• Keine Ergebnisse gefunden

Mapping recreational visits and values of European National Parks by combining statistical modelling and unit value transfer

N/A
N/A
Protected

Academic year: 2021

Aktie "Mapping recreational visits and values of European National Parks by combining statistical modelling and unit value transfer"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Journal

for

Nature

Conservation

jou rn a l h o m e p a g e :w w w . e l s e v i e r . d e / j n c

Mapping

recreational

visits

and

values

of

European

National

Parks

by

combining

statistical

modelling

and

unit

value

transfer

Jan

Philipp

Schägner

a,∗

,

Luke

Brander

b

,

Joachim

Maes

a

,

Maria

Luisa

Paracchini

a

,

Volkmar

Hartje

c

aJointResearchCentre,EuropeanCommission,Italy

bInstituteforEnvironmentalStudies,VUUniversityAmsterdam,TheNetherlands cChairofEnvironmentalandLandEconomics,TechnicalUniversityBerlin,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2September2015

Receivedinrevisedform1March2016 Accepted2March2016

Keywords:

Ecosystemservicemodelling Recreationaldemandmodelling Ecosystemservicemapping Ecosystemservicevaluation Recreationalvisitornumbers Protectedarea

a

b

s

t

r

a

c

t

Recreationisamajorecosystemserviceandanimportantco-benefitofnatureconservation.The recre-ationalvalueofNationalParks(NPs)canbeastrongargumentinfavourofallocatingresourcesfor preservingandcreatingNPsworldwide.ManagingNPstooptimizerecreationalservicescantherefore indirectlycontributetonatureconservationandbiodiversityprotection.Understandingthedriversof recreationaluseofnationalparksiscrucial.

Inthisstudyweuseacombinationofprimarydataonannualvisitorcountsfor205EuropeanNPs,GIS andstatisticalregressiontechniquestoanalysehowcharacteristicsofNPsandtheirsurroundings influ-encetotalannualrecreationalvisitornumbers.Thestatisticalmodelcanbeusedforland-useplanning byassessingtheimpactofalternativeconservationscenariosonrecreationaluseinNPs.Therecreational useofnewNPscanbeestimatedex-ante,therebyaidingtheoptimisationoftheirlocationanddesign.

Weapplythemodelto:(1)maprecreationalvisitstopotentialnewNPsacrossEuropeinorderto identifybestNPlocation;(2)maprecreationalvisitstoaproposednewNPinthewestofGermanyin orderestimatemonetaryvaluesandtoshowhowvisitsaredistributedacrossthesite;and(3)predict annualvisitstoallNPsof26Europeancountries.Totalannualvisitsamounttomorethan2billion annually.Assumingameanvaluepervisitderivedfrom244primaryvalueestimatesindicatesthatthese visitsresultinaconsumersurplusofapproximatelyD 14.5billionannually.

©2016TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

NationalParks(NPs)areprotectedareasfortheconservationof extraordinarylandscapeandwildlifeforposterityandasasymbol ofnationalpride.NPscontributetostoppingthelossofbiodiversity, maintainingthenaturalnessandbeautyofourlandscapeandthe supplyofecosystemservices.Thereby,NPscontributeto achiev-ingthetargetsdefinedinEUbiodiversitystrategy2020,suchas “haltingthelossofbiodiversityandthedegradationofecosystem services”(EC,2011), and theAichitargets,suchas“toimprove thestatusofbiodiversitybysafeguardingecosystems,speciesand geneticdiversity”(CBD,2013).

However,financialresourcesandpolitical supportfornature conservation are limited and halting ecosystem degradation remainsagreatchallenge.Inthepast,majorpolicygoalson

biodi-∗ Correspondingauthor.

E-mailaddress:philipp.schaegner@gmx.net(J.P.Schägner).

versityprotectionhavetypicallynotbeenmet,suchasthosesetby theConventiononBiologicalDiversity,ratifiedaftertheglobal sum-mitinRiodeJaneiro(1992)(Barbault,2011;Leadleyetal.,2010). Andstill,thefutureoutlookrevealsthatbiodiversityremainsunder threatandsubstantialactionneedstobeundertaken(SCBD,2014). Onemajorco-benefitofnatureconservationisthesupplyof recreationalopportunities.NPsprovideopportunitiesforvisiting, experiencing, enjoyingandlearning aboutnatureand biodiver-sity,andthuscontributetohumanwell-beingandenvironmental awareness. Nature recreationand tourismpresent a great eco-nomicvalueandanopportunityforruraleconomicdevelopment bygeneratingincomeandemploymentthroughvisitors’ expendi-tures.Thevalueofnaturerecreationanditseconomicopportunities canbeusedasastrongargumentinfavourofallocatingfinancial resourcestowardsnatureconservationatdifferentspatialscales (Balmfordetal.,2015).

Natureconservationshouldnotonlyfocusonbiodiversityand habitatprotection,butshouldalsotakerecreationalco-benefits into account. Efficient land-use planning needs to consider all http://dx.doi.org/10.1016/j.jnc.2016.03.001

1617-1381/©2016TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

(2)

ecosystemservicessupplied.For allocatingresourcesfornature conservation, it can be important to know how recreational co-benefitsof nature conservationcan beoptimized. The most importantindicatorofthecontributionofrecreationtothelocal economyisthenumberofvisitors(Jones,Bateman,&Wright,2003; Bateman,Day,Georgiou,&Lake,2006).Therefore,understanding thedriversthatdeterminethenumberofvisitorstoprotectedareas iscrucialforprotectedareamanagementandforprotectedarea designation.

TheaimofthisstudyistoanalysetheeffectsofNPcharacteristics andtheirspatialcontextontotalannualvisitsthatareconsidered themaindeterminantofrecreationaleconomic value(Bateman etal.,2006).Tothisend,we developregressionmodelsof visi-tornumbersusingprimarydataforEuropeanNPscombinedwith additionalspatialvariablesderivedfromGISdata.Theestimated modelsgiveinsightsintothedrivers ofrecreationalusewithin EuropeanNPsandthusallowthepredictionofvisitornumbersfor designatednewNPsandalternativemanagementscenarios. Simi-lartothestudyofBalmfordetal.(2015),wecombineourpredicted visitornumberswithameanvalueestimateperrecreationalvisit, butderivedfromamuchlargersetofprimaryvaluationstudies. Thereby,therelativeimportanceofrecreationalservicesis high-lightedascomparedtootherecosystemservicesandman-made goods.

Severalstudies have modelled visitor numbersof protected areasornatureareasbasedonspatialvariables.Onewidelyapplied approachistousechoicemodelstopredictrecreationalbehaviour at the individual level. Typically, such studies use survey data containinginformationontheoriginanddestinationofan individ-ualrecreationaltrip.However,suchdatasetsaretime-consuming to develop and are usually only available for relatively small areas(Pouta&Ovaskainen,2006;Batemanetal.,2011;Hausman, Leonard,&McFadden,1995;Jones,Wright,Bateman,&Schaafsma, 2010;Loomis,1995;Featheretal.,1995;Parsons&Hauber,1998; Senetal., 2013; Shaw &Ozog,1999;Termansen,Zandersen,& McClean,2008).Thepurposeofthepresentstudyistoinvestigate thedeterminantsofrecreationaluseofNPsataEuropeanscaleand thereforeweusedatafromvisitormonitoringstudiesforNPsacross Europe.Someexisting studies have usedsimilar approaches in ordertoinvestigatedriversofrecreationalparkvisits.Forexample, Neuvonen,Pouta,Puustinen,andSievänen(2010)analyseeffects ofparkcharacteristicsonvisitationratesfor35FinnishNPs.Mills andWestover(1987)modelthevisitationratesfor121Californian StateParksusingfourpredictorsrepresentingparkcharacteristics andthedistancetothenearestpopulationagglomeration.Hanink andWhite(1999)modelrecreationaldemandfor36USNational Parksusingageandsizeasvariablesfordescribingthepark,its dis-tanceandthepopulationoftheclosestmetropolitanarea,aswellas substituteavailabilityascontextcharacteristics.HaninkandStutts (2002)model thedemandfor19recreationalbattlefieldsinthe US.Theyuseasubstituteavailabilityindicatorweightedby indi-vidualsubstitute’scharacteristics.Loomis,Bonetti,andEchohawk (1999)findasignificanteffectofGDPpercapitaandofavailability ofwildernessonthenumber ofrecreationaltripstowilderness areasper capitaintheUS. Ejstrud(2006) useanumber of GIS indicatorsformodellingvisitorfrequencyto10Danishopen-air museumsusingsixpredictorvariables,butdonotreportwhether theyshowsignificanteffects.Theonlystudyusinginternational visitordataisfromBalmfordetal.(2015),whichusesvisitordata ofprotectedareasworldwide.Theirstudyusesonlyalimited num-berofrelativelysimplepredictorvariablesandfindsfewsignificant effects.Theirmodelmaybeappropriatetoassessoveralltrends inprotectedareavisitationrates,butmayhavefewsitespecific implications.Loomis(2004)usesregressiontechniquestoestimate theeffectofelkandbisonpopulationsonvisitationratesinGrand TetonNationalPark,US,usingexplanatoryvariablesonhowthe

parkchangesovertime,butdoesnotcompareeffectsofalternative sites’characteristics.

Allexceptoneoftheabovementionedstudiesusenationaldata onlyfortheirstatisticalanalysis.Thereby,thenumberofprimary observationsisingeneralrelativelylow.Thepurposeofthepresent studyistoinvestigatedriversofrecreationaluseforNPs Europe-wide and therefore, use visitordata from NPs in 21 European countriescomprising205casestudyareasintotal.Consequently, wecan includemore predictors inourinitialmodel and tryto estimateamorerobustmodel.Forexample,nationalstudyareas arerelativelysmallandthereforeclimaticconditionsareoftentoo similartobeconsideredasapredictorinarecreationaldemand model.Furthermore,weusemorerefinedsiteandcontext char-acteristicsaspredictors inourmodel,whichare computedand extractedfromEurope-wideGISdatalayers.Asallourpredictors arederivedfromlargescaleGISdatalayers,thefinalmodelcan easilybeusedtomakepredictionsofvisitors’frequencyforany potentialNPinEurope.Thus,recreationalusecanbemappedfor anylocationinEuropewithouttheneedforanadditionalcollection ofinformationonthepredictorvalues.Ourspatialassessmentcan therebybeusedforecosystemservicemappingasrequiredbythe EUBiodiversityStrategy2020,improvingresourceallocationand calculatingagreenGDP(UN,2014;Maesetal.,2012).Finally,we useanumberofdifferentstatisticalregressiontechniquestodeal withspatialautocorrelationforamorein-depthidentificationof thespatialdimensionofrecreationaluse.

