• Keine Ergebnisse gefunden

Molecular simulations of the ribosome and associated translation factors

N/A
N/A
Protected

Academic year: 2022

Aktie "Molecular simulations of the ribosome and associated translation factors"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Molecular simulations of the ribosome and associated translation factors

Lars V Bock, Michal H Kola´ ! r and Helmut Grubmu¨ller

Theribosomeisamacromolecularcomplexwhichis responsibleforproteinsynthesisinalllivingcellsaccordingto theirtranscribedgeneticinformation.UsingX-ray

crystallographyand,morerecently,cryo-electronmicroscopy (cryo-EM),thestructureoftheribosomewasresolvedatatomic resolutioninmanyfunctionalandconformationalstates.

Moleculardynamicssimulationshaveaddedinformationon dynamicsandenergeticstotheavailablestructuralinformation, therebyhavebridgedthegaptothekineticsobtainedfrom single-moleculeandbulkexperiments.Here,wereviewrecent computationalstudiesthatbroughtnotableinsightsinto ribosomalstructureandfunction.

Address

DepartmentofTheoreticalandComputationalBiophysics,AmFaßberg 11,Go¨ttingen,Germany

Correspondingauthor:Grubmu¨ller,Helmut(hgrubmu@gwdg.de)

CurrentOpinioninStructuralBiology2018,49:27–35

ThisreviewcomesfromathemedissueonTheoryandsimulation EditedbyKrestenLindorff-LarsenandRobertBest

https://doi.org/10.1016/j.sbi.2017.11.003

0959-440X/ã2017TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creative- commons.org/licenses/by-nc-nd/4.0/).

Introduction

RibosomesarelargeRNA-proteincomplexeswhichsyn- thesizeproteinsinaprocesscalledtranslation[1].Trans- lation proceeds in a multi-step cycle and involves a messenger RNA (mRNA), transfer RNAs (tRNAs) and anumberofproteins(translationfactors)(Figure1).The investigation of ribosomesnotonly helpstounderstand protein synthesis and its regulation, but also offers a tremendouspotentialformedicinalapplications.Indeed, the ribosome is one of the main antibacterial drug targets, and also themainactor in theproblem of drug resistance [2].

AdvancesinX-raycrystallographyandcryo-EMprovided a wealth of structural information about ribosomes at atomic detail[4,5].However,theaccessible information onribosome dynamics,which isessentialtounderstand ribosomefunction(Figure1),islimitedduetoprecondi- tions of the experimentaltechniques. Specifically, high

structuralresolutioninX-raycrystallographyisobtained only for conformationally homogeneous crystals, and high-resolution cryo-EM requires many images of the complexinthesamechemicalandconformationalstate.

Moleculardynamics(MD)simulationshaveevolvedinto a powerful technique that complements the structural information. Based on first principles physics laws, it allows performing in silico experiments, for example, a removalofachemicallockinthestalledribosome[6!!], that are inaccessible by other means. Obtaining free energies and transition rates from simulations allows a directcomparisontokineticexperiments,whichiscrucial forvalidationofthesimulationsandtheproposedmolec- ular mechanisms. Further, MD simulations biased by cryo-EM density maps have been successfully used as atoolforhigh-resolutionstructuredetermination(see[7]

andreferencestherein).Finally,andpossiblymostimpor- tantly, MD simulations have enabled us to move from mere correlations to an understanding of causes and effects.

TheMDfieldunderwentarespectableprogresssincethe firstall-atomMDsimulationof theentireribosome[8].

However, MDsimulations of theribosome still remain challenging for two main reasons: the large size of the ribosome and thewiderange oftime scalesrelevant to itsfunction.Tothisaim,thewholearsenalofsimulation methodsisused,rangingfromcoarse-grainedMDsimu- lations (cgMD) of the entire ribosome [9,10!,54!!], through structure-based MD (sbMD) [11!,12!], explicit-solvent all-atom MD simulations (aaMD) of entireribosome[6!!,8,13–15,16!,17]oritsreduced/cutout model [18–28], to a quantum mechanical/molecular mechanicalsetup(QM/MM)explicitlytreatingthequan- tum character of electrons [29,30!!,31]. The more detailed the description of the system, the higher is thecomputationaleffort,whichleadstoshorteraccessible timescales.Duetothelimitedextentofthisreview,we recommendRefs.[32,33]foramoreindepthdiscussionof thesefundamentaltopics.

Atleastthreereviewshavebeenpublished[34–36]with similarscopetothisOpinion.Here,wefollowupprevious reviewsbySanbonmatsu[34]andA˚qvistetal.[35]from 2012.Ourreviewisorganizedaccordingtotheribosomal translation cycle. We also cover two topics which are closelyrelatedtotranslationandwheresimulationshave proven useful, namely the action of ribosome-binding antibiotics and cotranslational folding. Due to limited

(2)

space,wecanonlydiscussafractionofthemanyarticles publishedrecently.

Initiation

TranslationisinitializedontheAUGstartcodononthe mRNA.Ineukaryotes,thiscodonisrecognizedbyapre- initiationcomplex of the small subunit, initiator tRNA and several initiation factors (IFs), which scans the mRNA[37].Notmuchsimulation workhasfocusedon initiation so far. One exception is a work of Lind and A˚qvistwho investigatedtheroleofIFsoncodonrecog- nition[27].UsingaaMDtheycalculatedrelativebinding freeenergiesforsingle-pointmutationsofthestartcodon inthepresenceandabsenceoftwoIFs.Thesimulations suggestthatthepresenceoftheIFsonthepre-initiation complexincreasestheenergeticpenaltyforbindingnon- cognatecodonsand,thereby,thefidelityofcognatestart codonrecognitionisenhanced.

