• Keine Ergebnisse gefunden

Genome-wide screen reveals WNT11, a non-canonical WNT gene as a direct target of ETS transcription factor ERG

N/A
N/A
Protected

Academic year: 2021

Aktie "Genome-wide screen reveals WNT11, a non-canonical WNT gene as a direct target of ETS transcription factor ERG"

Copied!
34
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Aus der Klinik für Hämatologie und Onkologie

der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Genome-wide screen reveals WNT11, a non-canonical WNT

gene as a direct target of ETS transcription factor ERG

zur Erlangung des akademischen Grades

Doctor rerum medicinalium (Dr. rer. medic.)

vorgelegt der Medizinischen Fakultät

Charité – Universitätsmedizin Berlin

von

Liliana Harris Mochmann

aus Zacatecas, Mexico

(2)

Dedicated to my beloved family: Hans-Christian Mochmann

Christian Antonio and David Andreas Mochmann Aracely and William Harris

(3)

3 TABLE OF CONTENTS Dedication ... Table of contents ... Abstract (German) ... 4 Abstract (English) ... 6 Affidavit ... 8

Excerpt of the Journal Summary ... 9

Publication ... 10-27 Curriculum vitae ... 28

Publications ... 31

Acknowledgements ... 32

(4)

ABSTRAKT (German)

Der Transkriptionsfaktor ERG gehört zu einer evolutionsmäßig zusammenhängenden Gruppe von ETS DNA bindenden Poteinen. ERG bestimmt die Genexpression in hämatopoetischen Prozessen und den Erhalt von Stammzellen. Chromosomale Veränderungen, die eine Genfusion des ERG Proteins beinhalten, wie FUS/TLS-ERG bei Akuter Myeloischer Leukämie (AML), FUS/TLS-ERG-EWS beim Ewing Sarkom oder TMPRSS2-ERG beim Prostatakarzinom sind prädiktiv für eine schlechte Prognose. Weiterhin bestimmen hohe ERG Level ein schlechteres Outcome in zytogenetisch normalen oder komplexen Karyotypen von AML und T-ALL. Mäsue, bei denen eine Transplantation von adultem hämatopoetischem Knochenmark mit ERG überexprimierenden Zellen durchgeführt wurde, entwickeln eine Leukämie. Ebenso resultiert die, Transplantation von fetalen hämatopoetischen Progenitoren mit hoher ERG Expression in einer T Zell Expansion und Akkumulation von Notch 1 Mutationen. Obwohl es große Fortschritte in der Entdeckung von molekularen Marker, wie zum Beispiel ERG, die ein ungünstiges Outcome beschreiben gegeben hat, findet die Tatsache einer hohen ERG Expression keine Beachtung in den gegenwärtigen klinischen Behandlungsprotokollen. Es besteht die Annahme, das AML Patienten mit hohem Level an ERG eine Resistenz gegenüber der gegenwärtigen Chemotherapie besitzen. Daher würde ein vertieftes Verständnis der ERG regulierenden Netzwerke, die für die Entstehung der Therapeutika induzierten Resistenz auf dem molekularen Level verantwortlich sind helfen, die Etiologie der akuten Leukämie zu verstehen.

In der vorliegenden Arbeit haben wir in ERG überexprimierenden K562 Zellen ein Modell entwickelt, um neue ERG transkriptionale Netzwerke zu untersuchen. So wurde eine Genom weite Untersuchung auf ERG Zielgene mittels chromatin Immunopräzipitation auf Mikroplatten (ChIP-chip) durchgeführt, um das ERG

(5)

5

Transkriptionsnetzwerk bei der Leukämie zu untersuchen. Interessanterweise gehörten die WNT Signalgene zu den ERG bindenden Kandidaten Promotoren Regionen: WNT11, WNT2, WNT91, CCND1 und FZD7.

