DMV- Jahrestagung Köln 2011
by Rolf Sulanke
The Examples
This Chapter contains some examples describing applications of interesting new functions introduced in the packages presented in Chapter 1.
ü Example 1. Pseudo-Euclidean Orthogonalization ü The Package neuvec.m
The package neuvec.m contains enhancements of Mathematica for applications to pseudo-Euclidean geometry.
?neuvec`*
neuvec`
ch ide orthonorm pscross psgram
chsort indexorder orthopair psCross pssp
dual normalize pr psfilter
The most important and interesting function in this section is
? orthonorm
Info3524719575-2877488
orthonorm: If b is a list of vectors in the n-dimensional
pseudo-Euclidean space of index k, then orthonorm@b,optsDis an orthogonal basis of span@bD. orthonorm can be applied to finite dimensional vector spaces and symmetric bilinear forms prod using the option innerprod->prod;
the default is prod=pssp.
Options@orthonormD
8innerprod→pssp, normed→True, print→False, neglect→ −10<
We show its action on a random sequence of vectors under the assumptions dim = 7; ind = 3;
The Gram matrix of the pseudo - Euclidean scalarproduct:
Table@pssp@stb@iD, stb@jDD,8i, dim<,8j, dim<D êêMatrixForm
−1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
We generate 10 random vectors; its pseudo-orthonormal coordinates are the rows of the random matrix rm =randommatrix@10D
88−0.528316,−0.954825, 0.272704,−0.408792,−0.222726, 0.546233, 0.714865<, 80.170297,−0.953355, 0.712824,−0.539402, 0.469621, 0.916763, 0.347088<, 80.105655, 0.465732, 0.245054, 0.118592,−0.822119, 0.695669,−0.874039<, 80.0537307, 0.0065073, 0.528303, 0.654277, 0.00855584, 0.733803,−0.062905<, 8−0.122997, 0.462322,−0.981062, 0.766798,−0.169642, 0.749498, 0.55834<, 8−0.702823,−0.0864053,−0.59759,−0.547316,−0.168555, 0.668541, 0.283818<, 8−0.725197, 0.135776, 0.54258,−0.769913, 0.268296, 0.607473, 0.888303<, 80.221531, 0.534493,−0.329622, 0.0112996, 0.759209, 0.515555,−0.0964204<, 8−0.819058,−0.990289, 0.957216,−0.393598, 0.267347, 0.607301, 0.504531<, 80.774958, 0.598806,−0.676517, 0.229728,−0.360818,−0.943774,−0.906604<<
Their scalarproducts form the 10x10-matrix
Table@pssp@%@@iDD,%@@jDDD,8i, Length@%D<,8j, Length@%D<D êêMatrixForm
−0.239055 −0.149913 0.323491 −0.0229802 1.17686 0.538502 0.820362 0.756246
−0.149913 0.026418 0.135677 −0.0775437 1.54865 1.39076 1.2727 1.49642 0.323491 0.135677 1.64972 0.497853 0.301884 0.551621 −0.785263 −0.37145
−0.0229802 −0.0775437 0.497853 0.688542 1.53701 0.467219 −0.360119 0.557029 1.17686 1.54865 0.301884 1.53701 0.298895 −0.364321 0.695727 −0.330797 0.538502 1.39076 0.551621 0.467219 −0.364321 −0.00307509 0.860686 0.188052 0.820362 1.2727 −0.785263 −0.360119 0.695727 0.860686 0.984115 0.689457 0.756246 1.49642 −0.37145 0.557029 −0.330797 0.188052 0.689457 0.40821