Decoding

Alargefraction ofsimulationworkhasfocussedonthe decodingstepprecedingpeptideelongation,presumably because many important details of decoding do not involvelarge-scaleconformationalrearrangements.Dur- ing elongation, aminoacyl-tRNAs are delivered to the ribosome in theform of a ternary complex:the tRNA,

atranslationalGTPase(inbacteria:EF-TuorSelB),anda GTPmolecule.The tRNA decodes theinformationon the mRNA by forming hydrogen bonds (H-bonds) betweencodonandanticodonnucleobases.Remarkably, thefree-energydifferencebetweencorrect(cognate)and incorrect(near-cognate, non-cognate)basepairingalone doesnotexplaintheveryhighfidelityofdecoding[38].

Rather,highfidelityisachievedbyatwo-stepdecoding process:initialselectionleadingtoGTPaseactivationand proofreading. In addition to thefree-energy difference, kineticeffectscontributetothediscrimination.TheGTP hydrolysis rate is increased and tRNA rejection rate is decreasedbytherecognitionofthecorrectcodon [38].

Free-energy aaMD simulations of the decoding region wereusedtoinvestigatethediscriminationbetweennear- cognate and cognate base pairs [22]. Small-subunit nucleotidesA1492andA1493adoptaflipped-outconfor- mationinthepresenceofatRNAand,inthisconforma- tion,interactwiththecodon-anticodonmini-helix.Inthe simulations,flippedoutnucleotidesA1492,A1493along withG530werefoundtoshieldthecodon–anticodonbase pairsfromsolvent.Thisshieldingpreventsinteractionsof near-cognatebasepairswiththesolvent,therebyincreas- ingthefree-energydifferencebetweennear-cognateand cognatebasepairsandthusthediscrimination[22].The

Figure1

BACTERIAL RIBOSOME BACTERIAL

TRANSLATION peptidyl transferase center

exit tunnel

RECYCLING INITIATION

ELONGATION

subunits peptide

formationbond

decoding

hybrid state formation

GTP-dependent translocation assembly

30S

50S L1 stalk IF3

IF1

IF2 fM-tRNA

mRNA

RRF EF-G

RF3

RF1/2 EF-G

aa-tRNA EF-Tu

5 nm

EF-Tu

TERMINATION

release proteinnew P-site tRNA

decoding center pre-accommodated tRNA L1 stalk

E-site tRNA large subunit

small subunit

Current Opinion in Structural Biology

StructureofthebacterialribosomeincomplexwithEF-Tu(PDB5AFI[3]).Schemeofthebacterialtranslationcycleasreviewedin[4].30S:small subunit;50S:largesubunit;IF1,IF2,IF3:initiationfactors;fM-tRNA:N-formylmethioninetRNA;aa-tRNA:aminoacyltRNA;EF-Tu,EF-G:elongation factors;RF1,RF2,RF3:releasefactors;RRF:ribosomerecyclingfactor;greentrace:nascentprotein.Thequestionmarkstandsforastopcodon recognition.

(3)

ofnear-cognatecomplexeswhichimplythatthedecoding centerenforcesabase-pairgeometryofmismatchedbase pairsclosetothatofacanonicalbasepair[39].Thisleads to areductionof possible H-bondsrelativeto arelaxed conformation.

Umbrella sampling aaMD of the in-flipping and out- flippingofA1492/A1493inasimulationsystemconsisting of thedecoding center suggested a more active role of these nucleotides[24].Inthesimulations,aflippedout conformation was seen to be more favourable for cognate than for near-cognate base pairs, which would increase the discrimination by stabilizing the cognate codon–anticodon helix.

Aminoglycosidesareaclassofantibioticsthatbindtothe decodingcenterandlocknucleotidesA1492/A1493inthe flipped-out conformation. In this way aminoglycosides promotetheaccommodationofnear-cognate,thuswrong, tRNAs.Paneckaetal.carriedoutaaMDofthedecoding center with bound aminoglycoside paromomycin and resistance-inducing mutations in protein uS12 [21]. An increased flipping rate relative to the wild type was observed,suggestingthatthemutationrestoresthefunc- tionof thesenucleotides.

Inarecentcryo-EMstudy,intermediatestructuresalong the pathway of initial selection leading to the GTPase activationof SelBwereresolvedathighresolution[26].

BothtRNAandSelBundergosubstantialconformational changesduringtheprocesswhichcouldpresentakinetic barrier controlling GTPase activation. To address the questioniftheseconformationalchangesbythemselves arerate-limitingtotheprocess,aaMDofthefreeternary complex in solution was performed. The simulations werestarted fromtheribosome-boundcryo-EMconfor- mations. The tRNA and SelB rapidly interconverted between the different conformations, which allowed theconstructionoftheconformationalfree-energyland- scape. The landscape indicates thatthe intrinsic large- scale conformational changes of the tRNA and SelB duringthedeliverytotheribosomearenotrate-limiting to theprocess.

IntheGTPase-activatedstate,theGTPbindingdomain ofEF-TuorSelBdocksontothesarcin-ricinloopofthe large subunit. Wallin et al. used aaMD of the GTP binding site of EF-Tu in the activated state on the ribosometostudytheGTPhydrolysis[20].Free-energy perturbationsimulationssuggestedthatHis81ofEF-Tu cannot act as a general base in the reaction, as was previouslyproposed, butrather stabilizes awatermole- cule involved in the reaction. Further, the sarcin-ricin loop seemsto promotetheGTPaseactivatedconforma- tionofaconservedtripeptidemotifPGHwhichcontains His81.TheconformationofthePGHandMg2+positions

high-resolution X-ray structures (see references within [30!!]). aaMD in combination with empirical valence bond (EVB) method suggested that His81 is doubly protonated which promotes a proton transfer from the stabilizedwatermolecule totheGTPg-phosphate,fol- lowedbyanucleophilicattackofthehydroxideion[30!!].

