2-Hydroxy­benzyl alcohol–phenanthroline (1/1)

10  Download (0)

Full text

(1)

2-Hydroxybenzyl alcohol–

phenanthroline (1/1)

Cuong Quoc Tonaand Michael Bolteb*

aInstitut fu¨r Organische Chemie der Goethe-Universita¨t Frankfurt, Max-von-Laue- Strasse 7, D-60438 Frankfurt am Main, Germany, andbInstitut fu¨r Anorganische Chemie der Goethe-Universita¨t Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de Received 20 October 2009; accepted 27 October 2009

Key indicators: single-crystal X-ray study;T= 173 K; mean(C–C) = 0.002 A˚;

Rfactor = 0.038;wRfactor = 0.099; data-to-parameter ratio = 13.9.

Crystals of the title compound, C12H8N2C7H8O2, were obtained during cocrystallization experiments of a compound with two hydrogen-bond donors (2-hydroxybenzyl alcohol) with another compound containing two hydrogen-bond acceptors (phenanthroline). Unexpectedly, the two molecules do not form dimers with two O—H N hydrogen bonds connecting the two molecules. However, one of the hydroxy groups forms a bifurcated hydrogen bond to both phenanthro- line N atoms, whereas the other hydroxy group forms an O—

H O hydrogen bond to a symmetry-equivalent 2-hydroxy- benzyl alcohol molecule. In addition, the crystal packing is stabilized by –interactions between the two phenanthro- line ring systems, with a centroid–centroid distance of 3.570 A˚ .

Related literature

For co-crystallization experiments, see: Ton & Bolte (2005);

Tutughamiarsoet al.(2009).

Experimental Crystal data C12H8N2C7H8O2 Mr= 304.34 Monoclinic,P21=n a= 7.264 (1) A˚ b= 20.256 (3) A˚ c= 11.082 (2) A˚ = 109.13 (3)

V= 1540.6 (4) A˚3 Z= 4

MoKradiation = 0.09 mm1 T= 173 K

0.600.500.30 mm

Data collection Stoe IPDS II two-circle

diffractometer

Absorption correction: none 20425 measured reflections

2885 independent reflections 2518 reflections withI> 2(I) Rint= 0.036

Refinement

R[F2> 2(F2)] = 0.038 wR(F2) = 0.099 S= 1.06 2885 reflections

208 parameters

H-atom parameters constrained max= 0.15 e A˚3

min=0.21 e A˚3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1O O2i 0.93 1.69 2.6125 (14) 168

O2—H2O N1ii 0.87 2.29 3.0390 (15) 144

O2—H2O N2ii 0.87 2.15 2.8663 (14) 140

Symmetry codes: (i)x12;yþ12;z12; (ii)xþ12;yþ12;zþ12.

Data collection:X-AREA(Stoe & Cie, 2001); cell refinement:X- AREA; data reduction:X-AREA; program(s) used to solve structure:

SHELXS97(Sheldrick, 2008); program(s) used to refine structure:

SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus(Sheldrick, 2008); software used to prepare material for publication:SHELXL97andPLATON(Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2291).

References

Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.

Spek, A. L. (2009).Acta Cryst.D65, 148–155.

Stoe & Cie (2001).X-AREA. Stoe & Cie, Darmstadt, Germany.

Ton, Q. C. & Bolte, M. (2005).Acta Cryst.E61, o1406–o1407.

Tutughamiarso, M., Bolte, M. & Egert, E. (2009).Acta Cryst.C65, o574–o578.

organic compounds

o2936

Ton and Bolte doi:10.1107/S1600536809044699 Acta Cryst.(2009). E65, o2936 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(2)
(3)

supplementary materials

sup-1

Acta Cryst. (2009). E65, o2936 [ doi:10.1107/S1600536809044699 ] 2-Hydroxybenzyl alcohol-phenanthroline (1/1)

C. Q. Ton and M. Bolte

Comment

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso et al., 2009). In this work, we wanted to cocrystallize phenanthroline and 2-hydroxybenzyl alcohol. However, the cocrystal, we obtained, did not show the expected AA/DD pattern, i.e. with two O—H···N hydrogen bonds connecting the two molecules to a dimer.