−0.845556 −0.417213 0.0282104 −0.29658 1.68589 0.630364 0.212972 1.48924
−0.0115015 −0.552113 0.264753 −0.176425 −1.82141 −0.761059 −0.804574 −1.38522 We meaure the time needed for their orthogonalization in seconds:
Timing@om =orthonorm@rmDD
80.023997,88−1.08055,−1.95288, 0.557755,−0.836091,−0.455535, 1.1172, 1.46209<, 81.44543,−1.02175, 1.56128,−0.815625, 1.75574, 1.65466,−0.291641<,
8−0.230082,−0.715304, 0.640006,−0.413818,−0.54729, 1.22588, 0.0257437<, 80.580207, 0.170022, 0.78795, 0.889816, 0.683157, 0.814003,−0.255608<, 8−2.94264,−0.428341,−2.50138,−0.114565,−2.47845,−1.69613, 2.25095<, 82.52647, 1.92712, 1.72898, 0.768467, 1.89014, 0.47266,−3.11442<,
80.187564, 1.51695, 0.943119, 0.71178, 0.266984,−0.0415539,−1.28303<<<
The process lasted ca. 0.03 s. By numerical reasons, the result contains numerical small errors:
Table@pssp@om@@iDD, om@@jDDD,8i, Length@omD<,8j, Length@omD<D 99−1., 2.22045×10−16,−4.85723×10−16,−5.55112×10−17, 0.,
−8.88178×10−16,−2.44249×10−15=,92.22045×10−16, 1., 1.31839×10−16, 1.52656×10−16,−1.33227×10−15, 2.55351×10−15, 7.77156×10−16=, 9−4.85723×10−16, 1.31839×10−16, 1., 4.85723×10−17,−1.38778×10−16,
−1.41553×10−15,−1.07553×10−15=,9−5.55112×10−17, 1.52656×10−16, 4.85723×10−17, 1.,−2.22045×10−16, 1.11022×10−15, 7.77156×10−16=,90.,−1.33227×10−15,
−1.38778×10−16,−2.22045×10−16,−1.,−8.88178×10−16,−1.33227×10−15=,
9−8.88178×10−16, 2.55351×10−15,−1.41553×10−15, 1.11022×10−15,−8.88178×10−16, 1., 0.=, 9−2.44249×10−15, 7.77156×10−16,−1.07553×10−15,
7.77156×10−16,−1.33227×10−15, 0.,−1.==
The built-in function Chop nullifies too small numbers
? Chop
Info3524719708-2877488
Chop@exprDreplaces approximate real numbers inexprthat are close to zero by the exact integer 0. à Chop@%%D êêMatrixForm
−1. 0 0 0 0 0 0
0 1. 0 0 0 0 0
0 0 1. 0 0 0 0
0 0 0 1. 0 0 0
0 0 0 0 −1. 0 0
0 0 0 0 0 1. 0
0 0 0 0 0 0 −1.
Evaluating the next cell we obtain an orthonormal basis in its standard order : som =indexorder@omD
88−1.08055,−1.95288, 0.557755,−0.836091,−0.455535, 1.1172, 1.46209<, 8−2.94264,−0.428341,−2.50138,−0.114565,−2.47845,−1.69613, 2.25095<, 80.187564, 1.51695, 0.943119, 0.71178, 0.266984,−0.0415539,−1.28303<, 81.44543,−1.02175, 1.56128,−0.815625, 1.75574, 1.65466,−0.291641<, 8−0.230082,−0.715304, 0.640006,−0.413818,−0.54729, 1.22588, 0.0257437<, 80.580207, 0.170022, 0.78795, 0.889816, 0.683157, 0.814003,−0.255608<, 82.52647, 1.92712, 1.72898, 0.768467, 1.89014, 0.47266,−3.11442<<
Table@Chop@pssp@%@@iDD,%@@jDDDD,8i, Length@%D<,8j, Length@%D<D êêMatrixForm
−1. 0 0 0 0 0 0 0 −1. 0 0 0 0 0 0 0 −1. 0 0 0 0
0 0 0 1. 0 0 0
0 0 0 0 1. 0 0
0 0 0 0 0 1. 0
0 0 0 0 0 0 1.
ü Example 2. Spheres and the Coxeter Invariant ü The Package mspher.m
The package mspher.m contains functions relating Möbius and Euclidean geometry of spheres in the 3-dimen- sional Möbius space.