By calculatingArrhenius plotsfrom MD simulations at multiple temperatures A˚qvist et al. identified a large entropic contributiontothehydrolysisreaction[40].

After GTPhydrolysis,theGTPase dissociates fromthe tRNAwhichallowsthetRNAtomoveintotothepepti- dyl transferase center (PTC) on the large subunit. A tRNA accommodationcorridor was identifiedusing tar- getedaaMDoftheentireribosome[8].aaMDandsbMD oftRNAaccommodationsuggestedthatthereisanaddi- tional intermediate state between the pre-accommoda- tion(A/T)andthefullyaccommodatedstates[8,11!].Itis characterizedbythetRNAelbowintheaccommodated stateandtheCCA-tailnotyetinthePTC.RecentsbMD suggests that EF-Tu sterically reduces the range of accessible tRNA conformations,specifically in the A/T state [11!]. Therefore, the presence of EF-Tu is pre- dictedtodestabilizetheA/Tstateandtherebyenhance therateof accommodation.

Peptide bondformation

At the core of ribosomal translation is the catalysis of peptidebondformation[1].Thecurrentreactionmodels pointtoasubstrateassistedmechanism.EarlyaaMDwith EVB calculations suggested that the ribosome reduces thesolventreorganizationenergybyprovidingastableH- bond network, which wouldenhance the peptidebond formation rates[41].

MDsimulationsidentifiedpositionsofseveralwatermole- cules and H-bonds critical for the reaction which were subsequentlyconfirmedbyX-raystructures[42,43].QM/

MM simulationsaswellas high-levelquantum chemical calculations indicated that the transition state forms an eightmemberedringwhichincludesawatermoleculeand that theC–Obondcleavage takesplaceafterC–N bond formation [29,44].These studies reproducedthe experi- mentally observed catalytic effect. A recent QM/MM study additionally proposed the presence of a Mg2+ ion inthesurroundingofthePTCandhasshownthatinclud- ingtheionimprovedagreementofthecalculatedwiththe measuredcatalyticeffect,underscoringtheimportanceof ionsin computationalstudiesoftheribosome[31].

SincethePTCisburiedwithinthelargesubunit,during translationthenascentchain(NC)exitsthrougha100A˚

longtunnel(Figure2a). Theexittunnelplaysanactive role in protein synthesis. Certain peptide sequences specifically interact with tunnel walls and induce ribo- some stalling[45].Further,theexit tunnelis abinding

(4)

site for a clinically important class of antibiotics [2].

SeveralMDstudieshaveaddressedtheseissues.

Whensynthesizingproteins containingprolinestretches (i.e.severalprolinesinarow),ribosomesbecomestalled.

Stalling is alleviated bya specialized elongation factor, EF-Pinbacteria[46,47].Recently,cryo-EMstructuresof aribosomestalledbyaprolinestretchwithandwithout EF-P were resolved [28]. In aaMD simulations of the PTCregion, EF-P was observed to stabilize theP-site tRNAin aconformationcompatible withpeptide bond formation, while in the absence of EF-P, the tRNA movedawayfromtheA-site tRNA[28].

Acommunicationpathwaybetweenthetunnelwallsand thePTCwasidentifiedinantibiotic-dependentribosome stalling. Biochemical experiments complemented by aaMD of theentire Escherichia coli ribosome suggested [23]thatamacrolideantibioticerythromycin(ERY)allo- sterically alters the properties of the PTC without any directcontactwiththeNC (Figure 2).The simulations captureda dramaticreorientation of U2585and A2602, both more than 8A˚ away from the nearest ERY atom.

Besides this, ERY binding induced a conformational change of its neighbor A2062, a nucleotide claimed to serveasanascent-chainsensor[48].

TheroleofA2062wasfurtherhighlightedbyaaMDofa cubicreducedmodelofthePTCanditssurroundingsin

the presence/absence of ERY [25]. Over 20 unbiased trajectories, each 200–360ns, suggested that allosteric signal transmission occurs via formation of a stem of stacked large-subunit rRNA nucleobases and that, fur- ther, thestemformation isinitiated by theA2062 con- formationalchange.

ERY-induced stalling of an ErmB leading peptide (ErmBL) [6!!] was studied using aaMD of the entire E.coliribosomewithErmBLpeptideinthepresenceand absenceof ERY, complementingcryo-EMexperiments which cannot resolve unstalled ribosome-ErmBL com- plexes (without ERY). The simulations suggested that the ERY induced conformational changes in the PTC resultin ashift ofaLys11ontheA-sitetRNA,thereby preventing peptide bond formation. The simulations predictedamutationoftheLys11toenhancethestalling abilityofErmBL,whichwassubsequentlyconfirmedby biochemicalexperiments[6!!].

The resistance to a ketolide antibiotic telithromycin (TEL)wasaddressedbyMacKerell’sgroup [18].aaMD ofasphericalreducedmodelwerecombinedwithgrand canonical Monte Carlo to enhance sampling of water positions in the exit tunnel. The study compared the wild-type complex to three drug-resistant variants:

A2058G mutant as well as mono-methylated and dimethylated A2058. Based on geometric analyses of H-bonds and other contacts it was rationalized why

Figure2

(a)

uL29 uL23

uL23

uL22 180°

uL22 uL22

uL4

uL4 uL4

A2062

A2058

ERY Lys11

A2062

U2585

A2602 NC

P-site tRNA A-site tRNA ERY

tunnel exit

P-site

tRNA A-site

tRNA

P-site tRNA vestibule

constriction

PTC

uL24

(b)

Current Opinion in Structural Biology

(a)Schemeoftheribosomeexittunnelwithseveralproteinshighlighted.NC,nascentchain;ERY,erythromycin;PTC,peptidyltransferasecenter.