Thispaperisorganizedasfollows:insectiontwowedescribe thedataweuse,firsttheprimarydataofvisitormonitoringstudies andsecondthepredictorsusedinourmodels.Insectionthreewe explainthestatisticalregressiontechniquesappliedandpresent theestimatedvisitormodels.Theresultsarepresentedand dis-cussedinsectionfourandfive,withconclusionsprovidedinsection six.

2. Data

2.1. Primarydata

Ourprimarydataare205totalannualvisitorestimatesto Euro-peanNPsand245estimatesofmonetaryvaluesperrecreational visit for147separatenature areasin Europe.We collectedthe datathroughinternetsearches,reviewofrelevantliteratureand bycontactingresearchersinvolvedinthisfield,NPadministrations andrelevantgovernmentalbodiesinallEUcountries.Thedatais describedmoreindetailin(Schägneretal.,submitted).

Forthevisitordatatobeincluded,werequiredasaminimum qualitycriteriathatthetotalannualvisitorestimatesarebasedon someformofon-sitevisitormonitoring,whichisthenscaledup totheentireareaandtheentireyear.Inordertocheckwhether thequalitycriteriaismet,weanalysedtherelevantpublications onthevisitormonitoringprograms.Incasesinwhichthe informa-tionwasnotavailableornotaccessibleduetolanguagebarriers,we contactedtheauthorsandrelevantinstitutions.Intotalwecould obtainannualvisitorobservationsfor205separatecasestudyareas withinEurope,whichareeitheranentireNPorasubsectionofa NP(seeFig.1).Allcollecteddatawereattachedasattributestoa spatiallayerinvectorformat,containingtheboundariesofNPsor oftheirsurveyedpart.WeobtainedNPpolygonsfrom(WorldData BaseofProtectedAreas)andtheCDDA(CommonDatabaseon Des-ignatedAreas)(IUCN&UNEP,2015;EEA,2013)andfromnational agencies.Ifcasestudyareasdifferedfromtheavailablepolygons, wetriedtoobtainpolygonsfromtheauthorsofthestudies,the parkmanagementorotherstakeholders.Insomecaseswe manu-allydrawpolygonswithArcGIS,basedoninformationavailablein thecasestudypublicationsorsuppliedbytheauthors.Ifmultiple

(3)

Fig.1.LocationofvisitorcountsacrossEurope.

observationsofvisitornumbersareavailableforthesamestudy area,weusedtheaverage.

NPandcasestudyareacharacteristicsdifferwidelyinterms ofsize,location,visitationrateandecosystemcharacteristics.The smallestcasestudyareaisaninehectarebeachwithintheWadden SeaNPinGermany,whereasthelargestcasestudyareaisthe Cairn-gormsNPinScotlandcomprising3816km2.Mostofthecasestudy

areasinourdatabasearelocatedinNorthernEurope.For South-ernEuropewecouldobtainvisitornumbersforallSpanish,most ItalianandFrenchNPs.Forourstatisticalanalysiswedividedthe totalannualvisitornumbersbythetotalterrestrialareaofthe sin-glestudyareas1andtherebyobtainedtotalannualvisitordensities perhaasourdependentvariableinourmodels.Visitornumbers rangefrom0.03visitors/ha/yearinthelargeSarekNPinnorthern Swedenupto56,680visitors/ha/yearonasmallbeachwithinthe WaddenSeaNP.Thetotalmedianandmeanis13and368with standarddeviationof3962visitors/ha/year,indicatinga skewed distributionwithatailofveryhighvisitationrates.Themean rela-tivedeviationisabout167%.Formoreinformationontheprimary data,itcanbeaccessedviatheESPVisualisationTool(Drakouetal., 2015).

Forourstatisticalanalysiswedividedthetotalannualvisitor numbersbythetotalterrestrialhasizeofthesinglestudyareas andtherebyobtainedtotalannualvisitordensitiesperhaasour dependentvariableinourmodels,whichiscommonwithinspecies distributionmodelling.

ThevaluationstudiesuseeitherTravelCostMethod(TCM)(57%) orContingentValuation Method(CVM)(43%).For thevaluation studies,wetransferallvalueestimatestoEuro2013pricelevel usingpurchasingpowerparityandcountryspecificinflationdata. Weexcludeoneoutlierwithanextremedeviationof60timesthe meanvalue.TheremainingvalueestimatesrangefromD 0.16to 64.7pervisitwithameanofD7.17,amedianofD2.8,astandard deviationof11andameanrelativedeviationof95%.Moststudy sitesarelocatedinWesternEurope(51%).TheUKhasthehighest

1Weusedtheterrestrialareanotincludingareacoveredwithwaterbecausesome

NP–inparticularmarineNP–comprisemainlyofwater.Includingtheareaofwater wouldbiasouranalysissincethisareaishardlyvisited.

numberofobservations(81),followedbyItaly(32),Ireland(28), Finland(27)andGermany(22).

2.2. Explanatoryvariables

Explanatory variables used tomodel visitationrates can be divided into three categories: (1) site characteristics, which describetheNPitself;(2)contextcharacteristics,whichdescribe thespatialcontextoftheNP;and,(3)studycharacteristics,which describethemethodologyofprimarydatacollection.Theselection ofvariableswasbasedonareviewoftheliteratureonrecreational demandmodellingandenvironmentalrecreationalvaluetransfer studies.However,limitationsintheavailabilityofcomprehensive andconsistentEurope-widedatasetsandintheinformation pro-videdinvisitormonitoringpublications restrictedourchoiceof predictors.A completelistofallpredictors usedinouranalysis ispresented inTable1.Detaileddescriptionispresentedin the followingsections.Eachvariableisavailableingeospatialraster format,thereforesiteandcontextcharacteristicsforeachsitecould beeasilycalculatedinaGISenvironment.Weextractedmean val-uesof allpredictorvariables for each case studyareausingan automatedmodelbuiltinArcGIS,includingtheuseofthezonal statisticstool(ArcGIS10.1).Therasterlayersofthepredictorswere eithertakenfromavailableGISdatasetsorwecomputedthemby reprocessingorcombiningexistingdatasetsusingArcGIS(ArcGIS 10.1).Thenweconductedanexplorationofourdatafollowingthe recommendationsof(Zuur,Ieno,&Elphick,2010)inordertogain initialinsightsintodistributionsanddependencies.Forsome pre-dictorsweusedlogarithmicorsquareroottransformationseither becausetheyshowedarelativelyskeweddistributionorbecause wewantedtoapproximatelylinearizeanexpectednon-linear rela-tionship. We tested all ourpredictors for multicollinearity, but couldnotidentifyanythingofconcern.

2.2.1. Sitecharacteristics

The following site characteristics are used to model visita-tionrates:(1)Shareoflandcover/use:WeusedtheCORINEland cover/usedataset(EEA,2006)todeterminethesharesof differ-entlandcover/useclassesandaggregatesofsinglelandcover/use classesforeach NP.Inparticularwefocusedonnatural vegeta-tioncover.We do not,however,havestrongpriorexpectations regarding the signs of these land cover predictors. In general, onemayassumethat naturalvegetationsupportsnature recre-ation.However,NPstypicallyofferplentifulnaturalvegetationand thereforeadditionalnaturalvegetationofanykindmaynot neces-sarilyattractadditionalvisitors.Ouranalysisofthedifferentland covershasanexploratorycharacteranddoesnotaimtotest spe-cific hypotheses. Theseparateclasses and aggregated areasare presentedinTable1.(2)Waterbodies:Wecomputeda300m res-olutiongridoftheshareofsurfaceareacoveredwithrivers,lakes oroceanusingtheEuroRegionalMapasinputdataset(EG,2010). Thenweapplieda kerneldensityfunctiontool (ArcGIS10.1)to computetheamountofsurfacecoveredwithwaterwithina3km radiusofeachpixel.Thedensityfunctionallowswaterareathatis furtherawaytobeweightedlessthanwaternearbyandthereby incorporatesadistancedecayeffect.Thepresenceofwaterbodies inaNPareexpectedtohaveapositiveimpactonrecreationaluse (Termansenetal.,2008).

Weexpectthatmorediverselandscapesareperceivedasmore beautiful(Dramstad&Tveit,2006)andtherebyattractmore visi-tors.Basedonthebasiceconomicprincipleofdecreasingmarginal utilityandratesofsubstitution,diversitytendstoberatedhigher than uniformity (Mankiw, 2001).In order toaccount for land-scapediversitywecomputedthreedifferentindicators.(3)Three dimensionality: We computedthe areavisible from each pixel within a 30km radius using the view shed tool (ArcGIS 10.1)

(4)

Table1

Listofpredictorsusedinthemodels.

Type Variables Explanationa Mean/StandardDeviation

SiteCharacteristics: Sqrt(grassland) Shareofgrasslandscoverofthestudyarea(100mresolution raster)

0.2/0.24 Sqrt(wetland) Shareofwetlandscoverofthestudyarea(100mresolutionraster) 0.14/0.23 Sqrt(water) Shareofwaterbodiesofthestudyarea(300mresolutionraster) 0.23/0.26 Log(broadleaf) Shareofbroadleafforestofthestudyarea(100mresolutionraster) 0.73/0.86 Conifer Shareofconiferforestofthestudyarea(100mresolutionraster) 4.44/4.63 Log(forestedge) Transitionareabetweenforestandotherlanduse/cover(25m

resolutionraster)

0.83/0.4 Sqrt(landcoverdiversity) SimpsonDiversityIndexofCorinelanduse/coverwithina3km

radius(100mresolutionraster)

1.61/0.22 Log(viewshed) Areavisiblefromeachlocationwithinina30kmradius(1km

resolutionraster)

5.43/0.69 Log(redlistspecies) Totalnumberofredlistspeciesfoundinstudyarea 2.65/0.84 Temperature Totalnumberofdayswithmaximumtemperatureabove5◦

Celsius(10kmresolutionraster)

256/57.5 NPage YearssinceNPfoundationuntil2015 40.6/26.94 Log(trails) Traildensityusingdensityfunctioninordertoaccountfor

distancedecayeffect

5.69/1.87 Log(roads) Densityofminorroadsusingdensityfunctioninordertoaccount

fordistancedecayeffect(100mresolutionraster)

0.9/0.83 Studyareakm2 Sizeofthestudyareainkm2 352/621

ContextCharacteristics: Log(NPsubstitutes) AreaofNPwithin130kmradiusofthestudyareausingaGaussian weightfunctioninordertoaccountfordistancedecay(1km resolutionraster)