Weiterhin konnte WNT11 als Ziel von ERG durch Chromatin Immunopräzipitation (ChIP) am Knochenmark von gesunden und an primärer Leukämie Erkrankten nachgewiesen werden. Die RNA Expression von AML und TALL Knochenmark zeigte eine Koexpression von ERG und WNT11 mRNA in 80% von AML Proben (n=30) und 40% in T-ALL Proben (n=30). Die durch kleine interferierende RNA (siRNA) vermittelte Ausschaltung von ERG bestätigte die Runterregulation von WNT11 Transkripten während in einem tet-on ERG induzierenden Assay WNT 11 Transkripte co-stimuliert wurden. Ein WNT Signal Agonist 6 bromoinidirubicin-3-oxime (BIO) wurde eingesetzt, um den Effekt auf das Wachstum von ERG induzierbaren Zellen zu bestimmen. Die Zugabe von BIO resultierte in einem ERG abhängigen proliferativen Wachstumsvorteils. Die ERG Induktion führte außerdem zu potenten morphologischen Veränderungen wobei runde unpolarisierte K562 Zellen zu adhärenten Zellen mit verlängerten bi-direktionalen Vorwölbungen wurden. Diese morphologischen Veränderungen konnten effektiv durch BIO und mit einem knockdown von WNT11 durch siRNA verhindert werden. Zusammenfassend ist festzustellen, dass das ERG Transkriptionsnetzwerk bei Leukämie an WNT Signalen zusammen läuft. Potente ERG Induktion führte zu morphologischer Transformation durch WNT 11 Signale. Die Ergebnisse dieser Studie zeigen molekulare ERG Signalwege die eine neue Möglichkeit zur Behandlung von Patienten mit akuter Leukämie und einer hohen ERG mRNA Expression darstellen könnten.

(6)

ABSTRACT

Transcription factor ERG belongs to an evolutionary related group of ETS DNA binding proteins. ERG directs gene expression in hematopoietic processes such as establishing definitive hematopoiesis, megakaryocytic differentiation, and stem cell maintenance. Chromosomal aberrations harbouring a fused portion of the ERG protein with FUS/TLS-ERG in acute myeloid leukemia (AML), ERG-EWS in Ewings sarcoma, TMPRSS2-ERG in prostate cancers are predictive of poor prognosis. Moreover, in poor survival subgroups of cytogenetically normal and complex karyotypes AML and T-ALL, high levels of ERG predict a worse outcome. Transplantation of adult hematopoietic bone marrow cells engineered to overexpressing Erg in mice develope leukemia. Likewise, transplantation of mouse fetal hematopoietic progenitors overexpressing Erg results in an increase in T-cells and accumulates Notch1 mutations. While much progress has been made in uncovering adverse prognostic markers, such as ERG, in acute leukemia, current treatment protocols are insufficient for patients with high ERG expression. It is predicted that acute leukemia patients expressing high levels of ERG, develope resistance to current AML treatment protocols. Thus, understanding ERG gene regulatory networks involved in drug mediated resistance at the molecular level will aid in understanding the etiology of acute leukemias. Herein we have established a cell model system to explore novel ERG transcriptional networks in K562 cultured cells overexpressing ERG. A genome wide chromatin immunoprecipitation (ChIP-chip) was conducted to determine the ERG transcriptional network in leukemia. Notably ERG-binding candidate promoter regions enriched included WNT signaling genes: WNT2, WNT9A, WNT11, CCND1, and FZD7. Furthermore, ChIP of normal and primary leukemia bone marrow material also confirmed WNT11 as a target of ERG. RNA expression of AML and T-ALL bone marrow revealed that ERG and

(7)

7

WNT11 mRNA were co-expressed in 80% of AML (n=30) and 40% in T-ALL (n=30)

bone marrow samples. Small interfering RNA (siRNA)-mediated knockdown of ERG confirmed downregulation of WNT11 transcripts whereas in a tet-on ERG-inducible assay, WNT11 transcripts were co-stimulated. A WNT pathway agonist, 6-bromoindirubin-3-oxime (BIO), was used to perturb the effect of cell growth on the

ERG-inducible cells which resulted in an ERG-dependent proliferative growth

advantage. More strikingly, prolonged ERG induction potently induced morphological changes from round unpolarized K562 cells to adhesive cells with elongated bi-directional protrusions. This morphological transformation was effectively inhibited with BIO treatment and with siRNA knockdown of WNT11. In conclusion, ERG transcriptional networks in leukemia converge on WNT signaling targets. Potent ERG induction promoted morphological transformation through WNT11 signals. The findings in this study unravel new ERG-directed molecular signals which may provide novel approaches for treating patients characterized by high ERG mRNA expression in acute leukemia.

