Full text

(1)

Problem session 1

Topics

to be covered

today

Banach spaces

example

1st

Absolute

convergence

of

series in

Banach spaces

Lebesgue

Dominated

convergence theorem and applications

Differential

under Integra

Picard Lindelof

theorem

8n

Uniqueness Existence to d VP

of

ODE

Banach fixed point

theorem

I

Banach spaces

X

vector

space

over 112 6

norm 11.11

scalars

is

a Banach

space g

X H il is

complete

under the metric

induced by

H H

1

every

Cauchy

e x

y

Hx

y

H X

y X

sequence can mix

converges lie X

sen is Cauchy

j F

N s t H m n z N

Il Nm senH O

(2)

Exampies

y

a b interval

Ca b space

of

continuos

functions

on cab

for f

e

C laid

It

fell

supNE aib

fan

Kalb

H Il is a Banach

space Cfn

0

f

e

C card

2

lt lepta

sequence spaces

Z

3 32 Bi c

IR

113

Hp

13,112,1gal't

t

et

3

I 11311ps

angle inequality 113 12111ps

11311 11 11p

Minkowskiinequality

f

GE.iq ix f EEE.is.it

CEIrx.ij

Holder's

inequality

713 x IE IE 13.15 27,1

10

t

where

GEIR

s t

pl

1

Iq

L

O

(3)

Completeness sequence in

lb Cauchy

a

In

f

i is i

audrey Cauchy

Saa 3ozcatY 3am c

It

cSo F N s t f mm ZN

Il

3am Bn

Kp

L E

If

13mg

3njlt.LE o.ly mj

3njl

I

It

is complete

3

Lt

spaces

lets

Lebesgue

spaces

S E M be a measure space

suppose I

r

algebra

on S

E

c

PCs

i S EE

M measure µ E RU to i A EE SIA EE

Iii

If

Ai EE

U Ai E E

Lt f

S

RI f f

Hpis

measurable gift tea

norm

(4)

Lt L type f t Http

S IR2 measurable

Are f

S

IR f

O u almost everywhere

AT g f g

mane

f

S

IR Hflls f measurable int 0201 Haole

C

a e x

essential

supremum Minkowski's inequality

f Hf 1gHp

E

Http

111911

Holdersinequality

Hfgll

I

Http 11911g

where

f Iq

L

Lf integrable functions

4

S

D E

Rn

open

Heuer t

c

01121 f

c

tick

for

all Kcomepa

locally

J

(5)

Toc

Cr locally

integrable

functions

j Iff Banach

space

K

S V

V

finite dimensional

v s

u Ya basis

of

V

f JE f y fj S R

f

s

f

G Y

t

Fa

Vz i r t

f

G

Vip

J f du tjd T

Bochnerintegral

o_0 is

finite

dim

c

Hollz E Il Il

E C

Il Hz

Il Il 11

112

are

equivalent

Jfdu

is welldefined

2

Absolute

convergence

of

series

in

Banach

X

Banach Space Hall

xn sequence ni

X

(6)

Sn

X Xz 1 Xn tf n

Sn Sn ni series

Sn converges in

X if

it converges to some

S E

X

Sn

absolutely

converges

g E 1 1

theorem 1

If

X is a Banach

space

then

every

absolutely

convergent series

is

convergent

2

If every

absolutely convergent

series

converges in some

normed space X

then

X must

be a

Banach space

Proof

D

X is Banach

211

any

is convergen

n I

can

lanqgnisomersenteeny

E Han

is convergent

in 112

0 Luann is Cauchy

H

E o F N s t F

m n Z N

Eme

aah EI

ar LE

for

the same

N

mi n Sak

(7)

III

a

E 941 11.77

m

9

e

E Z Hak 11

K ntl

triangle

E

L

E

by

Snf

a is a

Cauchy

sequence

in

X

i 0

X

X

norm v s Let's can

be a

Cauchy

sequence bi

X

D F

N

s't

tt nk

ZN Inna Hnk I

2

Lk

is a subsequence

form

this sequence

of

can

Jk Knw Nnn Y

Nn

Y

z Anz Nh

Eye

is

absolute convergent

Ely a1

c D

21

E

D

Eye

convergence

(8)

p subsequence

ye of

the

Cauchy

sequence

sen

which

converges D sen se C

X

we

X Banach Space

Lebesgue

Dominated

convergence theorem

X

u measure

space

Fn

X

IR measurable functions

f new

f

n x

f

Cx

f

X

IR

for

a e X

suppose

F

g

X R

integrable get 414

s t

Ifn

a

I

E

ga t

n a e x

then

fne 11cm ft L CH

and Liz th du ft

Dae

Proof

Fatou's

Lemma Suppose

th

measurable functions

w

fn

20

If

nlimatncx

fcx

are x

then

Jf

E n

limint

a

Ifn

(9)

Want

Hnl

du LA

1 Fnl Eg ginn

IfnldME g dues

monotonicity

of

integral 0

f

n e

L

te

fnCx f

Cx a e x

Ifl

E

g

a e

SHI

da

Efg

du a

f

c

L

su

Want to prove fig Jfnd

u

If die

we ll

prove

nling

J Ifn ft du

o

Ifn fl

E

Itnlt Ifl 2g

a e

Consider

hn 2g Ifn fl

Z

O f n

linminffhn limint Sag

Stott

measurable Jongdu limsupJHnfdm

0

n

Fatou's

lemma

Jeniminathndustimiant

hindu

il

129dm

YinguPSHTI

2g

die

lim sup

g Ifn ft du

E

O

n a

(10)

O E

bjmijf Jlfn fldnf

linmsusPJHn

tlduf.co

Is Jtfn ft du

O

BO

OE µ Indu Adal

E Jl tn ft du

O

limo Jfndµ Sf die Slim.tn

dy

n

Counterexample

oil

fn

x n

o see

In

0 otherwise

In 0 Ifn Cx any g integrable for

Ling fncx3dx

y

9

things

forex

dx o

(11)

Differential under

the integral

sign

Figure

Updating...

References

Related subjects :