However, one of the hydroxy groups forms a bifurcated hydrogen bonds to both phenanthroline N atoms, whereas the other hydroxy group forms a O—H···O hydrogen bond to a symmetry equivalent 2-hydroxybenzyl alcohol molecule. In addition, the crystal packing is stabilized by π–π interactions between two phenanthroline ring systems forming a centrosymmetric dimer with a centroid···centroid distance of 3.570 Å. The second molecule is generated by the symmetry operation 1 - x, -y, 1 - z.

Experimental

The complex consisting of 1,10-phenanthroline and 2-hydroxybenzylenealcohol was obtained by to the method of isothermal vaporization. 1,10-phenanthroline and 2-hydroxybenzylenealcohol were added in an equimolar ratio (10 mmol) into a flask.

Afterwards chloroform was added dropwise until the substances were completely dissolved. Then, the flask was sealed and set aside at room temperature. After two weeks crystals of the complex were obtained.

Refinement

Hydrogen atoms were located in a difference Fourier map but those bonded to C were included in calculated positions [C—H

= 0.93 - 0.99 Å] and refined as riding [U

iso

(H) = 1.2U

eq

(C)]. H atoms bonded to O were freely refined.

Figures

Fig. 1. A view of the molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. Part of the crystal structure of the title compound viewed along the c axis. Hydrogen

atoms bonded to C omitted. Hydrogen bonds shown as dashed lines.

(4)

2-Hydroxybenzyl alcohol–phenanthroline (1/1)

Crystal data

C12H8N2·C7H8O2 F000 = 640

Mr = 304.34 Dx = 1.312 Mg m−3

Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 11957 reflections a = 7.2640 (10) Å θ = 3.0–25.0º

b = 20.256 (3) Å µ = 0.09 mm−1

c = 11.082 (2) Å T = 173 K

β = 109.13 (3)º Block, colourless

V = 1540.6 (4) Å3 0.60 × 0.50 × 0.30 mm Z = 4

Data collection

Stoe IPDS II two-circle

diffractometer 2518 reflections with I > 2σ(I) Radiation source: fine-focus sealed tube Rint = 0.036

Monochromator: graphite θmax = 25.7º

T = 173 K θmin = 2.8º

ω scans h = −8→8

Absorption correction: none k = −24→24

20425 measured reflections l = −13→13

2885 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring

sites

R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained

wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2526P]

where P = (Fo2 + 2Fc2)/3

S = 1.06 (Δ/σ)max = 0.001

2885 reflections Δρmax = 0.15 e Å−3

208 parameters Δρmin = −0.21 e Å−3

Primary atom site location: structure-invariant direct

methods Extinction correction: none

Special details

(5)

supplementary materials

sup-3

between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention- al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å

2

)

x y z Uiso*/Ueq

N1 0.68091 (17) 0.08958 (5) 0.49625 (11) 0.0357 (3)

N2 0.89787 (17) 0.03273 (5) 0.72184 (11) 0.0371 (3)

C1 0.72912 (18) 0.02470 (6) 0.49544 (13) 0.0330 (3)

C2 0.5740 (2) 0.11589 (7) 0.38637 (14) 0.0418 (3)

H2 0.5403 0.1612 0.3860 0.050*

C3 0.5071 (2) 0.08146 (8) 0.27060 (15) 0.0478 (4)

H3 0.4303 0.1029 0.1945 0.057*

C4 0.5553 (2) 0.01591 (8) 0.26982 (15) 0.0477 (4)

H4 0.5114 −0.0087 0.1927 0.057*

C5 0.6694 (2) −0.01440 (7) 0.38328 (14) 0.0398 (3)

C6 0.7275 (2) −0.08270 (7) 0.38997 (17) 0.0480 (4)