(b)Contextoftheerythromycin(ERY,ingreen)binding;figurebasedonPDB:5JTE[6!].Severallargesubunitnucleotidesarehighlightedinbold red.TwoproteinsuL4anduL22formaconstrictionsite.Thenascentpeptideisshownastransparentsurface.

(5)

tion but remains susceptible to methyl-mediated resis- tance.The keyplayer seemstobeanH-bondbetween TEL:20-OHandA2058thatismaintainedaftermutation to G2058,but disruptedbymethylations.

Cotranslational proteinfolding

Theexittunnelcanaccommodate30–60AAs,depending onthelevelofNCcompaction.Therateoftranslationof about4–22 AApersecondin bacteria [49] providesthe NC with sufficient time to explore its conformational space and to startfoldingwhenstill boundto theribo- some-tRNA complex. A number of simulation studies have tackledcotranslational folding(see Ref.[50] for a dedicated review). Particular interest liesin thetrigger factor(TF),thefirstchaperoneencounteredbytheNC.

FreeTFinsolutionexhibitsamonomer–dimerequilib- rium.ItwasstudiedbyseveralgroupsusingaaMD[51–

53].TheTF’sN-terminalandheaddomainscanassociate makingacompacttertiarystructure.Theconclusionthat TF is very flexible is supported across all the studies, however thestability ofthecompact structure isforce- fielddependentandremainselusive.Itwaspointedout though that the compact structure prevents TF from binding to the ribosome, as supported by an elastic networkmodelofthelargesubunitandTFcomplex[53].

TheassociationofTFandE.coliribosomewasstudiedby cryo-EMandcgMDofareducedribosomemodel[10!].

Several 1.2-ms long trajectories showed interdomain motions: whiletheN-terminaldomain remainedbound to the ribosome, the head domain fluctuated between boundandunboundstates.Themotionsweresimilarto those identified in solution simulations [51,52]. In the ribosome-bound simulations, longer NC made the TF morerigidascomparedtotheshorterNCconstruct.The authors speculated that the loss of TF flexibility may facilitateTFunbindingfromtheribosome,whilekeep- ingTFandNC stilltogether.

UsingNMRandcgMD,Deckertetal.studiedtheroleof TF in synthesis of the disordered peptide a-synuclein (aSyn) [54!!]. Decent agreement between NMR and cgMDwasobserved.The authorssuggestedweakasso- ciationofaSynandribosomesurfaceandconcludedthat there might be a specific affinity on the surface for aromatic residues. About 50 AAs are needed from the PTCto initiateinteractionswithTF.

NMRwasusedtostudycotranslationalfoldingofapairof immunoglobulin-like domains FNL5 and FLN6 [17].

aaMDrestrainedbychemicalshiftsgeneratedanensem- ble of protein conformations on the ribosome. The N- terminal FNL5 domainwas shownto adoptnative-like fold only after emerged well beyond the tunnel. The FNL6, whichwaslocatedclosertotheC-terminusthan

interactedwith theribosomalsurface.

Acombinedsimulation-experimentalstudyshowedthata protein can fold already inside the tunnel vestibule (Figure 2a)[9].Azinc-fingerdomain,probedbycgMD, cryo-EM, and biochemicalexperiments onstalled ribo- somes, folds in the tunnel between uL22 and uL23 proteins. Thefoldingwas observedincgMDatphysio- logical (310K) as wellas at cryo-EM(140K) tempera- tures, although the structural agreement with the cryo-EM modelwasratherpoor.

tRNA translocation

After peptidebond formationtheNCisattachedtothe tRNAresidingintheAsite,thetRNAinthePsiteisleft deacylatedandtheEsiteisunoccupied(Figure3a).The two tRNAsthentranslocate tothePandEsites,either spontaneouslyonslowtimescales,orveryrapidlyinthe presence of thetranslational GTPase EF-G.Transloca- tion of tRNAs is accompanied by large-scale collective motions of the ribosome: relative rotation of ribosomal subunitsand L1-stalkmotion.The L1stalk,which isa flexiblepartofthelargesubunit,isincontactandmoves alongwiththetRNAfromthePtotheEsite(Figure3b).

Whitford et al. extractedeffective diffusion coefficients for small subunit head and body rotations and tRNA displacementfromanaaMDoftheclassicalpre-translo- cationstate[13].Thediffusioncoefficientstogetherwith experimentalratesofthesemotionsprovideupper-bound estimatesof free-energybarriers.

Toobtaindynamicsandenergeticsofintermediatestates of spontaneous translocation, X-ray structures were refinedagainstcryo-EMreconstructions,therebyobtain- ing 13 near-atomic resolution structures [14]. From aaMDsoftheseintermediatestates,order-of-magnitude transition rates between states were estimated for motions of the L1 stalk and the tRNAs as well as for intersubunit rotations(Figure 3c). Theserates revealed rapiddynamicsoftheL1stalkandintersubunitrotations on sub-microsecond timescales, whereas the tRNA motionswereseentoberate-limitingformosttransitions.

Further,calculatedmolecularforcesrevealedthattheL1 stalkisactivelypullingthetRNAfromPtoEsiteasone of themainmechanismsacceleratingbarriercrossing.

UsingaaMD,itwasshownthattheintersubunitcontact network adaptsto differentintersubunitrotation angles resulting in a relatively constant intersubunit binding enthalpy[16!].Arotation-independent affinitybetween the subunit is a prerequisite for rapid rotation since differentaffinitieswouldleadtobarriershinderingrota- tion.Inadditiontothecentralcontactsclosetotheaxisof rotation, peripheral contacts were found to be strong, despitetheirlargerelativeshift.Thissteadycontribution

(6)

isachievedbyexchangingcontactpartnersinthecourse ofrotation.