(8)

Affidavit

I, Liliana H. Mochmann certify under penalty of perjury by my own signature that I have submitted the thesis on the topic Genome-wide screen reveals WNT11, a non-canonical WNT gene, as a direct target of ETS transcription factor ERG. I wrote this thesis independently and without assistance from third parties, I used no other aids than the listed sources and resources.

All points based literally or in spirit on publications or presentations of other authors are, as such, in proper citations (see "uniform requirements for manuscripts (URM)" the ICMJE www.icmje.org) indicated. The section on methodology (in particular practical work, laboratory requirements, statistical processing) and results (in particular images, graphics and tables) corresponds to the URM (s.o) and are answered by me. My contribution in the selected publication for this dissertation corresponds to those that are specified in the following joint declaration with the responsible person and supervisor.

The importance of this affidavit and the criminal consequences of a false affidavit (section 156,161 of the Criminal Code) are known to me and I understand the rights and responsibilities stated therein.

____________________________

Date Signature

Detailed Declaration of Contribution

Liliana H. Mochmann had the following share in the following publication:

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD. Genome-wide screen reveals WNT11, a non-canonical WNT gene, as a direct target of ETS transcription factor ERG. Oncogene 2011 28;30(17):2044-56

Contribution in detail (please explain in detail): LHM designed experiments, conducted experiments, and wrote the manuscript.

Signature, date and stamp of the supervising University teacher

____________________________

Signature of the doctoral candidate

(9)
(10)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(11)

11

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(12)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(13)

13

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(14)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(15)

15

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(16)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(17)

17

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(18)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(19)

19

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(20)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(21)

21

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(22)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(23)

23

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(24)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(25)

25

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(26)

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(27)

27

Genome-wide screen reveals WNT11, a non-canonical WNT gene,

as a direct target of ETS transcription factor ERG.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD.

Oncogene. 2011 Apr 28; 30(17):2044-56

(28)

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht

(29)

29

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht

(30)

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht

(31)

31

PUBLICATIONS

Mochmann LH and Wells RD. Transcription influences the types of deletion and expansion products in an orientation-dependent manner from (GAC·GTC) repeats. Nucleic Acids Res. 2004 Aug 18;32(15):4469-79.

Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD. Genome-wide screen reveals WNT11, a non-canonical WNT gene, as a direct target of ETS transcription factor ERG. Oncogene. 2011 Apr 28;30(17):2044-56.

Kühnl A, Gökbuget N, Kaiser M, Schlee C, Stroux A, Burmeister T, Mochmann LH, Hoelzer D, Hofmann WK, Thiel E, Baldus CD. Overexpression of LEF1 predicts unfavorable outcome in adult patients with B-precursor acute lymphoblastic leukemia. Blood. 2011 Dec 8;118(24):6362-7.

Kaiser M, Kühnl A, Reins J, Fischer S, Ortiz-Tanchez J, Schlee C, Mochmann LH, Heesch S, Benlasfer O, Hofmann W-K, Thiel E, and Baldus CD. Antileukemic activity of the HSP70 inhibitor pifithrin-µ in acute leukemia. Blood Cancer J. 2011 July; 1(7): e28.

Bock J*, Mochmann LH*, Schlee C, Farhadi-Sartangi N, Göllner S, Müller-Tidow C and Baldus CD. ERG transcriptional networks in primary acute leukemia cells implicate a role for ERG in dysregulated kinase signalling. PLoS One. 2013;8(1):e52872. doi: 10.1371/journal.pone.0052872. Epub 2013 Jan 3. *Authors contributed equally.