? mspher`*
mspher`
coxeterinv invstepro spt
euklidsphere plane spunit
euklidsphereplot3D planevec stepro
gencos pstg5frame vcenter
hplanevec sph4ptsvec vradius
hspherevector spherevec
The subspace orthogonal to a spacelike unit vector is a 4-dimensional pseudo-Euclidean space defining a sphere in the 3-dimensional Möbius space, and vice versa. The space of all oriented spheres(including the planes as spheres of radius 0) is isomorphic as transformation group under the action of the Möbius group G = OH1, 4L+ to the hyper-hyperboloid of spacelike unit vectors vec[u] in the Minkowski space:
pssp@vec@uD, vec@uDD 1
−u@1D2+u@2D2+u@3D2+u@4D2+u@5D21
The vector corresponding to the sphere with center {x,y,z} and radius r is spv = spherevec@x, y, z, rD
:1−r2+x2+y2+z2 2 r
, x r ,
y r ,
z r ,
−1−r2+x2+y2+z2 2 r >
Simplify@pssp@%,%DD 1
Consider the Hesse normal form of the equation of a plane 8a, b, c<.vec@x, 3D p
a x@1D+b x@2D+c x@3Dp
with distance p from the origin and the normal unit vector nv =8a, b, c<
nnv = nv.nv −> 1 a2+b2+c2→1
In[61]:= npv =planevec@a, b, c, pD
Out[61]= 8p, a, b, c, p<
stepro@81, 0, 0, 0, 1<D 8∞,∞,∞<
The infinite point belongs to each “sphere” whose spacelike unit vector has the shape npv:
In[62]:= pssp@npv,81, 0, 0, 0, 1<D
Out[62]= 0
Conversely, to any spacelike unit vector corresponds a uniquely defined sphere or plane with the parameter representation
A sphere:
euklidsphere@spvD@s, tD :x+r Cos@πsDCosBπt
2 F, y+r CosBπt
2 FSin@πsD, z+r SinBπt 2 F>
A plane:
In[63]:= euklidsphere@npvD@s, tD
Out[63]= : a p
a2+b2+c2
+ b2+c2 a2+b2+c2
s, b p a2+b2+c2
− a b s
Ib2+c2M Ia2+b2+c2M
+ c2t b2+c2 Abs@cD
,
c p a2+b2+c2
− a c s
Ib2+c2M Ia2+b2+c2M
− b c t
b2+c2 Abs@cD
>
The standard unit sphere:
euklidsphereplot3D@spherevec@0, 0, 0, 1DD
The plane at distance 1 from the origin parallel to the x, y - plane :
euklidsphereplot3D@planevec@0, 0, 1, 1DD
To enter options one has to enter all parameters of
? euklidsphereplot3D
euklidsphereplot3D@−stb@5D,−1, 1,−1, 1, PlotStyle → Opacity@.4D, Mesh → NoneD
sph1 = %;
ü Sphere through 4 Random Points
? sph4ptsvec
Info3524720195-2877488
sph4ptsvec@p1, p2, p3, p4Dyields a spacelike vector of the
pseudo-Euclidean 5-space corresponding to the sphere through the four points p1, p2, p3, p4Hin general positionLof the Euclidean 3-space.
pa=randomv@3D; pb= -randomv@3D; pc=randomv@3D; pd= -2*randomv@3D;
Print@8pa, pb, pc, pd<D;
vv= sph4ptsvec@pa, pb, pc, pdD;
Print@vvD;
gr1=euklidsphereplot3D@vv,-1, 1,-1, 1, PlotStyleÆ Opacity@.2D, Mesh Æ NoneD;
gr2=Graphics3D@8PointSize@0.015D, Point@paD, Point@pbD, Point@pcD, Point@pdD<D;
gr3=Graphics3D@8PointSize@0.02D, Blue, Point@vcenter@vvDD<D;
Show@8gr1, gr2, gr3<D
880.961433, 0.0317091,−0.832076<,80.128135, 0.57306, 0.638669<, 80.156624, 0.112656,−0.0886155<,8−0.915503, 0.0486348,−0.20589<<
80.5542,−0.223947, 2.06904,−1.05049, 0.00316966<
ü The Coxeter Invariant (Inversive Distance of two spheres)
? coxeterinv
Info3524720351-2877488
coxeterinv@r1, r2, dDis the conformal invariant of two hyperspheres
with radii r1, r2 and distance d of their centers.
coxeterinv@r, R, dD
−d2+r2+R2 2 r R
We show that the Coxeter invariant coincides with the single Möbius geometric invariant of two hyperspheres. It follows that it is a conformal invariant.
mr = spherevec@x, y, z, rD; mR = spherevec@X, Y, Z, RD; Simplify@pssp@mr, mRDD
− 1
2 r RI−r2−R2+x2−2 x X+X2+y2−2 y Y+Y2+z2−2 z Z+Z2M
SimplifyAx2−2 x X+X2+y2−2 y Y+Y2+z2−2 z Z+Z2− 8X−x, Y−y, Z−z<.8X−x, Y−y, Z−z<E 0
%%ê. x2−2 x X+X2+y2−2 y Y+Y2+z2−2 z Z+Z2→ d ^ 2
−d2−r2−R2 2 r R
Simplify@% == coxeterinv@r, R, dDD True
This proves the Möbius invariance of the Coxeter inversive distance. Similarly, we obtained Euclidean expres- sions for the Möbius invariants of pairs of circles in the notebook mcircles.nb, Example 6 below, and for other pairs of subspheres in the notebook pairs,nb, see [13].