H6 0.6881 −0.1088 0.3146 0.058*

C7 0.8361 (2) −0.11014 (7) 0.50050 (18) 0.0497 (4)

H7 0.8733 −0.1552 0.5017 0.060*

C8 0.8973 (2) −0.07275 (6) 0.61706 (15) 0.0406 (3)

C9 1.0057 (2) −0.10017 (7) 0.73516 (18) 0.0513 (4)

H9 1.0437 −0.1452 0.7402 0.062*

C10 1.0568 (2) −0.06217 (8) 0.84299 (18) 0.0526 (4)

H10 1.1285 −0.0803 0.9238 0.063*

C11 1.0001 (2) 0.00436 (7) 0.83078 (15) 0.0459 (4)

H11 1.0376 0.0308 0.9057 0.055*

C12 0.84467 (19) −0.00511 (6) 0.61498 (13) 0.0342 (3)

O1 0.96385 (12) 0.19916 (5) 0.97867 (8) 0.0343 (2)

H1O 0.9040 0.1823 0.8970 0.051*

O2 1.25869 (12) 0.33737 (4) 1.24759 (8) 0.0299 (2)

H2O 1.2750 0.3699 1.2006 0.045*

C13 1.16077 (16) 0.20302 (6) 1.00360 (11) 0.0254 (3)

C14 1.26346 (16) 0.24552 (6) 1.10244 (11) 0.0252 (3)

C15 1.46410 (17) 0.25043 (6) 1.13083 (12) 0.0300 (3)

H15 1.5363 0.2785 1.1984 0.036*

C16 1.56203 (18) 0.21500 (6) 1.06219 (13) 0.0333 (3)

H16 1.6992 0.2192 1.0829 0.040*

C17 1.45820 (18) 0.17387 (6) 0.96403 (12) 0.0325 (3)

H17 1.5239 0.1501 0.9164 0.039*

C18 1.25733 (18) 0.16711 (6) 0.93473 (12) 0.0293 (3)

H18 1.1863 0.1382 0.8682 0.035*

C19 1.15095 (17) 0.28505 (6) 1.17128 (11) 0.0297 (3)

H19A 1.0333 0.3037 1.1071 0.036*

(6)

H19B 1.1069 0.2548 1.2265 0.036*

Atomic displacement parameters (Å

2

)

U11 U22 U33 U12 U13 U23

N1 0.0415 (6) 0.0277 (5) 0.0471 (7) −0.0037 (5) 0.0269 (5) −0.0039 (5)

N2 0.0471 (7) 0.0279 (6) 0.0456 (7) −0.0038 (5) 0.0277 (5) −0.0007 (5)

C1 0.0352 (7) 0.0267 (6) 0.0486 (8) −0.0082 (5) 0.0295 (6) −0.0070 (5)

C2 0.0450 (8) 0.0384 (8) 0.0490 (8) −0.0024 (6) 0.0248 (7) 0.0022 (6)

C3 0.0454 (8) 0.0580 (10) 0.0469 (8) −0.0112 (7) 0.0244 (7) 0.0013 (7)

C4 0.0474 (8) 0.0588 (10) 0.0470 (8) −0.0211 (7) 0.0293 (7) −0.0152 (7)

C5 0.0415 (7) 0.0374 (7) 0.0552 (9) −0.0164 (6) 0.0356 (7) −0.0155 (6)

C6 0.0556 (9) 0.0368 (8) 0.0695 (11) −0.0192 (7) 0.0449 (9) −0.0242 (7)

C7 0.0539 (9) 0.0247 (7) 0.0892 (13) −0.0095 (6) 0.0490 (9) −0.0169 (7)

C8 0.0388 (7) 0.0240 (6) 0.0719 (10) −0.0049 (5) 0.0357 (7) −0.0035 (6)

C9 0.0459 (8) 0.0278 (7) 0.0909 (13) 0.0019 (6) 0.0371 (9) 0.0081 (8)