Recently, sbMDsimulations were applied to studythe relation between small subunit head rotation and the mRNA–tRNA translocation [12!]. The authors chose thenon-rotatedstateoftheribosomeasanenergymini- mumaswellastwoadjacentbindingsitesforeachofthe twotRNAs.Themodel wasabletoreproduceaknown intermediate tRNA binding conformations (ap/P–pe/E) and predictedan intermediatestate with a tilted head, whichhasnotbeenobservedinexperimentsyet.Inthis proposed intermediate, the PE loop, which sterically separatesthePandEbindingsitesonthesmallsubunit, isdisplaced,possiblyallowingtheanticodonstemloopof thetRNAtomovefromPtoEsite.Afterremovalofsteric interactionsoftRNAwithsmallsubunitproteinuS13and the PE loop, the tilted head state was not populated indicatingthattiltingresults fromtheseinteractions.

Inanearlierstudy,Ishidaetal.appliedacryo-EMfitting MDapproachto studyreversetranslocationinthepres- enceofEF-G[15].Thesimulationswerestartedfroma post-translocation structure and then driven towards a pre-translocationstatebymaximisingthecorrelationtoa pre-translocationcryo-EMmap.Afree-energylandscape wasestimatedusingumbrellasimulations.Unexpectedly, they observed a clockwise rotation in the simulations, whengoingfromthepoststatetotheintermediatestate, whilefrom cryo-EMstructures of intermediate statesa

counter-clockwise rotation was expected. The authors speculatedthatthemovementoftheheadduringreverse translocationmight bedifferent fromthat in whatthey call ordinary translocation. However, since the simula- tions describe an equilibrium process, there can be no difference due to directionality. The tilted head state describedbyNguyenetal.[12!]wasnotobservedinthe simulationsbyIshidaetal.Thedifferencesbetweenthe observed free-energy landscapes underscorethe severe sampling problem which is a major challenge for all simulationsofsuchlargemolecularcomplexes.

Termination

Thetranslationcycleterminatesinaseriesofstepsafter anmRNAstopcodonispresentedintheAsite(Figure1).

First,areleasefactor(RF)recognizesastop codon and hydrolyzesthepeptidyl-tRNA bondinthePTC.Inthe laststepof termination,thelargeand smallsubunits of theribosomeseparate.Thesubunitsarerecycledinthe nexttranslationround.

Inmitochondria,non-standardstopcodonshaveevolved [55].Invertebrates,itisstillunclearwhatfactorsrecog- nizestopcodonsandhowmanystopcodonsactuallyexist.

Lindetal.carriedoutaaMDofareducedsphericalmodel and calculated relative bindingfree energies of several codonswhenboundtoavarietyofRFs[19].Theirresults suggestthatneitherofthetwomitochondrialRFsmtRF1 and mtRF1a, homologsto the bacterial RF1,is able to read non-standard AGA nor AGG stop codons. The

Figure3 (a)

50S

30S

30S head

30S body (b)

(c)

90°

post4 pre1

pre1 pre2

pre2 pre3

pre3 pre4

pre4

transition rates >1/(25 ns) 1/µs <1/µs pre5

pre5 post1

post1 post2

post2 post3

post3 post4

post4 post4

90° head

tilting

head rotation

body rotation

body rotation

E P A E P A

L1-stalk motion

tRNAfMetmotion tRNAVal

motion

tRNAVal motion tRNAfMet

motion L1-stalk motion

Current Opinion in Structural Biology

(a)Pre-translocationstructureoftheribosomewithtRNAsinAandPsites(green,purple).(b)MotionsaccompanyingtRNAtranslocation.(c) Transitionratesfordifferentmotionsbetweendifferentstatesestimatedfromthesimulations.FigureadaptedfromRef.[14].

(7)

couldberesponsibleforthepeptidereleaseinmitochon- driaassupportedbylaterbiochemicalexperiments[56].

The hydrolysisof peptidyl-tRNA bond allowsreleasing the newly synthesized proteinfrom the ribosome.The atomisticdetailsofthehydrolysismechanismarenotyet fullyunderstood.Kazemietal.testedseveralmechanisms bymeansofdensityfunctionaltheoryonareducedmodel ofthebacterialPTC(224atoms)[57!].Theyconcluded thatabase-catalyzedmechanism,whichinvolvesadepro- tonation of the P-site tRNA A76 20-OH group, is the only one consistent with the experimental activation energies, kinetic solvent isotope effect values, and pH dependence.

Summary and outlook

Anincreasingnumberoftheoryandcomputationresearch groups haveacceptedthechallengesposed byamacro- molecularsystemofthehugesizeofaribosome,yielding awealthofmechanisticinsightsintothisamazingmolec- ular machine. This advance has been fueled by the

‘resolution revolution’ of the cryo-EM field, and the obtained high-resolution structures of many conforma- tionalstates.Mostofthestrikingresultsinthisfieldhave not been obtained by isolated simulation work, but in closecollaborationswithotherfields,mostnotablycryo- EM,spectroscopy,andbiochemistry.

Inthiscontext,weseeafewavenueswhichhave,inour view, not yet been exploited to their full potential by simulations.First,thenewhigh-resolutioncryo-EMmaps obtainedathighpacedemandimprovedandautomated refinement protocols, where MD may playa vital role.

Second, realistic simulations of single-molecule experi- mentswillenhancethestructuralanddynamicinterpre- tation.And,finally,morereliableprotocolsandmethods foraccuratefree-energycalculationsarekeytoaquanti- tativeandcausalunderstandingof howribosomeswork.