Clear@mr, mRD
ü Example 3. Circle through Three Random Points
The package mcirc.m containes functions specific for the geometry of circles in the 3-dimensional Euclidean space and the Möbius space. For details of the geometry of the 6-dimensional circle space see [10].
? mcirc`*
mcirc`
adaptsplframe control ppdet
center gencircle pptr
center3pts plotcircle2spv pscomplement
circle2spv plotcircle3D radius
circle3D plotcircle3pts radius3pts
circle3pts plotgencircle threepoints
circlefamily posvec tube
circleplane posvec3pts unitvec
circlespacevectors pp vspace
A circle is defined by three of its points in the Eucldean n-space. On the other hand, in projective or Möbius geometry, it is an elliptic quadric in a 2-dimensional subspace, corresponding to a 3-dimensional pseudo- Euclidean subspace of the (n+2)-dimensional Lorentz space. Such a subspace is obtained as a function of the points by
? vspace
Info3524728355-7085145
If p is a List of points of the Euclidean n-space, then vspace@pDyields an orthonormal basis of the Euclidean subspace
in theHn+2L-dimensional Lorentz space being the orthogonal complement
of the pseudo-orthogonal subspace corresponding to the maximal subsphere through the points of the List p.
vspace@p1,p2,p3Dyields a basis of the Euclidean subspace corresponding to the circle through the points p1,p2,p3.
? randommatrix
rm3 = randommatrix@3, 3D
88−0.0458312,−0.148651, 0.708336<,
80.495644, 0.449637, 0.0763914<,8−0.89047, 0.17216,−0.780091<<
vspace@rm3D
880.184636,−0.406552, 0.806978, 0.413907, 0.215114<, 8−0.188408, 0.365205,−0.158207, 0.0991218, 0.931272<<
Table@Chop@pssp@%@@iDD,%@@jDDDD,8i, Length@%D<, 8j, Length@%D<D êêMatrixForm
K1. 0
0 1.O
Table@Chop@pssp@invstepro@rm3@@iDDD,%%@@jDDDD,8i, 3<,8j, 2<D 880, 0<,80, 0<,80, 0<<
These orthogonality relations show tha the three points lie on the circle corresponding to vspace[rm3]- Example:
pa=randomv@3D; pb= -randomv@3D; pc=2*randomv@3D;
Print@8pa, pb, pc<D;
gr1=plotcircle3pts@pa, pb, pcD;
gr2=Graphics3D@8PointSize@0.015`D, Point@paD, Point@pbD, Point@pcD<D;
gr3=Graphics3D@8PointSize@0.02D, Blue, Point@center3pts@pa, pb, pcDD<D;
Show@8gr1, gr2, gr3<D
88−0.562791,−0.946697, 0.0787639<,
80.741523,−0.4055,−0.88538<,8−1.5862, 1.66307, 0.0883381<<
-1
0
1 -1
0 1
2
-1.0 -0.5 0.0 0.5
pa=randomv@3D; pb=5*randomv@3D; pc=Hpa+pbL ê2;
Print@8pa, pb, pc<D;
gr1=plotcircle3pts@pa, pb, pcD;
gr2=Graphics3D@8PointSize@0.015`D, Point@paD, Point@pbD, Point@pcD<D;
Show@8gr1, gr2<D
88−0.271244, 0.094243,−0.0798477<,
82.93209, 3.76536, 4.95649<,81.33042, 1.9298, 2.43832<<
-10 -5
0 5
10
-10 -5 0 5 10
-10
0
10
ü Example 4. Tubes of Torus Knots
? tube
Info3524720782-2877488
tube@x,a,b,r,optDplots the tube of the curve xHEnter only
the name, not the parameter!L with tube radius r for the parameter s, asb, with options opt of ParametricPlot3D.