C10 0.0484 (9) 0.0439 (8) 0.0702 (11) 0.0004 (7) 0.0257 (8) 0.0165 (8)

C11 0.0534 (9) 0.0402 (8) 0.0509 (9) −0.0057 (6) 0.0263 (7) 0.0027 (6)

C12 0.0365 (7) 0.0250 (6) 0.0538 (8) −0.0066 (5) 0.0321 (6) −0.0056 (5)

O1 0.0208 (4) 0.0510 (6) 0.0310 (5) −0.0017 (4) 0.0083 (3) −0.0068 (4)

O2 0.0376 (5) 0.0240 (4) 0.0281 (4) −0.0015 (3) 0.0108 (4) 0.0035 (3)

C13 0.0224 (5) 0.0288 (6) 0.0254 (6) 0.0018 (4) 0.0084 (4) 0.0058 (5)

C14 0.0248 (6) 0.0253 (6) 0.0264 (6) 0.0022 (4) 0.0094 (5) 0.0061 (5)

C15 0.0254 (6) 0.0291 (6) 0.0349 (6) −0.0022 (5) 0.0090 (5) 0.0024 (5)

C16 0.0232 (6) 0.0341 (7) 0.0446 (7) 0.0017 (5) 0.0138 (5) 0.0059 (6)

C17 0.0323 (6) 0.0325 (6) 0.0380 (7) 0.0079 (5) 0.0188 (5) 0.0061 (5)

C18 0.0304 (6) 0.0299 (6) 0.0283 (6) 0.0024 (5) 0.0105 (5) 0.0016 (5)

C19 0.0263 (6) 0.0326 (6) 0.0311 (6) −0.0018 (5) 0.0104 (5) −0.0024 (5)

Geometric parameters (Å, °)

N1—C2 1.3230 (19) C10—C11 1.403 (2)

N1—C1 1.3609 (17) C10—H10 0.9500

N2—C11 1.3235 (19) C11—H11 0.9500

N2—C12 1.3562 (17) O1—C13 1.3674 (14)

C1—C5 1.4166 (19) O1—H1O 0.9310

C1—C12 1.448 (2) O2—C19 1.4203 (15)

C2—C3 1.400 (2) O2—H2O 0.8714

C2—H2 0.9500 C13—C18 1.3980 (17)

C3—C4 1.374 (2) C13—C14 1.4006 (17)

C3—H3 0.9500 C14—C15 1.3901 (17)

C4—C5 1.401 (2) C14—C19 1.5165 (16)

C4—H4 0.9500 C15—C16 1.3979 (18)

C5—C6 1.441 (2) C15—H15 0.9500

C6—C7 1.341 (2) C16—C17 1.3816 (19)

(7)

supplementary materials

sup-5

C8—C12 1.4206 (18) C19—H19A 0.9900

C9—C10 1.366 (3) C19—H19B 0.9900

C9—H9 0.9500

C2—N1—C1 117.24 (12) N2—C11—C10 124.36 (15)

C11—N2—C12 117.73 (12) N2—C11—H11 117.8

N1—C1—C5 122.70 (13) C10—C11—H11 117.8

N1—C1—C12 118.04 (12) N2—C12—C8 122.19 (13)

C5—C1—C12 119.26 (12) N2—C12—C1 118.51 (11)

N1—C2—C3 124.43 (14) C8—C12—C1 119.30 (12)

N1—C2—H2 117.8 C13—O1—H1O 110.0

C3—C2—H2 117.8 C19—O2—H2O 111.4

C4—C3—C2 118.34 (15) O1—C13—C18 122.60 (11)

C4—C3—H3 120.8 O1—C13—C14 116.55 (10)

C2—C3—H3 120.8 C18—C13—C14 120.85 (11)

C3—C4—C5 119.67 (14) C15—C14—C13 118.11 (11)

C3—C4—H4 120.2 C15—C14—C19 123.11 (11)

C5—C4—H4 120.2 C13—C14—C19 118.77 (10)