Wethinksuchanunderstandingwillhavetobeinterms of molecular drivingforces,Markov processes, andulti- matelythefulldynamicswithinamultidimensionalfree- energylandscape.Understandingtheribosomeremains, therefore,notonlyacomputationalandmethodological, but alsoaconceptualchallenge.

Acknowledgements

TheworkwassupportedbytheMaxPlanckSocietyandbytheDeutsche Forschungsgemeinschaft(FOR1805).

References and recommendedreading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

! ofspecialinterest

!!ofoutstandinginterest

1. RodninaMV,BeringerM,WintermeyerW:Howribosomesmake peptidebonds.TrendsBiochemSci2007,32:20-26http://dx.doi.

2. WilsonDN:Ribosome-targetingantibioticsandmechanisms ofbacterialresistance.NatRevMicrobiol2014,12:35-48http://

dx.doi.org/10.1038/nrmicro3155arXiv:1011.1669v3http://www.

nature.com/doifinder/10.1038/nrmicro3155.

3. FischerN,NeumannP,KonevegaAL,BockLV,FicnerR, RodninaMV,StarkH:StructureoftheE.coliribosome-EF-Tu complexat<3A˚ resolutionbyCs-correctedcryo-EM.Nature 2015,520:567-570http://dx.doi.org/10.1038/nature14275.

4. SchmeingTM,RamakrishnanV:Whatrecentribosome structureshaverevealedaboutthemechanismoftranslation.

Nature2009,461:1234-1242http://dx.doi.org/10.1038/

nature08403arXiv:NIHMS150003,http://www.nature.com/

doifinder/10.1038/nature08403.

5. FrankJ:Thetranslationelongationcycle–capturingmultiple statesbycryo-electronmicroscopy.PhilosTransRSocLondB BiolSci2017,372In:http://rstb.royalsocietypublishing.org/

content/372/1716/20160180.

6.

!!

ArenzS,BockLV,GrafM,InnisCA,BeckmannR,Grubmu¨llerH, VaianaAC,WilsonDN:Acombinedcryo-EMandmolecular dynamicsapproachrevealsthemechanismofErmBL- mediatedtranslationarrest.NatCommun2016,7:12026http://

dx.doi.org/10.1038/ncomms12026http://www.nature.com/

doifinder/10.1038/ncomms12026..

All-atomMDsimulationsoftheentireribosometogetherwithcryo-EM reveal moleculardetailsofan antibiotic-dependent ribosomalstalling mechanismwhichareconfirmedbytoeprintingexperiments.Thisstudy emphasizesthebenefitsofaninterdisciplinaryapproach.

7. KirmizialtinS,LoerkeJ,BehrmannE,SpahnCMT,

SanbonmatsuKY:Usingmolecularsimulationtomodelhigh- resolutioncryo-EMreconstructions.MethodsEnzymol2015, 558:497-514http://dx.doi.org/10.1016/bs.mie.2015.02.011In:

http://linkinghub.elsevier.com/retrieve/pii/S0076687915001846.

8. SanbonmatsuKY,JosephS,TungC-S:Simulatingmovementof tRNAintotheribosomeduringdecoding.ProcNatlAcadSciU SA2005,102:15854-15859http://dx.doi.org/10.1073/

pnas.0503456102In:http://www.ncbi.nlm.nih.gov/pubmed/

16249344.

9. NilssonOB,HedmanR,MarinoJ,WicklesS,BischoffL, JohanssonM,Mu¨ller-LucksA,TrovatoF,PuglisiJD,O’BrienEP, BeckmannR,vonHeijneG:Cotranslationalproteinfolding insidetheribosomeexittunnel.CellRep2015,12:1533-1540.

10.

!

DeengJ,ChanKY,vanderSluisEO,BerninghausenO,HanW, GumbartJ,SchultenK,BeatrixB,BeckmannR:Dynamic behavioroftriggerfactorontheribosome.JMolBiol2016, 428:3588-3602http://dx.doi.org/10.1016/j.jmb.2016.06.007In:

http://www.sciencedirect.com/science/article/pii/

S0022283616302157.

Cryo-EMstudyiscomplementedbycoarse-grainedMDsimulationsof theribosomewithtriggerfactor.Theyauthorsproposeaway,howthe triggerfactorinteractswiththeemergingnascentchain.

11.

!

NoelJK,WhitfordPC:HowEF-Tucancontributetoefficient proofreadingofaa-tRNAbytheribosome.NatCommun2016, 7:13314.

A unique combination of structure-based MD of a ribosome EF-Tu complexandkineticmodellingsuggestedthatthepresenceofEF-Tu enhancestherateoftRNAaccommodation.

12.

!

NguyenK,WhitfordPC:Stericinteractionsleadtocollective tiltingmotionintheribosomeduringmRNA–tRNA translocation.NatCommun2016,7:10586http://dx.doi.org/

10.1038/ncomms10586In:http://www.scopus.com/inward/

record.url?eid=2-s2.0-84957560646&partnerID=tZOtx3y1.

Structure-based MDsimulations ofspontaneous tRNA translocation, including and excluding certain interactions, indicate that the small subunitheadtiltingisaconsequenceoftRNA–mRNAinteractions.The possibility to switch off interactions computationally helps revealing causality.

13. WhitfordPC,BlanchardSC,CateJHD,SanbonmatsuKY,LeeH:

ConnectingthekineticsandenergylandscapeoftRNA translocationontheribosome.PLoSComputBiol2013,9:

e1003003http://dx.doi.org/10.1371/journal.pcbi.1003003.

(8)

14. BockLV,BlauC,Schro¨derGF,DavydovII,FischerN,StarkH, RodninaMV,VaianaAC,Grubmu¨llerH:Energybarriersand drivingforcesintRNAtranslocationthroughtheribosome.Nat StructMolBiol2013,20:1390-1396http://dx.doi.org/10.1038/

nsmb.2690.