The general circular torus is the surface of revolution
Clear@torussfD; torussf@a_, b_D@u_, v_D:=8Ha+b*Cos@uDL*Cos@vD,Ha+b*Cos@uDL*Sin@vD, b*Sin@uD<
In[66]:= ParametricPlot3D@torussf@1, 1ê3D@u, vD, 8u, 0, 2*Pi<,
8v, 0, 2*Pi<, MeshÆ None, PlotStyleÆ Opacity@.6D, PlotRange ÆAllD
Out[66]=
In[67]:= torus1= %;
A torus knot is a curve on the torus with the parameter representation
torkn@a_, b_D@p_, q_D@t_D :=8Ha+b*Cos@p*tDL*Cos@q*tD,Ha+b*Cos@p*tDL*Sin@q*tD, b*Sin@p*tD<
ParametricPlot3D@torkn@1, 1ê3D@4, 3D@tD,8t, 0, 2∗Pi<, PlotStyle → 8Red, Thick<D
-1
0
1
-1 0
1 -0.2
0.0 0.2
tc1 = %;
Show@8tc1, torus1<, Axes→ None, Boxed → FalseD
A tube of radius r of such a curve with parameter p and circleparameter s can be defined as
torusknottube@a_, b_D@p_, q_, r_, opts___D:= tube@torkn@a, bD@p, qD, 0, 2∗Pi, r, optsD Here a,b are the parameters defining the torus, p,q are integers defining the knot, and r is the tube radius
In[64]:= torusknottube@1, 1ê3D@4, 3, 0.05, PlotPoints →880, 20<D
Out[64]=
Show@8%, torus1<, Axes→ None, Boxed → FalseD
Out[69]=
ü Example 5. Euclidean and Möbius Invariants of a Circle Pair ü The Double Projection and the Möbius Invariants of Circle Pairs
With the notatioons and assumptions of the last subsection using the orthogonal decompositions of the pseudo- Euclidean vector space defined by the subspaces U0,U1, we consider the double projection
? pp
Info3524721352-2877488
pp: If V and W are the Euclidean vector subspaces spanned by the orthonormal bases8v1, v2<,8w1, w2< respectively, then pp@v1, v2, w1,w2D is the matrix of the composition p=p2 p1 of the orthogonal projections p1: V->W, and p2: W->V, with respect to the base8v1, v2<.
An elementary calculation yields the following symmetric matrix Clear@v1, v2, w1, w2D; pp@v1, v2, w1, w2D êêMatrixForm
pssp@v1, w1D2+pssp@v1, w2D2 pssp@v1, w1Dpssp@v2, w1D+pssp@v1, w2 pssp@v1, w1Dpssp@v2, w1D+pssp@v1, w2Dpssp@v2, w2D pssp@v2, w1D2+pssp@v2, w2 The same matrix is obtained if one considers the extremal problem for the function pssp[v,w] under the side conditions vœ U0, wœU1, with pssp[v,v] = 1, pssp[w,w]= 1. The eigenvalues of the matrix correspond to the extrema of the function under the side conditions.
A complete system of Euclidean invariants of a pair (C0,C1) of circles is obtained by the following entities:
The radii r of C0, R of C1, the distance d of the centers,
the angle a between the position vectors nc0, nc1,
the angle b between the position vector nc0, and the line connecting the centers, the angle c between the position vector nc1, and the line connecting the centers.
Proposition. The double projection pp is a selfadjoint operator Möbius equivariantly associated
to the circle pair. Its Eigenvalues or, equivalently, its trace and its determinant, are a complete
invariant system in the manifold of all circle pairs. they can be expressed by the Eucliden
invariants mentioned above by the formulas
euforminvdet@r, R, d, a, b, cD
II − d
2+ r
2+ R
2M Cos @ a D + 2 d
2Cos @ b D Cos @ c DM
24 r
2R
2euforminvtr@r, R, d, a, b, cD 1
4 r
2R
2I d
4+ r
4+ 4 r
2R
2+ R
4+ 2 r
2R
2Cos @ 2 a D + 2 d
2I r
2Cos @ 2 b D + R
2Cos @ 2 c DMM
The proof of the proposition can be found in [6] or [4]. The formulas are derived in the Mathematica notebook [10]; we repeat the calculations in the next subsection.
3. Curves of Constant Möbius Curvatures and Dupin Cyclides
The curves of constant curvatures in any Klein geometry coincide with the orbits of 1-parametric subgroups of the transitive transformation group defining the geometry. In [11] the classification of the 1-parametric subgroups of the Möbius group O[1,4] with respect to conjugation and equivalently the classification of the curves of constant Möbius curvatures in the 3-dimensional Möbius space has been carried out in this general context. Here we show some aspects of this classification.
