• Keine Ergebnisse gefunden

IPv4 Multicast Address Mapping

N/A
N/A
Protected

Academic year: 2022

Aktie "IPv4 Multicast Address Mapping"

Copied!
29
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Layer 2 Multicasting

– Multicast in LANs

– Address Mapping

– Multicast Frame Distribution

– Multicast Discovery

– Multicast over ATM

– Multicast in Wireless

– 802.11 WLAN

– 802.16 WIMAX

– 3GPP – MBMS

– DVB-H/IPDC

1 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(2)

Multicast in Local Area Networks

LANs combine Router, Switches and Hubs as data forwarders.

Most likely the LAN backbone distribution is achieved by large

‚Switching Clouds‘.

The following issues arrive:

– IP-layer multicast addresses need translation into L2 addresses

– Multicast data streams must be recognized as such

– Data distribution at Layer 2 should follow multicast laws

2 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(3)

Broadcasting on Layer 2

– Simplest approach

– No Layer 2 intelligence needed (Î Hubs)

– Causes network flooding (may significantly disturb)

$An efficient solution requires L2 and L3 intelligence

Multicast Stream

Broadcasting

3 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(4)

IPv4 Multicast Address Mapping

Layer 3 IPmc Address Mapping onto Layer 2 Multicast Addresses (FDDI and Ethernet)

32 Bits 28 Bits

25 Bits 23 Bits 48 Bits

01-00-5e-7f-00-01 239.255.0.1 239.255.0.1

1110

5 Bits Lost

4 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

Caveat: Causes 5 Bit address overlap!

Caveat: Causes 5 Bit address overlap!

(5)

Multicast Address Overlap

5 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

224.1.1.1 224.129.1.1 225.1.1.1 225.129.1.1

.. .

238.1.1.1 238.129.1.1 239.1.1.1 239.129.1.1

0x0100.5E01.0101

1 - Multicast MAC Address 32 - IP Multicast Addresses

(6)

IPv6 Multicast Address Mapping

6 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

–

RFC2464

–

Example: FF05:1::5 → 33:33:0:0:0:5

–

More than 1 trillion IPv6 multicast address will map to

the same MAC address (80 bits are lost)

(7)

Token Ring Address Mapping

Layer 3 IPmc address will be mapped to Token Ring Broadcast address

7 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

c0 c0 - - 00 00 - - 00 00 - - 04 04 - - 00 00 - - 00 00 224.x.x.x

224.x.x.x

ff ff - - ff ff - - ff ff - - ff ff - - ff ff - - ff ff 224.x.x.x

224.x.x.x

(Shown in Token Ring, non-canonical format)

Token Ring bound to multicast flooding Token Ring bound to multicast flooding!!

(8)

Multicast Frame Distribution

Devices at the Network Access Layer need to perform an appropriate distribution of MAC Frames:

Layer 1 – Forwarding to all HUB users

Layer 2 (Dumb) – Distribution as Broadcasts

Layer 2 (Multicast) – Learning of group members, specific forwarding There are switches which block Multicast frames

8 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(9)

Multicast Discovery

Problem: How does a Switch learn about group membership?

Solution 1 – Analyse IGMP messaging (IGMP-Snooping)

– Switches listen to IGMP packets (join, leave)

– This requires Layer 3 intelligence in asics Solution 2 – Layer 2 Signalling

– Router translates IGMP operations into Layer 2 signals

– But: only proprietary protocols available (e.g., Cisco CGMP)

9 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(10)

IGMP Snooping

10 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

2 0

Host 1

3

Host 2

4

Host 3

5

Switching Engine Switching Engine CPUCPU

LAN Switch (IGMP Snooping Enabled) 1

IGMP Report 224.1.2.3

1st Join 1st Join

1st Join

Router A

CAMCAM Table Table

MAC Address Ports 0100.5e01.0203 0,1,2

Entry Added Host 4

(11)

11 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

2 0

3 4 5

Host 1 Host 2 Host 3 Host 4

Switching Engine Switching Engine CPUCPU

LAN Switch (IGMP Snooping Enabled)

2nd Join 2nd Join 2nd Join

1 Router A

IGMP Report 224.1.2.3

,5 MAC Address Ports 0100.5e01.0203 0,1,2

Port Added

CAMCAM Table Table

IGMP Snooping

(12)

12 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

CPUCPU

2 0

Host 1

(MPEG Server) 3

Host 2

4

Host 3

5

Switching Engine Switching Engine

LAN Switch

1 Router A

1.5Mbps MPEG Video

CPUCPU CPU

1.5Mbps !!!