15. IshidaH,MatsumotoA:Free-energylandscapeofreversetRNA translocationthroughtheribosomeanalyzedbyelectron microscopydensitymapsandmoleculardynamics simulations.PLOSONE2014,9:e101951http://dx.doi.org/

10.1371/journal.pone.0101951In:http://journals.plos.org/

plosone/article?id=10.1371/journal.pone.0101951.

16.

!

BockLV,BlauC,VaianaAC,Grubmu¨llerH:Dynamiccontact networkbetweenribosomalsubunitsenablesrapidlarge- scalerotationduringspontaneoustranslocation.NucleicAcids Res2015,43:6747-6760http://dx.doi.org/10.1093/nar/gkv649 http://www.ncbi.nlm.nih.gov/pubmed/26109353http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4538834.

All-atomMDofentireribosomeisusedtosimulate13conformational states.Combining thedynamics obtainedforthedifferentstates,the studysuggestsintersubunitinteractionshaveevolvedtoenable rapid large-scalerotation.

17. CabritaLD,CassaignauAM,LaunayHM,WaudbyCA, WlodarskiT,CamilloniC,KaryadiM-E,RobertsonAL,WangX, WentinkAS,GoodsellLS,WoodheadCA,VendruscoloM, DobsonCM,ChristodoulouJ:Astructuralensembleofa ribosome-nascentchaincomplexduringcotranslational proteinfolding.NatStructMolBiol2016,23:278-285.

18. SmallMC,LopesP,AndradeRB,MacKerellAD:Impactof ribosomalmodificationonthebindingoftheantibiotic telithromycinusingacombinedgrandcanonicalMonteCarlo/

moleculardynamicssimulationapproach.PLoSComputBiol 2013,9:e1003113http://dx.doi.org/10.1371/journal.

pcbi.1003113.

19. LindC,SundJ,A˚qvistJ:Codon-readingspecificitiesof mitochondrialreleasefactorsandtranslationterminationat non-standardstopcodons.NatCommun2013,4:2940http://dx.

doi.org/10.1038/ncomms3940In:http://www.ncbi.nlm.nih.gov/

pubmed/24352605.

20. WallinG,KamerlinSCL,A˚qvistJ:EnergeticsofactivationofGTP hydrolysisontheribosome.NatCommun2013,4:1733http://

dx.doi.org/10.1038/ncomms2741http://www.nature.com/

doifinder/10.1038/ncomms2741.

21. PaneckaJ,MuraC,TrylskaJ:Interplayofthebacterial ribosomalA-site,S12proteinmutationsandparomomycin binding:amoleculardynamicsstudy.PLOSONE2014,9:

e111811http://dx.doi.org/10.1371/journal.pone.0111811http://

dx.plos.org/10.1371/journal.pone.0111811.

22. SatpatiP,SundJ,A˚qvistJ:Structure-basedenergeticsof mRNAdecodingontheribosome.Biochemistry2014,53:1714- 1722http://dx.doi.org/10.1021/bi5000355http://pubs.acs.org/

doi/abs/10.1021/bi5000355.

23. SothiselvamS,LiuB,HanW,RamuH,KlepackiD,AtkinsonGC, BrauerA,RemmM,TensonT,SchultenK,Va´zquez-LaslopN, MankinAS:Macrolideantibioticsallostericallypredisposethe ribosomefortranslationarrest.ProcNatlAcadSciUSA2014, 111:9804-9809http://dx.doi.org/10.1073/pnas.1403586111 http://www.ncbi.nlm.nih.gov/pubmed/24961372http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4103360.

24. ZengX,ChughJ,Casiano-NegroniA,Al-HashimiHM,BrooksCL:

FlippingoftheribosomalA-siteadeninesprovidesabasisfor tRNAselection.JMolBiol2014,426:3201-3213http://dx.doi.org/

10.1016/j.jmb.2014.04.029In:http://linkinghub.elsevier.com/

retrieve/pii/S0022283614002307.

25. MakarovGI,GolovinAV,SumbatyanNV,BogdanovAA:

Moleculardynamicsinvestigationofamechanismofallosteric signaltransmissioninribosomes.BiochemMosc2015, 80:1047-1056http://dx.doi.org/10.1134/S0006297915080106 http://link.springer.com/10.1134/S0006297915080106.

26. FischerN,NeumannP,BockLV,MaracciC,WangZ,PaleskavaA, KonevegaAL,Schro¨derGF,Grubmu¨llerH,FicnerR,RodninaMV, StarkH:ThepathwaytoGTPaseactivationofelongationfactor SelBontheribosome.Nature2016,540:80-85http://dx.doi.org/

10.1038/nature20560.

27. LindC,A˚qvistJ:Principlesofstartcodonrecognitionin eukaryotictranslationinitiation.NucleicAcidsRes2016, 44:8425-8432http://dx.doi.org/10.1093/nar/gkw534https://

academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw534.

28. HuterP,ArenzS,BockLV,GrafM,FristerJO,HeuerA,PeilL, StarostaAL,WohlgemuthI,PeskeF,Nova´9cekJ,BerninghausenO, Grubmu¨llerH,TensonT,BeckmannR,RodninaMV,VaianaAC, WilsonDN:Structuralbasisforpolyproline-mediatedribosome stallingandrescuebythetranslationelongationfactorEF-P.

MolCell2017,68:515-527http://dx.doi.org/10.1016/j.

molcel.2017.10.014e6.http://linkinghub.elsevier.com/retrieve/pii/

S109727651730789X.

