Problem session 1
Topics
to be coveredtoday
Banach spaces
example1st
Absolute
convergenceof
series inBanach spaces
Lebesgue
Dominated
convergence theorem and applicationsDifferential
under IntegraPicard Lindelof
theorem8n
Uniqueness Existence to d VP
of
ODEBanach fixed point
theoremI
Banach spaces
X
vectorspace
over 112 6norm 11.11
scalars
is
a Banachspace g
X H il iscomplete
under the metric
induced by
H H1
every
Cauchye x
y
Hxy
H Xy X
sequence can mixconverges lie X
sen is Cauchy
j F
N s t H m n z NIl Nm senH O
Exampies
y
a b intervalCa b space
of
continuosfunctions
on cabfor f
eC laid
Itfell
supNE aibfan
Kalb
H Il is a Banachspace Cfn
0f
eC card
2
lt lepta
sequence spacesZ
3 32 Bi cIR
113
Hp13,112,1gal't
tet
3I 11311ps
angle inequality 113 12111ps
11311 11 11pMinkowskiinequality
f
GE.iq ix f EEE.is.it
CEIrx.ij
Holder's
inequality
713 x IE IE 13.15 27,1
10
t
where
GEIR
s tpl
1Iq
LO
Completeness sequence in
lb Cauchy
a
In
f
i is i
audrey Cauchy
Saa 3ozcatY 3am c
It
cSo F N s t f mm ZN
Il
3am BnKp
L EIf
13mg3njlt.LE o.ly mj
3njlI
It
is complete3
Lt
spaceslets
Lebesguespaces
S E M be a measure space
suppose I
r
algebra
on SE
cPCs
i S EE
M measure µ E RU to i A EE SIA EE
Iii
If
Ai EEU Ai E E
Lt f
SRI f f
Hpismeasurable gift tea
norm
Lt L type f t Http
S IR2 measurableAre f
SIR f
O u almost everywhere
AT g f g
manef
SIR Hflls f measurable int 0201 Haole
Ca e x
essential
supremum Minkowski's inequality
f Hf 1gHp
EHttp
111911
Holdersinequality
Hfgll
IHttp 11911g
where
f Iq
LLf integrable functions
4
S
D ERn
open
Heuer t
c01121 f
ctick
for
all Kcomepalocally
J
Toc
Cr locally
integrablefunctions
j Iff Banach
spaceK
S V
Vfinite dimensional
v su Ya basis
of
Vf JE f y fj S R
f
sf
G Yt
Fa
Vz i r tf
GVip
J f du tjd T
Bochnerintegral
o_0 is
finite
dimc
Hollz E Il Il
E CIl Hz
Il Il 11112
are
equivalent
Jfdu
is welldefined2
Absolute
convergenceof
seriesin
BanachX
Banach Space Hallxn sequence ni
X
Sn
X Xz 1 Xn tf nSn Sn ni series
Sn converges in
X if
it converges to someS E
X
Sn
absolutely
convergesg E 1 1
theorem 1
If
X is a Banachspace
then
every
absolutely
convergent seriesis
convergent
2
If every
absolutely convergentseries
converges in some
normed space X
then
X must
be aBanach space
Proof
D
X is Banach211
anyis convergen
n I
can
lanqgnisomersenteeny
E Han
is convergentin 112
0 Luann is CauchyH
E o F N s t Fm n Z N
Eme
aah EI
ar LEfor
the sameN
mi n SakIII
aE 941 11.77
m9
e
E Z Hak 11
K ntl
triangle
EL
Eby
Snf
a is aCauchy
sequencein
X
i 0
X
X
norm v s Let's canbe a
Cauchy
sequence bi
X
D FN
s'ttt nk
ZN Inna Hnk I
2Lk
is a subsequenceform
this sequenceof
canJk Knw Nnn Y
Nn
Y
z Anz NhEye
isabsolute convergent
Ely a1
c D21
ED
Eye
convergencep subsequence
ye of
theCauchy
sequencesen
which
converges D sen se CX
we
X Banach Space
Lebesgue
Dominated
convergence theoremX
u measurespace
Fn
XIR measurable functions
f newf
n xf
Cxf
XIR
for
a e Xsuppose
Fg
X Rintegrable get 414
s t
Ifn
aI
Ega t
n a e xthen
fne 11cm ft L CH
and Liz th du ft
DaeProof
Fatou's
Lemma Supposeth
measurable functions
wfn
20If
nlimatncxfcx
are xthen
Jf
E nlimint
aIfn
Want
Hnl
du LA1 Fnl Eg ginn
IfnldME g dues
monotonicity
of
integral 0f
n eL
tefnCx f
Cx a e xIfl
Eg
a eSHI
da
Efg
du af
cL
suWant to prove fig Jfnd
uIf die
we ll
prove
nlingJ Ifn ft du
oIfn fl
EItnlt Ifl 2g
a eConsider
hn 2g Ifn fl
ZO f n
linminffhn limint Sag
Stott
measurable Jongdu limsupJHnfdm
0
nFatou's
lemmaJeniminathndustimiant
hindu
il
129dm
YinguPSHTI2g
dielim sup
g Ifn ft du
EO
n a
O E
bjmijf Jlfn fldnf
linmsusPJHntlduf.co
Is Jtfn ft du
OBO
OE µ Indu Adal
E Jl tn ft du
O
limo Jfndµ Sf die Slim.tn
dy
n
Counterexample
oil
fn
x no see
In
0 otherwise
In 0 Ifn Cx any g integrable for
Ling fncx3dx
y9
things