11.35/1.5

Log(Population50km2) Populationlivingwithin50kmradiusofthestudyareausinga

Gaussianweightfunctioninordertoaccountfordistancedecay (100mresolutionraster)

12.88/1.75

GDP/capita GDP/capitaintheNUTS2or3regioninwhichthestudyareais located

21,856/7713

StudyCharacteristics: Surveyyear Yearofvisitormonitoringsurvey 2005.6/4.16 Surveyquality Qualityofthevisitormonitoringsurveymethodologyandstudy

areadefinition

7.17/1.53

aForallpredictorsmeanvaluesperstudyareawerecomputed.

anda1000mresolutiondigitalelevationmapfromtheEuropean EnvironmentalAgency(EEA,2015a).Webelievethatvisitors pre-ferthree-dimensional landscapesofferinggreat views. (4)Land use/coverdiversity:BasedontheCORINElanduse/coverdataset wecomputedtheSimpsonDiversityIndex(Magurran,1988)ofland use/coverwithina3kmradiusforeachpixeloftheCORINEmap.In theirstudy(Neuvonenetal.,2010)usethenumberofbiotopesasa diversityindicatorandfindasignificantpositiveeffectonvisitation frequencyinFinnishNPs.However,thenumberofbiotopesmaybe positivelycorrelatedwiththestudyareasize.Therefore,this pre-dictormaypickuppartofthesizeeffect.Furthermore,largerNPs mayhavemorebiotopeseveniftheirlandscapeisnotmorediverse. (5)Forestedges:UsingtheJointResearchCentreforestcovermap (EC,2006),wecomputedthenumberofforestpixels(25m res-olution)thatarenotclassifiedasforestcore.We considerthese forestpixelsasthetransitionareabetweenforestandotherland use/coverandtherefore,asamajorvisiblechangeinthe ecosys-temtype(EC,2006).(6)Temperature:Weappliedadatasetfrom (Biavetti,Karetsos,Ceglar,Toreti,&Panagos,2014)indicatingthe numberofdayswithmaximumtemperatureabovefivedegrees Celsius.Duetothepredominanceofsouthboundtourismfluxesin Europe,weexpecttemperaturetohaveapositiveeffecton visi-tationrates.(7)Regions:Siteswerefurtherclassifiedaccordingto theirmembershipofbio-geographicalandgeographical regions. We do not have expectations regarding thesigns of these fac-torvariables,but mightdiscoversomeculturaleffects.(8) Trail density:Weusedtraildensityasproxyforoverallrecreational facil-ities,whichmayattractvisitors.FromtheOSM(OpenStreetMap) dataset(OSM,2012),weextractedallvectorelementsthatcanbe classifiedasnon-motorizedtrafficinfrastructure.WeusedfiveOSM classes:trails;footpaths;bikepaths;bridlepathsand,steps.On a100mresolutionweappliedthelinedensitytool(ArcGIS10.1)

tocomputeanindicatorfortrailavailability.Again,trailsthatare furtherawayfromapixelwereweightedlessthantrailscloseby. Otherstudiesfoundsignificantpositiveimpactsoftrails(Neuvonen etal.,2010)orrecreationalfacilitiesingeneral(Mills&Westover, 1987),buttheyusedindividualparkdataandnocomprehensive largescaleGISdatasets.(9)Streetdensity:Similartotraildensity wecomputedanindicatorforstreetavailabilityforallminorroads (TeleRoadAtlasroadclasses4–6)basedontheTeleRoadAtlas dataset(TS,2006).Roadsareanimportantinfrastructurefor access-ingremotelocationsandtherebyareexpectedtoincreasevisitor numbers.However,ifroadsaretooabundant,theymaynegatively affectthequalityperceptionofnaturerecreationinaNPandthus, detervisitors.(10)Studyareasize:Weexpectthatareasizehas anegativeimpactonthemeannumberofvisitorsperhabecause oftworeasons:First,largerstudyareasactasasubstituteinitself, becausevisitorscanbedistributedacrossalargerarea.Second, visi-torcountingtendstoresultinlowermeanvisitornumbersforlarger areas.Ifavisitorhikesthroughalargestudyarea,heiscounted once.Ifthesamestudyareaissplitintoseparatestudyareas,the samevisitormayeventuallybecountedseveraltimes.Most exist-ingstudiesofNPvisitsusetotalvisitornumbersasthedependent variableandthereforefindapositiveinfluenceofstudyareasize onvisitornumbers(Hanink&Stutts,2002;Hanink&White,1999; Mills&Westover1987).However,byworkingwithlinearmodels theypotentiallymissoutthatvisitornumbersdonotincreasein directunitaryproportiontothesizeofthestudyarea.(11)Ageof NP:Finally,wecharacterizedeachNPbyitsage(numberofyears sincefoundationuntil2015).Existingstudieshavefounda posi-tivecorrelationbetweenparkageandvisitornumbers(Neuvonen etal.,2010;Mills&Westover,1987;Hanink&Stutts,2002;Hanink &White,1999).Thismaybecausedbythegeneraltendencythatthe mostattractivelocationsweredesignatedasprotectedareasearlier

(5)

orthatolderNPshavehadmoretimetoestablishrecreational facil-ities.ThedesignationofaNPmaycreateanadvertisementeffect andestablisha goodreputationincreasingtheparkspopularity overtime.(12)Biodiversity:Inthiscaseweusedthetotal num-berofredlistspeciesencounteredinastudyareaasanindicator forbiodiversity(IUCN,2013).

2.2.2. Contextcharacteristics

Ascontextcharacteristicsweusedthefollowingvariables:(1) Accessibility:Weexpectthatthenumberofpeoplethatcanaccess acertainlocationwithinacertaintimeislikelytohaveapositive effectonthevisitationrate.Wedefinethis variableasthetotal populationlivingwithina50kmradiusaroundthesite,using pop-ulationdatafrom(BatistaeSilva,Gallego,&Lavalle,2013).Inorder toaccountfordistancedecay,weappliedaGaussianweight func-tion,whichcausesthepopulationthatisfurtherawayfromtheNP tobeweightedlessthanthepopulationnearby.Theweight func-tionwascalculatedsothat95%ofitsintegralwaslocatedwithin the50kmradius.Otherstudiesfindsignificantpositiveeffectsof accessibilityonvisitornumbers.Theyuseforexampledistanceto nearesttowns(Mills&Westover,1987)orconsiderthe popula-tionofmetropolitanareas(Hanink&Stutts,2002;Hanink&White, 1999)anddonotincludedistancedecayeffects(Neuvonenetal., 2010).(2) NPsubstitutes:We computedaraster inwhich each pixelis thesumofareasclassifiedasNP within130km radius. TheEurope-wideNPdatasetwasacombinationofsitesfromthe WDPAandCDDAdatabases.Inordertoaccountfordistancedecay, weusedthesamemethodologyasforpopulation.Asaresult,large NPsandNPswithsmalldistancefromeachotherhavearelatively highavailabilityofsubstitutes.Otherstudieshavefoundnegative influencesofsubstituteavailabilityonvisitornumbers.Theyuse forexampledistancestocompetingrecreationalsites(Hanink& White,1999;Hanink&Stutts,2002)orthenumberofparkswithin acertaindistance(Neuvonenetal.,2010).Theydonot,however, accountforthesizeofsubstituteareas.(3)Finally,weintroduce GDPpercapitaasaproxyofvisitorincome,whichweextracted fromtheEurostatdatabase(EC,2013).Wetookthemeanvalues ofthelasttenyears(asfarasavailable)andthehighestdata reso-lutionavailable,whichiseitherNUTS2orNUTS3level.Weexpect thatvisitationratesarelikelytobehigherinlocationswithhigher percapitaGDP.Existingstudieshaveobservedthatpeople engag-inginnaturerecreationhaveaboveaverageincomes(Loomisetal., 1999).

2.2.3. Studycharacteristics

Initially,weconsideredcollectingdetailedinformationonstudy characteristicsdescribingthemethodologyofthevisitor monitor-ingprocedureforeachcasestudyarea.Inthatway,wehopedto identifytheinfluenceofdifferentvisitormonitoringtechniqueson thefinaltotalannualvisitorestimate.Similarattemptshavebeen successfullyimplementedinmeta-analysisstudiesof environmen-taleconomicvaluationstudies(Zandersen&Tol,2009;Brouwer, Langford,Bateman,&Turner,1999).However,weencountered dif-ficultiesincodingsuchmethodologicalstudycharacteristicsdue tothelanguageandincompletereportingintheunderlyingcase studypublications.Therefore,weonlyintroducetwostudy char-acteristicsaspredictorsinouranalysis:(1)theyearofthevisitor monitoringsurveyforwhichweusedthemeanvaluesoftheyears inwhichvisitormonitoringtookplace.(2)Furthermore,we clas-sifiedallvisitormonitoringstudiesaccordingtodifferentlevelsof primarydatacollectionqualityfromoneforthelowestandtenfor thehighestquality.Thequalityjudgmentrepresentsacomposite indicatorofdifferentqualitydimensions:thetypeofpublication (scientificvs.grey literature);thevisitormonitoringstudy pur-pose(scientificvs.political);theinstitutionconductingthestudy (academic, NP management, others); themethodological

docu-Fig.2. Bubbleplotofthespatialdistributionofthefullmodel’sresidualwithout spatialcorrelationstructure.

mentationofstudy(full,incomplete,none).Ifthedocumentation forthestudywasavailable,weassessedthequalityof method-ologiesbasedondetailssuchasthetemporalandspatialcounting resolution,manualorelectroniccountingdevicesandthe tempo-ralandspatialup-scalingmethodology.Finally,averyimportant aspectforthevisitormonitoringstudiesqualityisthedescription ofthestudyarea.Somepublicationsdonotsupplymapsandonly roughdescriptionsofthestudyarea.Iftheareaofthestudyareais uncertain,thenthenumberofvisitorsperhectareisuncertainas well.

3. Methodology

Weappliedanumberorregressiontechniquesinordertomodel thetotal annualvisits perhatoEuropeanNPsusingtheabove describedpredictors. Allmodelswereestimatedusingtheopen sourcestatisticalsoftwareR.Westartedouranalysiswitha sim-plelinearregression,butitshowedastrongspreadoftheresiduals forlargerfittedvaluesandthereforeaviolationofthe homogene-ityassumption.We tried tocontrolthis effectbyintroducinga numberofdifferentvariancestructures,butwerenotsuccessful ineliminatingtheheterogeneitytoanacceptabledegree.