ü Direct Calculation of the Curves of Constant Curvatures
We consider the underlying pseudo-Euclidean vector space in isotropic-orthogonal coordinates, since the points,represented by isotropic vectors, are the basic objects now. The scalar products of the standard basis vectors satisfy
Table@stb@iD.io@D.stb@jD,8i, dim<,8j, dim<D êêMatrixForm 0 0 0 0 −1
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
−1 0 0 0 0
A generally curved curve in the Möbius space has two curvatures k, h being functions of a natural parameter t, and a canonical defined isotropic-orthogonal moving frame (vec[b[i][t]]), i = 1,...,5, satisfying the Frenet formu- las with the Frenet matrix
Clear@ccD; cc@k_, h_D := mfre3D@k, hD cc@k, hD êêMatrixForm
0 k 1 0 0 1 0 0 0 k 0 0 0 −h 1 0 0 h 0 0 0 1 0 0 0
The solution of the Frenet equation with constant curvatures k,h and the start condition b[0][i] = stb[i] is gr@k_, h_D@t_D := MatrixExp@cc@k, hD∗tD
FullSimplify@D@gr@k, hD@tD, tD −gr@k, hD@tD.cc@k, hDD
880, 0, 0, 0, 0<,80, 0, 0, 0, 0<,80, 0, 0, 0, 0<,80, 0, 0, 0, 0<,80, 0, 0, 0, 0<<
The matrix cc[k,h] represents an element of the Lie algebra of the Möbius group in isotropic-orthogonal coordinates:
Transpose@cc@k, hDD.io@D + io@D.cc@k, hD
880, 0, 0, 0, 0<,80, 0, 0, 0, 0<,80, 0, 0, 0, 0<,80, 0, 0, 0, 0<,80, 0, 0, 0, 0<<
Therefore gr[k,h][t] is a 1-parametric subgroup of the Möbius group, with group parameter t, whose orbits are curves of constant curvatures, or eventually fixed points. The stereographic projection with the North pole {0,0,0,1} of the unit 3-sphere as center applied to the orbit yields an Euclidean image of the orbit. Its parameter representation is
cccurve@k_, h_, x_, y_, z_D@t_D:=
stepro@transoi@D.gr@k, hD@tD.transio@D.invstepro@8x, y, z<DD transio@D.invstepro@80, 0, 0<D
: 2 , 0, 0, 0, 0>
The orbit of the origin is a curve with constant curvatures k,h:
cco@k_, h_D@t_D:= stepro@transoi@D.Transpose@gr@k, hD@tDD@@1DDD Simplify@cco@k, hD@tD − cccurve@k, h, 0, 0, 0D@tDD
80, 0, 0<
ParametricPlot3D@cco@−2, 1ê2D@tD,8t,−16∗Pi, 16∗Pi<, PlotRange → AllD
-1 0 1
-1
0
1
0.0 0.2 0.4 0.6
cco1 = %;
In[70]:= Limit@cco@−2, 1ê2D@tD, t → Infinity, Direction → 1D
Mathematica can’t calculate these Limits, but an elementary calculation shows that the Limit equals the point ppt correspopnding to the fixed vector vv (see below).
vv=fv@−2, 1ê2D :1, 0, 0, 1,
1 2>
vv.io@D.vv 0
ppt = stepro@transoi@D.vvD
:0, 0, 1
2
>
lppt = Graphics3D@8PointSize@.015D, Point@pptD<D
Show@8cco1, lppt<, PlotRange → AllD
-1
0
1
-1 0
1
0.0 0.2 0.4 0.6
ParametricPlot3D@sphericalreflection@cco@−2, 1ê2D@tD, ppt, 1D, 8t,−10∗Pi, 10∗Pi<, PlotRange → AllD
-2 0
2 -10
-5 0
5 10
-0.00.5 0.5
ü A Raw Classification
The geometry of the curve depends on the invariant defining the character of the fixed vector corrresponding to the eigenvalue 0:
ses =Simplify@Eigensystem@cc@k, hDDD;
eva@k_, h_D =ses@@1DD; eve@k_, h_D= ses@@2DD; Clear@sesD Here are the Eigenvalues of cc[k,h]
eva@k, hD
:0,−
h2−2 k+ 4+h4+4 h2k+4 k2 2
, −h2 2
+k−1 2
4+h4+4 h2k+4 k2 ,
− −h2 2
+k+1 2
4+h4+4 h2k+4 k2 , −h2 2
+k+ 1 2
4+h4+4 h2k+4 k2 >
Thus the eigenvalues eva[[2]],eva[[3]] are purely imaginary and conjugated.
And here are the corresponding Eigenvectors in isotropic-orthonormal coordinates: