l y u i j ( t ) = -u ( t ) < 0 i f a c t u a l l y a t j i

t h e moment t t h e w a t e r comes t o t h e r e s e r v o i r Ri from t h e r e s e r v o i r R

j '

Suppose t h e t a r g e t i s t o a c c u m u l a t e w a t e r d u r i n g some t i m e p e r i o d [ t O , ~ ] . I f ~ ( t ) i s a c o r r e s p o n d i n g i n f l o w

( i n p u t ) f o r R i , t h e n up t o t h e moment T t h e amount o f w a t e r W . (T) i n t h e r e s e r v o i r Ri i s

1

L e t t h e c a p a c i t y o f Ri b e

WI.

Then t h e n e g a t i v e v a l u e Wi(T)

-

W T means t h a t we do n o t h a v e enough w a t e r a t t h e e n d o f t h e c o n s i d e r e d p e r i o d [ t O , ~ ] and t h e p o s i t i v e v a l u e

Wi(T)

-

W! means t h a t we a c t u a l l y h a v e t h e " o v e r f l o w . "

The p r o b l e m i s t o choose t h e c o n t r o l f u n c t i o n s u ( t ) , i j

< t < T i n s u c h a way a s t o minimize t h e mean s q u a r e v a l u e

t o

-

-

o f t h e d e v i a t i o n o f t h e random v e c t o r

from t h e v e c t o r W* = IW;,

. . .

, W E ) .

(5)

Of course the optimal control depends very much on the actual input S(t) = {C1(t)

,. . .

,Cn(t)l, to

2

t

-

< T. We suggest t , o assume that

where

is a multi-dimensional, Gamma-distributed stationary random process of the Markov type;' and w(t) = {wl(t)

,. .

.,wn(t)l

is a "big wave" (because of melting snow or rainfall) with components wi(t) = w.(zI,t) which are solutions of the corre-

1

sponding hydrodynamic partial equationz of the St. Venant type for discharges wi(t,z) along "bed-streams' z p

5

z

5

zI

with "initial conditions" of the type

Herewith

~

l ~ o r example,

where nl(t),

...,

nn(t) are independent Gaussian stationary Markov processes with corresponding parameters.

2 ~ e e J . Stoker [l]

.

(6)

( w h e r e Pi i s a p o l y n o m i a l , c i s a p o s i t i v e c o n s t a n t ) ; t h e i

v a r i a b l e T~ i s assumed t o be random w i t h t h e e x p o n e n t i a l d i s t r i b u t i o n a n d means t h e moment a t which t h e wave w i ( t ) r i s e s .

I n o r d e r t o d e a l w i t h t h e problem on t h e o p t i m a l c o n t r o l i n a n a n a l y t i c a l way, we s u g g e s t t o assume t h a t

2 . Suppose now t h e t a r g e t i s " t o c a t c h " t h e wave w ( t ) i n o r d e r t o p r o t e c t t h e o v e r f l o w , and a l l r e s e r v o i r s R1,

...

3 Rn

a r e some k i n d o f a " t r a p " f o r t h i s wave.

L e t u s assume f o r s i m p l i c i t y t h a t R1,

...,

Rn a r e n o t c o n n e c t e d s o we c a n p o s e a p r o b l e m f o r R = R1 when we d e a l w i t h t h e u n i v a r i a t e random p r o c e s s

c ( t )

= 5 1 ( t ) d e s c r i b e d a b o v e .

Suppose t h a t d u r i n g a t i m e p e r i o d t o

2

t

5

T , where T

i s some u n o b s e r v a b l e c r u c i a l m ~ r n e n t , ~ we wish t o o p e r a t e i n s u c h a way t h a t t h e whole i n f l o w c ( t ) g o e s t h r o u g h 4 s o t h e r e s e r v o i r h a s a c o n s t a n t volume ( f o r e x a m p l e , i t i s e m p t y ) ; b u t a f t e r t h e c r u c i a l moment T , we w i s h t o s t o p t h e o u t f l o w ( i a e . u ( t ) = 0 ) s o t h e who1.e i n f l o w g o e s i n t h e r e s e r v o i r .

or

e x a m p l e , r = T i s t h e moment a t which t h e wave 1

w ( t ) = w l ( t ) comes t o t h e s y s t e m , o r T d i f f e r s from t h i s moment on a p r o p e r t i m e d e l a y .

4 ~ t means e s s e n t i a l l y t h a t t h e r e a r e no c o n s t r a i n t s on o u t p u t s u ( t ) = Ull( t )

.

(7)

B e c a u s e t h e random moment

say

w i t h t h e e x p o n e n t i a l d i s - t r i b u t i o n ) i s u n o b s e r v a b l e , we h a v e t o u s e some e s t i m a t e T * . I f T * > T , t h e n some p a r t o f t h e u n d e s i r a b l e i n f l o w g o e s t h r o u g h t h e s y s t e m - - t h e c o r r e s p o n d i n g amount o f w a t e r w i l l b e

i f T * < T , t h e n some p a r t o f t h e u n d e s i r a b l e i n f l o w g o e s i n t h e r e s e r v o i r - - t h e c o r r e s p o n d i n g amount o f w a t e r w i l l b e

The p r o b l e m i s t o c h o o s e t h e c o n t r o l p a r a m e t e r T * i n s u c h a way t o m i n i m i z e - - i n a p r o p e r s e n s e - - W ( T * ) , e . g . t o m i n i m i z e t h e e x p e c t a t i o n EW(T*) o r t h e p r o b a b i l i t y ,

w h e r e W* i s some c r u c i a l l e v e l ( o r t o m i n i m i z e s i m i l a r p r o b a b i l i t i e s u n d e r c o n d i t i o n s T * < T , T * > T ) .

5 ~ h i s w a t e r o c c u p i e s some p a r t o f t h e r e s e r v o i r and i t l e a v e s s p a c e f o r t h e "wave" w ( t ) i t s e l f .

(8)

R e f e r e n c e s

[l] S t o k e r , J . Water Waves. New York, W i l e y , 1 9 5 7 .

Referenzen

ÄHNLICHE DOKUMENTE

Subsection 2.1 shows that nonsmooth sample performance functions do not necessarily lead t o nonsmooth expectation functions. Unfortunately, even the case when the

It is shown t h a t relevant asymptotic (for vanishing noise) properties of this problem coincide with the corresponding properties of a suitably chosen adaptive

To illustrate this, assume that the objective function J of the stochastic optimal control problem is specified in terms of mean and variance of storage and/or release during

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review.. Views or opinions expressed herein

If in a linkage problem we merge t w ~ or more subproblems into a united one, then correspondingly in a decomposition approach we try to split an initial large-scale problem into

Our presentation concludes with results of numerical experiments using the new equations, and a discussion of related topics such as optimal linear filtering, infinite

Research Reports are publications reporting on the work ,of the author. Any views or conclusions are those of the author, and do not necessarily reflect those

Then the calculation of this program is reduced to the following problem: find a schedule which transfers the program to the most preferable state for a given time.. Thus, in