Asourdependentvariableisacount,wecontinuedour analy-siswithgeneralizedlinearmodelsusingaPoissonandanegative binomialdistribution(usingR-packageglmmADMB,MASS,lme4, nlme andgamlss(Bolkeretal., 2012;Ripleyet al.,2015; Bates etal.,2015;Pinheiroetal.,2015;Stasinopoulos,Rigby,Voudouris, Akantziliotou, &Enea, 2015), which are typicaldistributions of countdata(O’Hara&Kotze,2010).However,modelresultsshow spatialresidualpatternssimilartotheonedisplayedinFig.2.The negative(greybubbles)andpositiveresiduals(blackbubbles)are clustered,whichisaviolationoftheindependenceassumptionof generallinearregressionanalysis.Inordertoovercomethis prob-lemweaddedaspatialresidualstructure,eitherbyaspatialrandom effectoraspatialautocorrelation,butweranintonumerical con-versionproblemsoftheoptimizationalgorithmtryingtosolvethe complexstatisticalmodel.Wethereforeabandonedthisapproach anddonotpresenttheinterimresultsoftheseattempts.

Because ourcountdatashows relatively largevalues (mean value367),logtransformationisanalternativeapproach,which shouldhave a negligible effectontheparameterestimates but

(6)

decreasesthemodelprocessingcomplexitysubstantially(O’Hara &Kotze,2010).Wethereforecontinuedouranalysiswithlinearlog transformedmodelofthefollowingform:

log (Vi)=˛+ˇ∗Xi+i where i∼N(0,2)

Vstandsforthedependentvariable(inourcasethetotalannual visitsperha),␣isaconstant,␤representsavectorofparameters, Xisavectorofexplanatoryvariablesand␮istheresidual,whichis normallydistributedwithmeanofzeroandvariance␴.Again,we hadtodealwithspatialresidualpatterns,whichwetriedtocontrol forusingaspatialrandomeffectinamixedmodel2andbya resid-ualspatialautocorrelationstructure.Wetriedanumberofdifferent randominterceptsandrandomslopesinthemixedmodelandalso anumberofspatialautocorrelationstructures.3 Weinvestigated allestimatedmodelsonhowsuccessfultheyareincontrollingfor thespatialresidualpatternsandontheirAICandBICscores(as criteriaformodelselection).Thebestmodelcontainedaspatial sphericalcorrelationstructure,whichmodelstheresiduals’ cor-relationacrossspaceasphericalfunctionofdistance.Themodel formularemainsthesameasbefore,butthistimeweassumethat theresiduals␮iofdifferentlocationsarecorrelatedbasedonthe

functionfandtheirdistance. cor (a,b)=



1 ifa=b

f (a,b,) else

Weusedthismodelasastartingpointandconductedstepwise modelselectionbydropping theleastsignificantpredictoruntil everypredictorwassignificant.Wedeterminedstartingvaluesfor therange(maximumdistanceofspatialcorrelation)andthenugget (oneminusthecorrelationoftwoarbitrarilycloseobservations)of spatialcorrelationstructurebasedoninterpretationofvariogram andspatialresidualplotsinordertoimproveconsistencyacross thedifferentmodels.Inthefollowingsectiononresults,wepresent detailedresultsonourinitiallogtransformedmodel,thestarting modelincludingthespatialsphericalcorrelationstructureandon thefinalmodelafterstepwisemodelselection.Wevalidatedour finalmodelagainsttheassumptionsoflinearregressionanalysis. Therefore,weplottedourresidualagainstfittedvaluesandagainst eachpredictor.Wecouldnotidentifyanylinearornon-linear pat-ternsofconcern.Topresentacomparablemeasureofthegoodness offitofallmodelswecomputetherootmeansquaredeviation (RMSE)andthecoefficientofvariationoftheRMSD(CVRMSE).

Weuseourfinal model (1)tomake predictionsofthetotal annualvisitstoallEuropeanNPswithinthecountriescoveredby ourexplanatoryvariablelayers,(2)tomapthetotalannualvisitsto afictivenew80km2NP,locatedanywhereintheEuropean

coun-triescoveredbyourexplanatoryvariablelayersand(3)tomapthe distributionofthepredictedtotalannualvisitstoaproposednew NP(TeutoburgerforestandSenneheathland)inthewesternpart ofGermany.

InordertopredictthenumberofvisitstoNPsofmostEuropean countries,weextractedallshapefilesfromtheWDPAandtheCDDA (IUCN&UNEP,2015;EEA,2013),whichfallintotheIUCNcategory II(NationalPark).Furthermore,weaccessednationaldatabasesto obtainshapesofNPs,whichweremissinginthosetwodatabases. Intotalweincluded449separateNPsareas.Itistobenotedthatnot allofthesesitesfallintoIUCNcategoryII.Nouniformdefinitionof thetermNPsexistsanditwasusedlongbeforetheIUCNcategories systemwascreated.ManyexistingNPsallovertheworldare

dif-2 Inotherdisciplines,mixedmodellingisalsoreferredastomultilevelanalysis,

nesteddatamodels,hierarchicallinearmodels,andrepeatedmeasurements.

3 Foranintroductionintomixedmodellingwewouldlikereferthereaderto

(Zuur,Ieno,Walker,Saveliev,&Smith,2009)andforinintroductionintospatial autocorrelationto(Bivand,Pebesma,&Gómez-Rubio,2013).

ferentlymanagedthandemandedbytherequirementsofcategory II((InternationalUnionforConservationofNature)IUCN,2008), butarestillcalledNPbasedonthedecisionofgovernmentsand otherlocalstakeholders.WeusedvectorlayerofallNPs bound-ariesandzonalstatistics (ArcGIS10.2)todrivemeanvaluesfor theexplanatoryvariables.Predictionsweremadeusingtherms R-package(Harrell,2015).Inordertoimproveourpredictionsand accountforunobservedeffectsonvisitationrates,wekrigedthe residualsofourmodelacrosstheentirestudyareausingthegstat, GeoRandrasterR-packages(Pebesma&Graeler,2015;Hijmans etal.,2015;Diggle,Ribeiro,&Peter,2015).Wethenaddedtheresult tothepredictionofeachNP.

ForpredictingthenumberofvisitsofamarginalincreaseofNP area,weassumeafictivelycreatedmediumsizeNPof80km2.We

thencreatedexplanatoryvariablerasterlayersaccountingforthe averagesubstituteeffectofthenewNPandthesizeofthenewNP. Thequalityofthevisitormonitoringmethodology,whichisone explanatoryvariableinourmodel,wassettothehighestquality availableinourprimarydatabase(9.5).TheNPagewassettozero. Wethenusedthemodeltomaptheannualnumberofvisitsfor each1km2resolutiongridcellacrossEurope,asthoughitispartof

thenewlycreatedNP.Themappingwasconductedusingtheraster, gstatandgeoRR-packages.Again,weaddedthekrigedresidualsto ourpredictions.

Inordertotestourvisitormappingprocedureinarealisticpolicy setting,weappliedittoaproposednewNPinthewesternpart ofGermany(TeutoburgerforestandSenneheathland).Thearea ofthisproposedNPisapproximately20,000haandcomprisesa forestedmountainrangeandaheathland,whichhadbeenusedas anarmybaseinthepast.Itisalreadylargelyprotectedandhasbeen proposedforNPdesignation(NABU,2015).Wemadepredictions on1haresolutioninordertoestimatetotalvisitstotheareaand showhowvisitorsdistributeacrossthearea.

Finally,wecombinethepredictednumberofvisitswitha mon-etaryvalueestimate,derivedbytakingtheoverallmeanvalueper visit(7.17D)fromthe244valueestimatesdescribedabove,which isalmostthesamevalueestimateappliedina similarstudyby Balmfordetal.(2015)(7$),butbasedonmuchlargerprimary val-uationdatabase.This approach,so-called unit valuetransferor averagevaluetransferandisacommonapproachusedforvalue transferandecosystemservicevaluemapping(Schägner,Brander, Maes,Hartje,2013;Rosenberger&Loomis,2001;Balmfordetal., 2015)andamethodconsideredforaggregatingecosystemservice valuestodevelopaSystemofEnvironmental-Economic Account-ing(SEEA)(UN,2014).Itassumesaconstantvalueperrecreational visitacrossspace,which isindeedasimplification.However,as thevalueperrecreationalvisitvariesbyfarlessacrossspacethan thenumberofrecreationalvisits(Batemanetal.,2006;Jonesetal., 2003),itseffectontheoverallrecreationalvalueofanareais rela-tivelysmall.GiventhefactthatwefocusonlyonNPsandonanarea ofrelativelysimilarsocioeconomicandculturalcharacteristics,we considerunitvaluetransferasagoodapproximationforthecase studypresented(seediscussionforfurtherdetails).

4. Results

The results of the statistical NP visitor model using a log-transformeddependentvariablearepresentedinTable2.14ofthe 19predictorsshowstaticallysignificantcoefficientsandthe mul-tipleR2of0.68indicatesrelativelyhighexplainedvariance.Most

coefficientshavetheexpectedsign.However,theresidualplotsof themodelshowsomespatialpatterns,whicharetobecontrolled for.TheresidualbubbleplotinFig.2showsthespatialdistribution ofthefullmodel’sresidualwithoutspatialcorrelationstructure showsclusteringofpositiveandnegativeresidualsacrossEurope.

(7)

Table2

Nationalparkvisitormodel.Dependentvariableisthelogofannualnumberofvisitorsperhectare.Spatialpatternsintheresidualsarenotcontrolledfor.

Variable Coefficient p-value

(Intercept) 15.64 0.79

Sqrt(grassland) −0.75 0.19

Sqrt(wetland) −1.05 3.49E-02 *

Sqrt(water) 1.32 4.50E-03 **

Log(broadleaf) −0.51 3.70E-03 **

Conifer −0.04 0.18

Log(forestedge) −0.48 0.13

Sqrt(landcoverdiversity) 1.47 3.60E-03 **

Log(viewshed) 0.34 3.28E-02 *

Log(redlistspecies) −0.39 3.71E-02 *

Days>5◦ 6.70E-03 9.40E-03 **

NPage 8.08E-03 3.44E-02 *

Log(trails) 0.47 0.00E+00 ***

Log(roads) 0.38 5.00E-03 **

Studyareakm2 −4.91E-04 7.00E-03 **

Log(NPsubstitutes) −0.25 1.13E-02 *

Log(Population50km) 0.48 0.00E+00 ***

GDP/capita −3.50E-05 3.02E-02 *

Surveyyear −1.12E-02 0.70

Surveyquality −2.93E-02 0.68

MultipleR2:0.68 RMSE:1.21 AIC:796.9

AdjustedR2:0.65 CV(RMSD):0.45 BIC:864.5

Significantcodes:“***”≤0.001,“**”≤0.01,“*”≤0.05,“.”≤0.1.

Weappliedanumberofdifferenttechniquestocontrolforthese

patterns.

Firstweaddeddifferentregionalfactorvariablestothemodel,

inordertoexplainthespatialpatterns.Wetriedbio-geographical

regions,geographical regionsandcountries4 asfactor variables.

However,adding oneof thesevariablesreduced thedegrees of freedomand increasedthecomplexityofthemodel tosuchan extentthatweendedupwithmodelshavingalotofnon-significant variables.Alsomostofthedifferentlevelsoftheregionalfactor vari-ablesdidnotshowanysignificanteffect.Inaddition,AICandBIC valuesdidnotshowanyfavourablescoresforthemodels.

Then, we tried to implement a mixed model byadding the regionalvariablesasarandompartinordertocontrolforthespatial patternsintheresiduals.Wetriedvariouscombinationsofrandom interceptandrandomslopemodels,whichsignificantlyimproved themodelintermsofAICandBICvalues,butaconsiderablespatial residualpatternstillremained.Finally,wetrieddifferentspatial autocorrelationstructures,whichimprovedthemodel’sAICand BICvaluessubstantially,beyondallthemodelswetriedbefore.The bestmodelintermsofAICandBICvaluesaswellasincontrolling forthespatialresidualpatternsappliedisasphericalspatial corre-lationstructure.Theresultofthefullmodelincludingthespatial autocorrelationstructureisshownTable3.Intotal,13predictors ofthefullmodelshowasignificantcorrelationwithtotalannual numbersofvisitsperha.Afterstepwiseeliminationoftheleast significantvariableuntilonlysignificantpredictorsremained(at leastatthe0.1level),weendedupwiththesame13significant predictorsasbeforeandsubstantiallylowAICandBICvalues(see Table4).

Ourfinalmodelsshowaspatialautocorrelationbetween sin-gleobservationsuptoarangeof530kmforthefullmodelandup toarangeof580kmforthefinalmodel.Thenuggetrefersto dif-ferencesbetweenobservations,whichcanneitherbeexplainedby themodelnorbythespatialautocorrelationduetomeasurement errorsormicrovariability.

4Forthecountryvariablewecombinedsomecountriestooneregioninorderto

reducethelevelsofthefactorvariable,suchasBeneluxcountries,Alpinecountries andBalticcountries.

Astrongpositiveandhighlysignificantinfluenceisshownfor the presence of water bodies, both in thefull and in the final model. The betacoefficients indicate that it is thefourth most importantpredictorforexplainingrecreationaluseinourmodels. Interestingly,eventhoughwedidnothavestrongprior expecta-tionsregardingthesignsofpredictorsrepresentingthetypenatural vegetation,allofthem–broadleafand coniferousforest, grass-landandwetlands–shownegativesignsinthefullmodel.Only broadleafforestandwetlandsshowasignificanteffectinthefull modelaswellasinthefinalmodel.Alsothevariableforestedges, contrarytoourexpectations,showsanegativeandsignificantsign. However,forestedgesarestronglycorrelatedwithtotalforest(the sumofbroadleafandconiferousforest).Therefore,forestedgesmay pickupsomeofthenegativeimpactsofforestcoveronrecreational useinourmodel.Both,broadleafandconiferousforestshave neg-ativesigns,evenifonlybroadleafforestshowsasignificanteffect. Weinitiallythoughtthatwecouldseparatetheeffectofforestson thenumbersofvisitsfromtheeffectofforestedgesbyincluding singlepredictorsforbroadleafandconiferforest.Oneexplanation ofthenegativesignsofthevegetationcoverpredictorscouldbethat NPsdohavenaturalvegetationtosuchanextent,thatitbecomes abundantandthereby,moreofitdetersvisitors.The transforma-tionofthepredictorsindicatesthattheirnegativeeffectonthe numberofvisitsdecreaseswiththeirincreasingshareoflandcover. Nevertheless,thebetacoefficientsofthesinglevegetation-cover predictorsindicatethattheyonlyhavearelativesmalleffecton thetotalvisitationrate.Alsothepredictormeasuringlandcover diversityshowsasignificantpositiveeffect.Onthecontrary,the predictorviewshedandredlistspeciesabundancedonotproveto haveasignificanteffect.Redlistspeciesabundancehasanegative sign,whichiscontrarytoourexpectations.Nevertheless,both vari-ablesdropoutofthemodelduringthevariableselectionprocedure. Wealsofindapositiveeffectofthenumbersofdayswitha max-imumtemperatureabovefivedegrees.Anotherpredictor,which showsasignificantpositivebutrelativelysmalleffectonthe num-berofvisitsistheageofthenationalpark.Themostimportantand highlysignificantpredictoristheavailabilityoftrails.Inthefinal model,itexplainsalmost17%ofthenumberofvisits.However, thequestionofcorrelationandcausalityisinparticularrelevant forthispredictor.Towhatextenttrailsattractvisitorsandtowhat extenttrailsareputinplaceduetohighvisitornumberscannot

(8)

Table3

Fullmodelincludingsphericalspatialcorrelationstructure.

Variable Coefficient p-value Betacoefficient

(Intercept) −9.30 0.88 2.02%

Sqrt(water) 1.61 3.00E-04 *** 7.26%

Sqrt(grassland) −0.61 0.27 2.53%

Sqrt(wetland) −0.98 3.77E-02 * 3.98%

Log(broadleaf) −0.39 2.72E-02 * 5.74%

Conifer −0.03 0.37 2.31%

Log(forestedge) −0.55 6.91E-02 . 3.84%

Sqrt(landcoverdiversity) 1.34 5.50E-03 ** 5.02%

Log(viewshed) 0.13 0.40 1.54%

Log(redlistspecies) −0.24 0.28 3.46%

Days>5◦ 7.43E-03 3.59E-02 * 7.40%

NPage 1.07E-02 5.10E-03 ** 4.98%

Studyareakm2 −5.69E-04 3.40E-03 ** 6.12%

Log(trails) 0.44 0.00E+00 *** 14.24%

Log(roads) 0.50 1.70E-03 ** 7.16%

Log(NPsubstitutes) −0.30 1.57E-02 * 7.82%

Log(populationwith50km) 0.37 6.00E-04 *** 11.19%

GDP/capita −1.00E-06 0.96 0.13%

Surveyyear 2.40E-03 0.94 0.17%

Surveyquality −0.12 0.10 . 3.11%

Sphericalspatialcorrelationstructure RMSE:1.26 AIC:768.7

Range:530km,nugget:0.40 CV(RMSD):0.48 BIC:842.7

Significantcodes:“***”≤0.001,“**”≤0.01,“*”≤0.05,“.”≤0.1.

Table4

Finalmodelafterstepwisemodelselectionincludingsphericalspatialcorrelationstructure.

Variable Coefficient p-value Betacoefficient

(Intercept) −3.35 0.11 2.26%

Sqrt(water) 1.8 0.00E+00 *** 9.29%

Sqrt(wetland) −0.83 4.81E-02 * 3.84%

Log(broadleaf) −0.31 3.41E-02 * 5.18%

Log(forestedge) −0.57 3.32E-02 * 4.53%

Sqrt(landcoverdiversity) 1.32 4.70E-03 ** 5.65%

Days>5◦ 6.89E-03 3.72E-02 * 7.83%

NPage 1.07E-02 4.30E-03 ** 5.72%

Studyareakm2 −5.14E-04 5.20E-03 ** 6.31%

Log(trails) 0.46 0.00E+00 *** 16.95%

Log(roads) 0.44 2.90E-03 ** 7.26%

Log(npsubstitutes) −0.36 2.50E-03 ** 10.81%

Log(Populationwith50km) 0.32 1.20E-03 ** 10.98%

Surveyquality −0.11 0.1 . 3.38%

Sphericalspatialcorrelationstructure RMSE:1.29 AIC:727.5

Range:580km,nugget:0.38 CV(RMSD):0.48 BIC:782.8

Significantcodes:“***”≤0.001,“**”≤0.01,“*”≤0.05,“.”≤0.1.

beansweredbythisanalysis.Thesamemayapplytothe

avail-abilityofminorroads,whichalsoshowasignificantpositiveeffect

butbeinglessimportantforexplainingtheobservedvisitor

num-bers.Asignificantnegativeimpactcanbefoundforthesizeofthe

studyareaofthevisitormonitoringstudy,butalowbetacoefficient

indicatesarelativelylowimportance.Astrongerandsignificant,

butnegativeimpactshowstheavailabilityofothernationalpark

areaswithintheregion.Itisthethirdmostimportantvariablein

ourmodels.Thesecondmostimportantvariableinexplainingthe

observednumberofvisitsisthepopulationlivingintheregionof

thestudyarea,whichshowsasignificantpositiveeffect.Aminor

negativebutnotsignificanteffectisfoundfortheGDP/capitaand

theyearofthevisitormonitoringsurvey.Thisiscontrarytoour

initialexpectations.Itcouldbethatotherculturalaspectsinterfere

withthiseffect.ItmayalsobethatSouthernEuropeancountries

withlowerGDP/capita(e.g.ItalyandSpain)receivemorevisitors

inNPsbecauseofhightouristvisits,whereasricherNorthern

Euro-peancountries(e.g.Scandinaviancountries)receivefewervisitors

becauseoflowertouristnumbers.Attheedgeofthe0.1significance

level,thepredictormeasuringthequalityofthevisitor

monitor-ingstudyshows arelatively smalland negativeeffect.Initially,

thisvariablewasconsideredforexplainingresidualpatterns.We

expectedthatvisitormonitoringstudieswithalowerquality

judg-mentwouldresultinlessprecisevisitorestimatesandthereforein

higherresiduals.However,inourpre-analysiswecouldnotfinda

significanteffectofthevisitormonitoringqualityontheresiduals.

Moreover,wefindthatvisitormonitoringstudiesoflowerquality

tendtooverestimatevisitornumbers.Thiscouldbecausedbythe

incentiveofNPmanagerstohighlighttheimportanceoftheirNP

andtherebyuseassumptionsmadewithinthevisitormonitoring

studyinfavourofhighervisitornumbers.Visitormonitoring

stud-iesofhigherqualitymayallowforlessoftheseassumptionstobe

made(bymorecompletecountingandlessup-scaling).

Further-more,completereportingoftheassumptionsmademaystimulate

morerealisticjudgments.

WeusedourfinalmodeltomakepredictionsforallNPssitesin

ourprimaryvisitordatabaseandalsoforallNPsinmostoftheEU5

aswellasinNorwayandSwitzerland.Comparingourpredictions

5WecouldnotmakepredictionsforsomeEUcountriesforwhichwearemissing

rasterlayersoftheexplanatoryvariablesinourmodel.ThesecountriesareBulgaria, Croatia,Cypress,IslandandMalta.

(9)

withourprimarydata,weestimateanaveragerelativeprediction errorofabout185%(thefullmodel174%),whichseemsreasonably good.Interestingly,thefourobservationscontributingmosttoour relativepredictionerrorarealllocatedinItaly.

Usingourmodeltopredictthenumberofvisitstoall449NPs acrossourstudyarea,weestimateatotalannualnumberofvisits ofmorethan2billion(2,016,028,000;lowerandupper95% con-fidenceinterval:1,217,818,000;3,404,254,000).6Combiningthis estimatewiththeaveragemonetaryvaluepervisit(7.17D,prices 2013),whichweextractedfromameta-analysisofrecreation valu-ationstudies,thetotalrecreationalvalueofthe449NPsamountsto D14.5billionannually.Theresultcompareswelltotheestimates ofBalmfordetal.(2015),whoestimate3.8billionvisitsannually andavalueof$US26.9billionforallprotectedareaswithinEurope, notonlyNPs.Ouraggregatedestimatespercountryareshownin Table5.

Most visits are received by British NPs, which resultsfrom thelargetotal areaof NPs,highpopulationdensity and inten-siverecreationalfacilities interms of traildensities.Alsoother denselypopulatedcountriessuchasDenmark,Belgiumandthe Netherlandsshowrelativelyhighvisitornumbers.Onthecontrary, countriessuchasSweden, FinlandandNorway showrelatively lowvisitornumbersfortheirlargeandmainlyforestedNPsinthe lowpopulatednorth.Germanyshowsexceptionallyhighvisitor numbersconsideringtherelativelysmallNParea.However,these numbersaredominatedbyonelargeNP,forwhichourmodelmay overpredictthetotalnumberofvisits.TheWaddenSeaNP–an UNESCOnaturalheritage–isbyfarthelargestNPofGermanyand stretchesalmostallalongtheNorthSeashoreofGermany.Thearea liesinthecatchmentoflargecitiessuchasHamburgandBremen. Itisatouristichotspotreceivingbyfarthehighestnumberofday andovernightvisitsofGermanNPs(Job,Woltering,Harrer,2010). Allvariablesusedinourmodel,exceptsize,showvaluesinfavour ofhighvisitornumbersfortheWaddenSeaNP.Thiscombination ofsuchvariablevaluesisexceptionalinourdataandmaycausean unreasonableoverprediction.

OurpredictionsofvisitsperhaforamarginalincreaseofNP supplyinEuropeareshowninFig.3.Weassumeahypothetical newlycreatedNPof about80km anywherethroughout Europe anestimatethenumberofvisitsitwouldreceive.Allurbanareas areexcludedfromthisprediction(EEA,2015b),asitseems unre-alisticthatsuchareaswouldbeconvertedintoaNPandbecause urbanareasaretypicallycharacterizedbyexplanatoryvariable val-uesthatliebeyondtherangeoftheexplanatoryvariablevaluesof ourprimarydata.Themapshowsvaluesfromalmostzeroupto themaximumofabout147,000annualvisitsperha.Lownumbers ofvisitsarepredictedforremoteareas,whicharecharacterized bylowpopulationandlittleaccessinfrastructure.Themaximum predictedvisitsof147,000perhaseemshigh,but34visitorsfor anaveragedaylighthourmaynotbeunreasonableforapopular visitorhotspotinaNP.However,itshouldbeconsideredthatthe predictedvisitornumbersarestronglyskewedwithameanand medianvaluesofabout87and4.8.Morethan90%ofthepixels receivevisitorsoflessthan100visitorsayearandanythingabove 2000istobeexpressedinpermile.Amappresentingthespatially expliciteconomicvaluescanbefoundinAppendixof Supplemen-tarymaterial(Fig.S1andS2).

Toexemplifyourmodelforarealisticsettingwechosethe Teu-toburgerforestandtheSenneheathlandinthewestofGermany, whichisproposedforNPdesignation.Fig.4showshowthe pre-dictedannualvisitsperhadistributedacrossthearea.Onaverage, weexpectabout283annualvisitsperhaforthearea.Thehighest

6WeusedthermsR-packageforestimatingconfidenceintervals.

Fig.3.PredictedvisitsperhaandyearforapotentialnewNationalParkofabout 80km2.

Notethatthepredictedtotalvisitornumberoftheentireareaislessthanthesum ofthepredictedvisitorsforeachhabecauseoftworeasons:visitorsmaycrossmore thanonehaduringavisitanditisnotpossibletotakethelinearmeanofamodel containingnon-linearvariables.

Fig.4.PredictedvisitsperhaandyearforapotentialNationalParkinthe Teuto-burgerforestandtheSenneheathland(westofGermany).

visitationrateispredictedintheperipheralareas,closetothe pop-ulationcentresofcitiesofDetmoldandPaderbornreceivingupto 24,000visitsperhaandyear.Incontrast,thecenteroftheproposed NP,whichishardlyaccessible,ispredictedtoreceivelessthanone visit/ha/year.In totalwe predictabout5.8millionannualvisits

(10)

Table5

EstimatesoftotalannualvisitstoNationalParksinEuropeancountriesandtheirestimatedmonetaryvalue.

Country Km2ofNP PredictedVisits 95%ConfidenceInterval(lower/upper) MonetaryValue

Austria 3098 24,098,000 14,001,000/41,660,000 172,684,000D Belgium 3200 63,569,000 32,294,000/125,388,000 455,527,000D Switzerland 170 135,000 72,000/256,000 969,000D CzechRepublic 3543 32,835,000 17,148,000/63,127,000 235,290,000D Germany 2363 534,188,000 309,773,000/921,987,000 3,827,911,000D Denmark 846 77,623,000 55,797,000/108,203,000 556,236,000D Spain 10,450 121,666,000 89,810,000/170,467,000 871,840,000D Estonia 1618 2,182,000 1,561,000/3,078,000 15,635,000D Finland 8196 6,427,000 4,564,000/9,456,000 46,054,000D France 13,565 71,408,000 36,506,000/140,680,000 511,700,000D UnitedKingdom 21,754 700,862,000 429,126,000/1,162,686,000 5,022,270,000D Greece 4677 14,713,000 10,287,000/21,934,000 105,432,000D Hungary 6234 18,543,000 11,457,000/30,336,000 132,878,000D Ireland 2221 3,510,000 2,447,000/5,070,000 25,152,000D Italy 17,419 145,719,000 93,198,000/231,777,000 1,044,203,000D Lithuania 1345 2,398,000 1,482,000/3,909,000 17,186,000D Luxembourg 465 2,912,000 1,560,000/5,441,000 20,866,000D Latvia 3201 3,711,000 2,508,000/5,538,000 26,592,000D Netherlands 1889 93,133,000 48,749,000/182,005,000 667,375,000D Norway 30,696 2,150,000 1,821,000/2,602,000 15,404,000D Poland 10,168 46,227,000 25,125,000/85,506,000 331,254,000D Portugal 930 15,245,000 10,006,000/23,227,000 109,244,000D Romania 5670 2,662,000 1,565,000/4,546,000 19,077,000D Slovakia 7679 18,218,000 9,079,000/37,180,000 130,544,000D Slovenia 1157 4,121,000 2,425,000/7,004,000 29,531,000D Sweden 8370 7,773,000 5,457,000/11,191,000 55,700,000D

fortheentirearea(95%confidenceintervallowerbound3.38and

upper9.91million),7whichaccountsforanannualmonetaryvalue

ofapproximatelyD 41.5million.Amappresentingthespatially expliciteconomicvaluescanbefoundintheAppendixof Supple-mentarymaterial(Fig.S1andS2).8Negativeimpactsonthenumber ofvisitsincludetherelativelylowpresenceofwaterbodies,high forestcover,lowtrailavailabilityandthelowageofthepotential newNP.PositiveimpactsincludethesmallsizeoftheNP,thehigh populationpressure,lowsubstituteavailabilityandthehighland coverdiversity.Thenumberofvisitsisexpectedtoincreasewith theageoftheNPandifrecreationalfacilitiesareestablished. 5. Discussion

5.1. Spatialeffectsandmodelling

Ourestimatedmodelfitsthedatareasonablywellandtherefore offersvaluableinformationonthemaindriversofrecreationaluse withinEuropeanNPs.Allpredictorswithstatisticallysignificant effectsonthenumberofrecreationalvisitshavesignsthatarein linewithourinterpretationsandtheoreticalexpectations.

Nevertheless,therearesomeuncertaintiesin themodel and predictionaccuracywhichmaybeimprovedbyfurtherresearch. Thequestionremains,whatmaybethesourceofthespatial auto-correlation.Inanoptimalstatisticaltextbookworld,introducing spatialautocorrelationinamodelwouldnotinfluenceparameter estimates,butonlyreducethedegreesoffreedomofthemodel. However,lookingat realworldspatial data,this is hardlyever thecase.Ifparameterestimatesareaffectedasinourcase, this mayindicatesomecommonspatialeconometricproblems,suchas missingpredictors,whicharepickedupbythespatialerrorterm,a spatialweightmatrixoranon-linearrelationship(Diggle,Morris,&

7 Notethatthemapdisplayingtherecreationalecosystemservicevaluesshould

beinterpretedwithcaution,becausewedonotaccountforspatialvariationswithin thevalueperrecreationalvisit,whichmayalterthetotalvalueestimateforcertain locationsconsiderably.

8 Notethatforillustrativepurposethecolorschemeissettodisplaythesame

amountofpixelspercolorshade.

Wakefield,2000;Smith&Lee,2011;Fingleton&LeGallo,2010).A likelyexplanationcouldbethatunobserveddeterminantsof recre-ationalvisitsexist,whicharespatiallyrelated.Suchdeterminants couldbemanifoldandincludeeverythingfromsite,contextand methodologicalstudycharacteristicsaswellastheirinteractions. Oneimportantaspectcouldberelatedtothesocial-culturalcontext andpathdependencies,whichmayresultinspecificrecreational patternsincertaincountriesandregions.Alsodifferingproperty rightscouldplay animportantrole. Investigatinghuman recre-ationalbehaviouracrossastudyareaasbigasEuropeissucha complexissuethatalloftheseeconometricproblemsmayarise. Theremayhardlybeanymodelthatcanincorporateallrelevant driversofrecreationaluse,theirinteractionsandnon-lineareffects. Encounteringsuchproblemsiscommonformodellingspatial dataandtherefore,wehavetobecautiousininterpretingp-values andparameterestimates.Anoption togainfurtherinsightsand confidenceinmodelresultinterpretationsistotrydifferent spa-tialmodellingapproachesandcomparetheirresults.Inparticular, comparetheconfidenceintervalsoftheparameterestimates.There isnumberofmodelsetups,whichwouldqualifyforevaluatingsuch spatialdatasets.Sinceinthisstudyweareanalysingcountdata, oneoptionwouldbetouseanegativebinomialoraquasi-Poisson distribution,eventhoughitshouldnotchangethemodelresultstoo much(O’HaraandKotze,2010).However,thereareonlyavery lim-itednumberofstatisticalR-packages,whichallowforcombining thesedistributionswithspatialautocorrelationsandaswestated abovewehadproblemsinsolvingthemaximizationalgorithms forthesemodels.Anoption wouldbetotryalternativemodels incorporatingthespatialautocorrelationeitherwithinthefixed ortherandompartofthemodel,suchasaspatiallagmodel,a Durbinmodel,spatialautoregressivemodelswithautoregressive disturbances,geographicallyweightedregressionsorevenbyusing Bayesianapproaches. However,thereis noconsensusonwhich modeltousebestforthisspecificpurpose.Fittingalloratleast someofthesemodelsandcomparingtheirresultsmaybesubject tofurtherresearch(Bivand,2011;Elhorst,2010;Gerkman,2011; Brunsdon,StewartFotheringham,&Charlton,1996).

Nevertheless, consideringthe complexity ofthe spatial pro-cessesdrivinghumanrecreationalbehaviour,wecanconfidently

(11)

saythatwemodelrecreationalusereasonablywell.Noneofthe predictors’signsdifferacrossthedifferentestimatedmodels, nei-therformodelswithoutautocorrelationnorforthemixedmodels, whichindicatestherobustnessofouranalysis.Anyhow,other pub-licationsconductingspatialmodellingofrecreationalusedonotat allengagetosuchadepthinthespatialdimensionsnordotheytake intoaccountsuchconsiderationsonuncertainties,potential alter-nativeregressiontechniquesandmodelsetups(Neuvonenetal., 2010;Mills&Westover,1987;Hanink&Stutts2002;Hanink & White1999).

Futureresearchonthisissuemaybenefitfromgreaterandmore reliableprimarydata availability.Errorsin primarydata collec-tionimposehugedifficultiesfor identifyingrelevant predictors. In recent years visitor monitoringstudies encountered a huge dynamicintermsofinterestandtechnicaladvancement.Recent remotecontrolledelectronicvisitorcountersallowfarmore accu-ratevisitorestimatesatlowercostsascomparedtoconventional personalcounting.MorerefinedGISdatasetsmayallowformore accurate, detailed and comprehensive predictors for modelling recreationaldemand.

5.2. Valuationofrecreationalservices

Anotheraspectofimprovementmaybetoaccountforspatial variationsinthevalueperrecreationalvisitbyapplyingavalue functiontransfer(suchasmeta-analyticvaluetransfer).Using a unitvaluetransferformappingecosystemservicevalues across alargerareaisassociatedwithtransfererrors,inparticularwith so-calledgeneralisationerrors.Nevertheless,thevalueofa recre-ationalvisit variesacrossspaceduetodifferencesinecosystem characteristicsandthelocalpopulation’spreferences,differences thatarenotaccountedforinaunitvaluetransfer(Rosenberger &Loomis,2001).Valuefunctiontransferallowsadjusting trans-ferredvaluestositespecificcircumstancesandmaythereforebe moreaccurateforecosystemservicevaluemapping.However,even though,value function transfer is consideredtoproduce lower transfer errors, there is no consensus onwhich value transfer methodis bestfor specific circumstances.Evidence ontransfer errorsshowmixedresultsandunitvaluetransfermaybesuperior toothervaluetransfertechniquesforsomeapplications(Navrud& Ready,2007;Rosenberger&Phipps,2007;Johnston&Rosenberger, 2010;Brouwer2000; Rosenberger&Stanley,2006;Lindhjem & Navrud,2008).Inecosystemservicevaluemapping,theunitvalue transfermethodismostcommon(Schägneretal.,2013).Itisalso proposedfortheaggregationofvaluestosetup,forexample,a Sys-temofEnvironmental-EconomicAccounting(SEEA),eventhough aggregationoveralargeareaiscontroversialandshouldbe inter-pretedwithcaution(UN,2014;Costanzaetal.,1998).

Inthecaseofrecreationalservices,meta-analysisofrecreational valuationstudiesshowthatmostof thevariationsinthevalue pervisit result fromdifferentvaluation methodologiesand not from site specific circumstances, indicating large measurement errors.Moreover,it remainsdifficulttoidentifyrobust relation-shipsbetweenspatial explanatoryvariablesand thefinal value estimate.Meta-analysisonrecreationalvaluationstudiesidentify onlyfewsignificantandtypicallyweakeffectsofbiophysical, socio-economic and regional or national dummyvariables (Shrestha, Rosenberger, & Loomis,2007; Zandersen &Tol, 2009; Brander, Eppink,Schägner,vanBeukering,&Wagtendonk,2015;Senetal., 2013; Sen et al., 2011; Rosenberger & Loomis, 2001; Londo ˜no &Johnston,2012).By usingthemean valueof a largenumber ofprimaryvaluationstudies,weaimataveragingout measure-menterrors withinourvaluetransfer (Johnston,Elena,Ranson, 2006),whichmayresultinlowertransfererrorsascomparedto theusageofsinglestudiesorregionalsubsets,eventhough cul-turaldifferencesacrosscountriesmayaffectvalueperrecreational

visit(Ready&Navrud,2006;Shrestha&Loomis,2001;Lindhjem &Navrud,2008;Kaul,Boyle,Kuminoff,Parmeter,&Pope,2013; Hynes,Norton,&Hanley,2012).

Finally,theoverallrecreationalvalueofasiteispredominantly determinedbyspatialvariationsinthenumberofrecreational vis-its.Spatial variationsin valueper recreationalvisit playonly a minorrole(Batemanetal.,2006;Jonesetal.,2003).Thisinsight isalsosupportedbymeanrelativedeviationsofourprimarydata, which is considerably higher for the visitor numbers as com-paredthevaluepervisitestimates.Inconsequence,accuratevisitor estimatesarebyfarmoreimportantfordefiningtheoverall recre-ationalvalueofacertainlocationthanaccurateestimatesofthe recreationalvaluepervisit.Ascomparedtometa-analysisof recre-ational valuationstudies, the explanatorypower of ourspatial variablesexplainingvisitornumbersishigh.Wearetherefore con-fidentthatwecapturethemainspatialvariationsintheoverall recreationalvalueNPrecreationandthatthevalueestimatesgive agoodindicationoftherelativeimportanceofEuropeanNP recre-ation as compared to otherecosystem services and man-made goods.

5.3. Policyimplications

Themodelcanbeusedforanumberofpolicyapplications:(1) ThemodelmaycontributetothefulfilmentsoftheEUbiodiversity strategy2020,whichrequireofEUmembersstatesto“mapand assessthestateofecosystemsandtheirservicesintheirnational terri-toryby2014,assesstheeconomicvalueofsuchservices,andpromote theintegrationofthesevaluesintoaccountingandreportingsystems atEUandnationallevelby2020”(EC,2011)andtheachievement oftheAichiTargets,whichaimat“reflectingthevaluesof biodiver-sityinspatialplanningandresourcemanagementexercisesincluding throughthemappingofbiodiversityandrelatedecosystemservices” (CBD,2013).(2)Themappedrecreationalvisitornumbersandthe relatedeconomicvalueofrecreationalESScanactasaspatialvalue databasethatcanbeusedforvaluetransfers.Policymakerscan quicklyderiveavalueestimateoftherecreationalservicesofany NPacrossEuropebyconsultingthemap.(3)Themapsmay con-tributetoanefficientresourceallocationbyallowingpolicymakers toprioritizeareasforconservationduetotheirhighrecreational value.Inaddition,recreationalinfrastructuremaybedesignedto matchtheneedsoftheexpectedvisitornumberswithinagivenNP. Furthermore,itmaybevaluabletocomparethemodel’s predic-tionswithrealworldobservationsonrecreationaluseandvalues (ifavailable)and,forexample,investigatewhysomeNPsmight remainbelowtheirrecreationalpotentialandhowtherecreational useanditsvaluecouldbeincreased.However,itshouldbenoted thatthemodelallowsonlyforassessmentsofNP.Evenif predic-tionscanbemadeforanewhypotheticalNP,noconclusioncanbe madeonwhetherNPdesignationresultsinanincreaseordecrease ofrecreationaluseanditsvalues.(4)Themodelallowstoevaluate theeffectoflandusepolicieswithinEuropeanNPonrecreational servicesandvalues.(5)Finally,theestimatedrecreationalservice valuesmaycontributetothesettingupofagreenGDPora Sys-temofEnvironmental-EconomicAccounting(SEEA)asproposed bytheUN(2014),whichmayactasacounterparttotraditional GDPaccountsandrepresentanadditionalmeasurefortheimpacts ofhumanactiononhumanwell-being.

6. Conclusion

We model recreational use of European NPs using a large numberofspatiallyvariablepredictors.Ourmodelfitsthedata rea-sonablywellandweidentifythemaindeterminantsofvariationin recreationaluseinEuropeanNPs.Amonganalysedvariablestrails

(12)

density,populationdensity,presenceofsubstitutes,presenceof waterbodiesandnumberofdayswithtemperatureabove5◦are thosethatshowahigherexplanatoryvalue.Themodelallowsthe estimationandvaluationoftotalrecreationaluseofexistingand plannedNPs.ForourstudyareacoveringmostofEuropeandin total449NPs,weestimatemorethan2billionrecreationalvisits ayear,withaneconomicvalueofapproximatelyD 14.5billion. Thelatterinformationisparticularlyrelevanttosupportthetask thatEUcountriesshouldfulfilby2020,accordingtoEC(2011)of assessingtheeconomicvalueofecosystemservicesandintegrate suchvaluesintoaccountingandreportingsystemsby2020.