Choke, Gasp, Wheeze!!

(IGMP Snooping Enabled)

CAMCAM Table Table

MAC Address Ports 0100.5e01.0203 0,1,2,5

IGMP Snooping: Pure L2 Switch

Host 4

(13)

IGMP Snooping: L3 Switch

13 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

2 0

Host 1

3

CAMCAM Table Table CPUCPU

LAN Switch

1 Router A

4 5

Host 2 Host 3 Host 4

MAC Address L3 Ports 0100.5exx.xxxx IGMP 0

IGMP Processing Entry

Switching Engine (w/L3 ASICs)

Switching Engine (w/L3 ASICs)

(IGMP Snooping Enabled)

(14)

IGMP Snooping: L3 Switch

14 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

2 3 4 5

Host 1

CPUCPU

LAN Switch (IGMP Snooping Enabled) 1

1st Join 1st Join

0

Router A

Host 2 Host 3 Host 4

CAMCAM Table Table

IGMP Report 224.1.2.3

Switching Engine (w/L3 ASICs)

Switching Engine (w/L3 ASICs)

MAC Address L3 Ports 0100.5e01.0203 !IGMP 1,2

0100.5exx.xxxx IGMP 0

(15)

IGMP Snooping: L3 Switch

15 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

2 3 4 5

Host 1

CPUCPU

LAN Switch (IGMP Snooping Enabled) 1

0

Router A

Host 2 Host 3 Host 4

CAMCAM Table Table

Switching Engine (w/L3 ASICs)

Switching Engine (w/L3 ASICs)

IGMP Report 224.1.2.3

MAC Address L3 Ports 0100.5e01.0203 !IGMP 1,2

0100.5exx.xxxx IGMP 0 ,5

Port Added

2nd Join

2nd Join

(16)

16 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

2 3 4 5

Host 1

CPUCPU

LAN Switch (IGMP Snooping Enabled) 1

0

Router A

Host 2 Host 3 Host 4

CAMCAM Table Table

Switching Engine (w/L3 ASICs)

Switching Engine (w/L3 ASICs)

MAC Address L3 Ports 0100.5e01.0203 !IGMP 1,2

0100.5exx.xxxx IGMP 0

1.5Mbps MPEG Video Ahhh, That’s

more like it!

,5

No No Load Load on on CPU CPU

IGMP Snooping: L3 Switch

(17)

Multicast over ATM

ATM (UNI 3.1) offers point-to-multipoint services

– Sender oriented: every sender knows its

receivers and initiates corresponding connections IP-Multicasting

– Receiver oriented: a sender does not know about its receivers ATM Network Solution: Translation service - ATM MARS

17 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(18)

Multicast Address Resolution Server

– RFC 2022 (1996)

– Maps IP Multicast addresses on ATM addresses

– MARS server combines group members to Clusters

– Registration and deregistration similar to IGMP

– All Cluster members obtain group information via Multicast cluster control channels

– MARS concept independent of IP

18 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(19)

19 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

MARS- Server

ClusterControl VC

lokales Netz

MARS Model

(20)

Multicast on Wireless Transmission

–

Wireless transmission is key technology for mobile systems & applications

–

Efficient (group) communication of enhanced relevance due to few, limited frequency bands

–

Specific problems of wireless transmission:

– Air is always a shared medium

– Signal strength inhomogeneous (hidden/exposed terminal)

– Reliability of transmission significantly decreased

–

The Counterpart of IP-Layer Mobility

20 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(21)

Multicast over 802.11 WLAN

–

Broadcast network of Ethernet type, including multicast addressing

–

An Access Point operates as repeater (infrastructure mode)

–

A mobile Station sends multicast data to an AP in point-to-point channel (ToDS bit on)

– Treated as acknowledged unicast

–

The AP repeats multicast frames to the BSS and propagates them to the ESS

– Treated as unacknowledged broadcasts

21 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(22)

Issues with 802.11 Multicast

–

Limited Reliability

– increased probability of lost frames from interference, collisions, or time-varying channel properties

–

Delayed Distribution

– AP buffers multicast packets and waits for DTIM, if Stations are using power saving mode

–

Congestion Threat

– Distribution System experiences multicast as flooding

– Replicate mcast packets over all APs in same IP subnet

22 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(23)

802.16 WiMAX

23 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

–

Point-to-Point or Point-to-Multipoint (no ad hoc mode)

–

Connection oriented radio transmission

– Channel management: Base Station (BS) assigns

Channel IDs (CIDs) within Service Flows (® SFIDs) to Subscriber Station (SS)

– no autonomous packet addressing

–

Separates uplink and downlink channel

– Downlink fully controlled by BS

– Uplink by admission control of BS

– Automatic Repeat Request (ARQ) optional per Service Flow – operates go-back-N in Sliding Window

(24)

WiMAX Multicast

–

BS may initiate downlink multicast distribution

– Assigns common CID to all group members (SSs)

– ARQ not applicable

–

On reception SS cannot distinguish multicast from unicast stream

–

SS sends multicast data to BS as point-to-point stream

–

BS operates as L2 Switch and may support IGMP snooping (even IGMP proxying in 802.16e)

24 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(25)

Multimedia Broadcast and Multicast Services (MBMS) in 3GPP

–

3GPP mobile telecommunication networks are designed to provide both, voice and data services

–

Part of the 3GPP Model is the IP Multimedia Subsystem (IMS), which is capable of MBMS (UMTS Rel. 6)

– Distinct control and data planes

– Controller: Broadcast Multicast - Serving Center (BM-SC)

– Signalling to first hop gateway by L2 protocol

– Subscription/Service announcement

– Joining/multicast mode bearer set up/transfer/leaving

25 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(26)

3GPP MBMS Gateway Architecture

26 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

(27)

DVB-H / DVB-IPDC

27 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

–

ETSI standard for IP Datacast service

–

Offers high downstream data rates up to 15 Mbit/s

–

Physical layer specification for the transmission of digital TV

–

Transmits multicast and broadcast data in bursts

– Allows for power saving time slots at receivers

(28)

Layer 2 Multicast Resume

28 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

Standard LAN Technologies:

– Address collisions

– Layer 3 intelligence essential

Wireless Technologies:

– Multicast distribution on broadcast media

– Flooding threats in scarce resource of radio spectrum

– Full multicast capabilities : datacast distribution Multicast Mobility:

– Complex interplay of Internet and network access layer

(29)

References

• IEEE Std 802.3, 2002 Edition (revised from 2000)

• IEEE Std 802.11, 1999 Edition (R2003).

• IEEE Std 802.16, 2004 Edition (revised from 2001)

• www.rfc-editor.org

• www.dvb.org

• J. Schiller: Mobilkommunikation. 2. Auflage, Addision-Wesley, 2003.

• Maucher, Furrer: WiMAX. Heise Verlag, Hannover 2007.

• T.C. Schmidt, M. Wählisch: Multicast Mobility in MIPv6: Problem

29 Œ Prof. Dr. Thomas Schmidt Œ http:/www.informatik.haw-hamburg.de/~schmidt Œ

Statement and Brief Survey. IRTF Internet Draft, Work in Progress.

Referenzen

ÄHNLICHE DOKUMENTE

– Shared tree created according to reverse path forwarding. – Nodes hold children tables

• Schmidt, Wählisch: “Morphing Distribution Trees - On the Evolution of Multicast States under Mobility and an Adaptive Routing Scheme for Mobile SSM Sources”,

– Shared tree created according to reverse path forwarding. – Nodes hold children tables

To reduce the delay between a member joining the multicast group, and its receipt of the first data packet on the overlay, we allow join- ing members to temporarily peer, on the

„ One of the receivers of the multicast group is elected to send acknowledgment (ACK). … MAC header has to

Truncated Broadcast Tree based on DVMRP route metrics (S, G) Multicast Packet

(S, G) Traffic flow is now pruned off of the Shared Tree and is flowing to the Receiver via the Source Tree.

 Shared tree created according to reverse path forwarding.  Nodes hold children tables