C4—C5—C1 117.62 (13) C14—C15—C16 121.53 (12)

C4—C5—C6 122.97 (14) C14—C15—H15 119.2

C1—C5—C6 119.42 (15) C16—C15—H15 119.2

C7—C6—C5 121.31 (14) C17—C16—C15 119.61 (11)

C7—C6—H6 119.3 C17—C16—H16 120.2

C5—C6—H6 119.3 C15—C16—H16 120.2

C6—C7—C8 121.26 (13) C16—C17—C18 120.15 (11)

C6—C7—H7 119.4 C16—C17—H17 119.9

C8—C7—H7 119.4 C18—C17—H17 119.9

C9—C8—C12 117.59 (14) C17—C18—C13 119.73 (12)

C9—C8—C7 122.96 (14) C17—C18—H18 120.1

C12—C8—C7 119.44 (14) C13—C18—H18 120.1

C10—C9—C8 120.10 (14) O2—C19—C14 114.26 (10)

C10—C9—H9 119.9 O2—C19—H19A 108.7

C8—C9—H9 119.9 C14—C19—H19A 108.7

C9—C10—C11 118.03 (16) O2—C19—H19B 108.7

C9—C10—H10 121.0 C14—C19—H19B 108.7

C11—C10—H10 121.0 H19A—C19—H19B 107.6

C2—N1—C1—C5 −0.08 (18) C11—N2—C12—C1 178.66 (11)

C2—N1—C1—C12 −179.49 (11) C9—C8—C12—N2 0.86 (18)

C1—N1—C2—C3 0.4 (2) C7—C8—C12—N2 179.91 (11)

N1—C2—C3—C4 −0.2 (2) C9—C8—C12—C1 −178.65 (11)

C2—C3—C4—C5 −0.3 (2) C7—C8—C12—C1 0.40 (18)

C3—C4—C5—C1 0.55 (19) N1—C1—C12—N2 0.52 (17)

C3—C4—C5—C6 −179.40 (13) C5—C1—C12—N2 −178.92 (10)

N1—C1—C5—C4 −0.37 (18) N1—C1—C12—C8 −179.96 (11)

C12—C1—C5—C4 179.04 (11) C5—C1—C12—C8 0.61 (17)

N1—C1—C5—C6 179.58 (11) O1—C13—C14—C15 179.69 (10)

C12—C1—C5—C6 −1.02 (17) C18—C13—C14—C15 −0.63 (17)

C4—C5—C6—C7 −179.66 (13) O1—C13—C14—C19 −1.68 (15)

C1—C5—C6—C7 0.40 (19) C18—C13—C14—C19 178.01 (11)

(8)

C5—C6—C7—C8 0.6 (2) C13—C14—C15—C16 0.95 (17)

C6—C7—C8—C9 177.95 (13) C19—C14—C15—C16 −177.62 (11)

C6—C7—C8—C12 −1.0 (2) C14—C15—C16—C17 −0.24 (19)

C12—C8—C9—C10 0.1 (2) C15—C16—C17—C18 −0.81 (18)

C7—C8—C9—C10 −178.94 (13) C16—C17—C18—C13 1.12 (18)

C8—C9—C10—C11 −0.9 (2) O1—C13—C18—C17 179.27 (11)

C12—N2—C11—C10 −0.1 (2) C14—C13—C18—C17 −0.39 (17)

C9—C10—C11—N2 1.0 (2) C15—C14—C19—O2 12.73 (16)

C11—N2—C12—C8 −0.86 (18) C13—C14—C19—O2 −165.84 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A

O1—H1O···O2i 0.93 1.69 2.6125 (14) 168

O2—H2O···N1ii 0.87 2.29 3.0390 (15) 144

O2—H2O···N2ii 0.87 2.15 2.8663 (14) 140

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2.

(9)

supplementary materials

sup-7

Fig. 1

(10)

Fig. 2

Figure

Updating...

References

Related subjects :