Since allourpredictors areobtained fromGIS raster layers, whichcoverentireEurope,themodelcanbeappliedforex-ante evaluationofalternativepolicyscenariosofchangeforexistingNPs andonthecreationofnewNPsataEuropeanscale.This informa-tionmaybeusefulinplanningthesupplyofrecreationalfacilities suchasparkingandaccommodation.Furthermore,NPlocations anddesignfeaturesoptimizingrecreationalusecanbeidentified. Thereby,themodel hasimplicationsfor NP policyofEuropean countries.Basedonourfindings,wecanconcludethattoensure highnumbersofrecreationalvisits,potentialnewNPsshouldbe locatedincloseproximitytopopulatedareasbutnotclosetoother NPs.Thetotalconservationareashouldbeusedforalargernumber ofsmallparksratherthanforasmallernumberoflargeones.The availabilityofwaterbodiesandthediversityofthelandcover con-tributetohighervisitationrates,whereasextensiveforestcover tendstodetervisitors.However,itshouldbekeptinmindthatthe mainpurposesofNPsarenottosupplyrecreationalservicesbut preserveabeautifulandnaturallandscapeaswellasbiodiversity forposterity.Recreationalopportunitiesareaco-benefitofNPs, whichcanbeusedasanargumentforallocatingresourcestowards NPcreationandconservation.

Acknowledgements

We would like to thank everybody who supplied primary dataon visitorcounts of EuropeanNP. In particular we would liketothankIgnacioPalomofromtheAutonomousUniversityof MadridSpain,LaurenceChabanisfromParcsNationauxdeFrance, HubertJobandManuelWolteringfromtheUniversityofWürzburg Germany,BertDeSomvielefromOrganisationforForestin Flan-dersandJeroenGilissenfromNPHogeKempenBelgium,Martin GoossenfromAlterraNetherlands,Arne Arnbergerand Thomas SchauppenlehnerfromBOKUAustria,DavidBaumgartnerfromNP HoheTauernAustria,MetteRohdefromVisitdjurslandDenmark, BoBredal Immersen from NP Thy Denmark, Camilla Nasstrom fromNaturvardsverket Sweden, KajalaLiisa fromMetsähallitus and Marjo Neuvonenfrom Natural Resources InstituteFinland, KrystynaSkarbekfromtheMinistryoftheEnvironmentPoland, AnnamáriaKopekfromDirektiondesNPBalaton,IrenaMuskare fromNatureConservationAgencyLatviaandeverybodyweforgot tomentionhere.TheresearchwasfundedbytheJointResearch Centre,EuropeanCommission.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.jnc.2016.03.001. References

Balmford,A.,Green,J.M.H.,Anderson,M.,Beresford,J.,Huang,C.,Naidoo,R.,etal. (2015).Walkonthewildside:estimatingtheglobalmagnitudeofvisitsto protectedareas.PLoSBiology,13(2),e1002074.http://dx.doi.org/10.1371/ journal.pbio.1002074

Barbault,R.(2011).2010:anewbeginningforbiodiversity?ComptesRendus Biologies,BiodiversityinFaceofHumanActivities/LaBiodiversiteFaceAux

ActivitesHumaines,334(5–6),483–488.http://dx.doi.org/10.1016/j.crvi.2011. 02.002

Bateman,I.J.,Abson,D.,Beaumont,N.,Darnell,A.,Fezzi,C.,Hanley,N.,etal.(2011).

Chapter22:economicvaluesfromecosystems.InUKnationalecosystem assessment:understandingnature’svaluetosociety,technicalreport,1466. Cambridge:UNEP-WCMC.

Bateman,I.J.,Day,B.H.,Georgiou,S.,&Lake,I.(2006).Theaggregationof environmentalbenefitvalues:welfaremeasures,distancedecayandtotal WTP.EcologicalEconomics,EnvironmentalBenefitsTransfer:Methods, ApplicationsandNewDirectionsBenefitsTransferS.I.,60(2),450–460.http://dx. doi.org/10.1016/j.ecolecon.2006.04.003

BatesD.,MaechlerM.,BolkerB.,WalkerS.,BojesenChristensenR.H.,SingmannH., DaiB.,GrothendieckG.(2015).lme4:LinearMixed-EffectsModelsUsing “Eigen”andS4(version1.1-8),https://cran.r-project.org/web/packages/lme4/ index.html.

BatistaeSilva,F.,Gallego,J.,&Lavalle,C.(2013).Ahigh-Resolutionpopulationgrid mapforeurope.JournalofMaps,9(1),16–28.

Biavetti,I.,Karetsos,S.,Ceglar,A.,Toreti,A.,&Panagos,P.(2014).European meteorologicaldata:contributiontoresearch,developmentandpolicy support.ProceedingsofSpie:TheInternationalSocietyforOpticalEngineering, 9229,922907.http://dx.doi.org/10.1117/12.2066286

Bivand,R.(2011).After‘Raisingthebar’:appliedmaximumlikelihoodestimationof familiesofmodelsinspatialeconometrics.SSRNscholarlypaperID1972278. SocialScienceResearchNetwork:Rochester,NY.http://papers.ssrn.com/ abstract=1972278

Bivand,R.S.,Pebesma,E.,&Gómez-Rubio,V.(2013).Appliedspatialdataanalysis withR(2nded.).NewYork:Springer.

BolkerB.,SkaugH.,MagnussonA.,PetersenA.H.(2012).GettingStartedwiththe glmmADMBPackage.

Brander,L.M.,Eppink,F.V.,Schägner,J.P.,vanBeukering,P.J.H.,&Wagtendonk, A.(2015).GIS-Basedmappingofecosystemservices:thecaseofcoralreefs.In benefittransferofenvironmentalandresourcevalues.InR.J.Johnston,J.Rolfe, R.S.Rosenberger,&R.Brouwer(Eds.),Theeconomicsofnon-marketgoodsand resources14(pp.465–485).Netherlands:Springer.http://link.springer.com/ chapter/10.1007/978-94-017-9930-020

Brouwer,R.(2000).Environmentalvaluetransferstateoftheartandfuture prospects.EcologicalEconomics,32,137–152.

Brouwer,R.,Langford,I.H.,Bateman,I.J.,&Turner,R.K.(1999).Ameta-analysisof wetlandcontingentvaluationstudies.RegionalEnvironmentalChange,1(1), 47–57.

Brunsdon,C.,StewartFotheringham,A.,&Charlton,M.E.(1996).Geographically weightedregression:amethodforexploringspatialnonstationarity. GeographicalAnalysis,28(4),281–298.http://dx.doi.org/10.1111/j.1538-4632. 1996.tb00936.x

CBD(ConventiononBiologicalDiversity).(2013).Aichibiodiversitytargets.aichi biodiversitytargets.https://www.cbd.int/sp/targets/

Costanza,R.,d’Arge,R.,DeGroot,R.,Farber,S.,Grasso,M.,Hannon,B.,etal.(1998).

Thevalueofecosystemservices:puttingtheissuesinperspective.Ecological Economics,25(1),67–72.

Diggle,P.,Ribeiro,J.,&Peter,J.(2015).geoR:analysisofgeostatisticaldata(version1. 7-5.1).https://cran.r-project.org/web/packages/geoR/index.html

Diggle,P.J.,Morris,S.E.,&Wakefield,J.C.(2000).Point-sourcemodellingusing matchedcase-controldata.Biostatistics,1(1),89–105.http://dx.doi.org/10. 1093/biostatistics/1.1.89

Drakou,E.G.,Crossman,N.D.,Willemen,L.,Burkhard,B.,Palomo,I.,Maes,J.,etal. (2015).Avisualizationanddata-sharingtoolforecosystemservicemaps: lessonslearnt,challengesandthewayforward.EcosystemServices,http://dx. doi.org/10.1016/j.ecoser.2014.12.002

Dramstad,W.E.,&Tveit,M.S.(2006).Relationshipsbetweenvisuallandscape preferencesandmap-Basedindicatorsoflandscapestructure.Landscapeand UrbanPlanning,78(4),465–474.http://dx.doi.org/10.1016/j.landurbplan.2005. 12.006

EC(EuropeanCommission)(2006).ForestMapping.JRC(JointResearchCenter) ForestCoverMapshttp://forest.jrc.ec.europa.eu/download/data/. EC(EuropeanCommission)(2011).TheEuBiodiversityStrategyto2020,

Luxembourg.

EC(EuropeanCommission)eurostat.(2013).Eurostat:yourkeytoeuropean statistics.http://ec.europa.eu/eurostat/home

EEA(EuropeanEnvironmentAgency).(2006).CORINElandcover.http://www.eea. europa.eu/publications/COR0-landcover

CDDA(CommonDatabaseonDesignatedAreas).(2013).CDDA(Commondatabase ondesignatedareas).http://www.eea.europa.eu/data-and-maps/data/ nationally-designated-areas-national-cdda-4

DigitalElevationModeloverEurope(EU-DEM).(2015).Digitalelevationmodelover europe(EU-DEM).http://www.eea.europa.eu/data-and-maps/data/

eu-dem#tab-european-data

EEA(EuropeanEnvironmentAgency)(2015).Urbanmorphologicalzones2000. Data.http://www.eea.europa.eu/data-and-maps/data/

urban-morphological-zones-2000-2.

EG(eurogeographics)(2010).EuroRegionalMap.http://www.eurogeographics.org/ products-and-services/euroregionalmap.

Ejstrud,B.(2006).Visitornumbersandfeasibilitystudies.predictingvisitor numberstodanishopen-airmuseumsusingGISandmultivariatestatistics. ScandinavianJournalofHospitalityandTourism,6(4),327–335.http://dx.doi. org/10.1080/15022250600929270

Referenzen

ÄHNLICHE DOKUMENTE

Manifolds of bounded geometry with noncompact boundary, Dirac operator, boundary value problems, Spin c structures, coercivity at infinity.. The work was initiated during the

the existence of an organizational culture which supports and values thought and behavior processes conducive to learning and reinforces a structure open to

The objectives of the present work are to demonstrate the implementation of stem volume harmonisation and the involved approaches, to calculate comparable growing stock

The objective of this thesis was to produce evidence-based maps of malaria prevalence and incidence by means of spatial statistical modelling; to evaluate and advance the application

Keywords: environmental values, Nature, ethics, utilitarianism, rights, virtue, incommensurability, intrinsic value, economic valuation, moral considerability/standing, plural

landscape preferences method was used in the field for assessment of recreational values for urban recreational area (Paljassaare) and for Estonian coastal landscapes analysed

This Working Paper describes the present conditions of evapotranspiration and runoff for Europe, as well as their future conditions as based on a scenario for

Received: 8 January 2019; Accepted: 2 February 2019; Published: 6 February 2019 Abstract: This paper aims at analyzing whether existing economic value estimates for forest