29. XuJ,ZhangJZH,XiangY:AbinitioQM/MMfreeenergy simulationsofpeptidebondformationintheribosome supportaneight-memberedringreactionmechanism.JAm ChemSoc2012,134:16424-16429http://dx.doi.org/10.1021/

ja3076605http://pubs.acs.org/doi/abs/10.1021/ja3076605.

30.

!!

A˚qvistJ,KamerlinSCL:Theconformationofacatalyticloopis centraltoGTPaseactivityontheribosome.Biochemistry2015, 54:546-556http://dx.doi.org/10.1021/bi501373ghttp://pubs.acs.

org/doi/abs/10.1021/bi501373g..

ExtensiveQM/MMsimulationsofGTPhydrolysisonEF-Tugiveimportant insightsintothereactionmechanisminlinewithkineticexperimentsand, moreover,areabletorationalizetheeffectsofmutations.

31. Swiderek" K,MartiS,Tun˜o´nI,MolinerV,BertranJ:Peptidebond formationmechanismcatalyzedbyribosome.JAmChemSoc 2015,137:12024-12034http://dx.doi.org/10.1021/jacs.5b05916 http://pubs.acs.org/doi/10.1021/jacs.5b05916.

32. VangavetiS,RanganathanSV,ChenAA:AdvancesinRNA moleculardynamics:asimulator’sguidetoRNAforcefields.

WileyInterdiscipRevRNA2017http://dx.doi.org/10.1002/

wrna.1396.http://doi.wiley.com/10.1002/wrna.1396.

33. ponerJ,KreplM,Bana´P,Ku¨hrova´ P,Zgarbova´ M,Jure9ckaP, HavrilaM,OtyepkaM:Howtounderstandatomisticmolecular dynamicssimulationsofRNAandprotein-RNAcomplexes?

WIRESRNA2017,8:e1405http://dx.doi.org/10.1002/wrna.1405 http://doi.wiley.com/10.1002/wrna.1405.

34. SanbonmatsuKY:Computationalstudiesofmolecular machines:theribosome.CurrOpinStructBiol2012,22:168-174 http://dx.doi.org/10.1016/j.sbi.2012.01.008In:http://linkinghub.

elsevier.com/retrieve/pii/S0959440X12000231.

35. A˚qvistJ,LindC,SundJ,WallinG:Bridgingthegapbetween ribosomestructureandbiochemistrybymechanistic computations.CurrOpinStructBiol2012,22:815-823http://dx.

doi.org/10.1016/j.sbi.2012.07.008In:http://www.sciencedirect.

com/science/article/pii/S0959440X12001121.

36. MakarovGI,MakarovaTM,SumbatyanNV,BogdanovAA:

Investigationofribosomesusingmoleculardynamics simulationmethods.BiochemMosc2016,81:1579-1588http://

dx.doi.org/10.1134/S0006297916130010In:http://link.springer.

com/10.1134/S0006297916130010.

37. HinnebuschAG:Thescanningmechanismofeukaryotic translationinitiation.AnnuRevBiochem2014,83:779-812http://

dx.doi.org/10.1146/annurev-biochem-060713-035802http://

www.annualreviews.org/doi/10.1146/annurev-biochem-060713- 035802.

38. RodninaMV,WintermeyerW:Fidelityofaminoacyl-tRNA selectionontheribosome:kineticandstructuralmechanisms.

AnnuRevBiochem2001,70:415-435http://dx.doi.org/10.1146/

annurev.biochem.70.1.415http://www.annualreviews.org/doi/

10.1146/annurev.biochem.70.1.415.

39. DemeshkinaN,JennerL,WesthofE,YusupovM,YusupovaG:A newunderstandingofthedecodingprincipleontheribosome.

Nature2012,484:256-259http://dx.doi.org/10.1038/nature10913 http://www.nature.com/doifinder/10.1038/nature10913.

40. A˚qvistJ,KamerlinSCL:Exceptionallylargeentropy

contributionsenablethehighratesofGTPhydrolysisonthe ribosome.SciRep2015,5:15817http://dx.doi.org/10.1038/

srep15817In:http://www.ncbi.nlm.nih.gov/pubmed/26497916.

41. TrobroS,A˚qvistJ:Mechanismofpeptidebondsynthesisonthe ribosome.ProcNatlAcadSciUSA2005,102:12395-12400

Referenzen

ÄHNLICHE DOKUMENTE

In experiments where tRNA was first incubated with TrmA, ΔTrmA, or TruB, a pre- incubation mixture was prepared containing 20 pmol of in vitro transcribed tRNA (tRNA Ala , tRNA Val

In this thesis, I present the real time kinetics of spontaneous subunit rotation and show how EF-G promotes and coordinates the rotation of the subunits with the movement of

2.8.1.2 Glutaminyl-tRNA Glu 47 2.8.1.3 Losungen zur Substratherstellung 48 2.8.2 Reinigung aminoacylierter tRNA 48 2.8.3 Glutamyl-tRNA Reduktase Aktivitatstest (Depletionstest)

A) Reaction mechansim of cytidine and adenosine deamination, respectively (from (Gerber and Keller, 2001). B) The proteins contain a deaminase domain (green) with three Zn 2+

To estimate whether the conformational motion of EF-Tu, observed in the simulations, changes the binding strength between EF-Tu and the aa-tRNA, we calculated interaction

To estimate whether the conformational motion of EF-Tu, observed in the simulations, changes the binding strength between EF-Tu and the aa-tRNA, we calculated interaction

Aminoacyl-tRNA synthetase family enzymes are of particular interest for creating univer- sal phylogenetic trees and understanding the gene flow as these enzymes perform the basic

Therefore, it is likely that the se- quence of the adenylation domain used in the present study, which reveals the Trp-RS identity, could have some phylogenetic relation with early