Neumann M, Coskun E, Fransecky, F, Bartram I, Farhadi Sartangi N, Mochmann LH, Heesch S, Gökbuget N, Schwartz S, Brandts C, Schlee C, Haas R, Dührsen U, Griesshammer M, Döhner H, Ehninger G, Burmeister T, Blau O, Thiel E, Hoelzer D, Hofmann WK, Baldus CD. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One. 2013; 8(1):e53190.

.

Bock J, Mochmann LH, Schlee C, Farhadi-Sartangi N, Göllner S, Müller-Tidow C, Baldus CD. ERG transcriptional networks in primary acute leukemia cells implicate a role for ERG in deregulated kinase signaling. PLoS One. 2013; 8(1):e52872.

Mochmann LH, Neumann M, von Der Heide E, Nowak V, Kühl A, Ortiz-Tanchez J, Bock J, Hofmann, W, Baldus CD. ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells. Oncotarget, 2013 4(9).

(32)

ACKNOWLEDGEMENTS

The journey to this stage in life has been challenging, but extremely life-enriching. First, I would like to express my deep gratitude to my family. I truly have the two best parents in world. Aracely and William Harris worked long days and weekends to provide me with safety, an education, and a stable life. I learned to work hard from my mother. From her example, I also learned how to best survive challenges in life. I thank my dad for stimulating my curiosity with chemistry. As a child, I recall our garage filled with my dad’s chemical samples for oil companies, such a sodium potassium and glycerine – I was allowed to play with the chemistry. He also noticed that I wanted a microscope and not a doll at age 8. My parents provided me with the best of everything in order to help me get ahead in life. This love is unending. To most of my mentors and colleagues, it was well known that I took a 5 year break in science. As challenging as this was, I am grateful to God for having found a loving and supportive husband, Christian, and for the gift of two wonderful little boys, Antonio and David. This is a blessing from heaven itself. I have often felt the pressure of balancing my scientific and family life, and success in both would not be possible without the loving dedication of my husband, my mom and my dad, and my mother in law, Dorothea Mochmann. I also express gratitude to my family Gaby (her husband Luis, and children Gaby and Luis) and Gloria (and her two boys Julio and Michael). They bring so much support, love and joy to me. Also, I thank my aunt, uncle, and cousins in Aguascalientes, Mexico for always cheering me on.

I want to thank those who contributed significantly in my scientific career. I begin with the wonderful guidance of my undergraduate professors at the University of Houston-Downtown. I would not have discovered the excitement of biomedical research without Dr. Larry Spears (Chemistry) and Dr. Ruth (Biochemistry). Their efforts to

(33)

33

recommend me for a biomedical research summer program opened a new world to me. Dr. Bowen R. Loftin (Physics), Dr. Carlos Reina (Physics), Dr. Flosi (Virology), and the College of Science and Technology were key to my understanding of daily tasks and problem solving that I used today.

I thank Dr. Gilbert A. Castro for his role in leading the Biomedical Research Program at the University of Texas, Graduate School of Biomedical Sciences. Through him, I was connected with Dr. Roger O’Neil, my master thesis advisor. Dr. O’Neil had the patience and understanding. I learned the physics behind hydrostatic pressure, Ca2+ channels, pharmocology, and the physiology of the kidney. The instruction at UT GSBS was incredibly stimulating and I will never forget the best biochemistry class ever taught by Dr. T. Goka and Dr. RW Butcher. I often rely on their motto, ‘Do not fall in love with your hypothesis, let science tell you the truth.’

I obtained a once in a life time opportunity to continue my studies with Dr. Robert D. Wells in the field of nucleic acid research. At the Institute of Biosciences and Technology, Center for Genome Research, I encountered a wealth of knowledge in the field of nucleic acids. Dr. Wells opened new avenues for me in biochemistry. The most memorable day was the pleasure of meeting Dr. Well’s mentor, Gobind Khorana. I not only gained scientific skill in his lab but long lasting friendships and gained a scientific family. For this I cannot be more grateful and I am indebted to him. This wonderful experience included my dear colleagues Jackie, Albino, Ana, Ravi, Marek, John, Michael, Alex, Noaki, Lorrie, and Ruhi in this lab. I also thank Dr. Richard Sinden, ‘across the hallway’, for his academic support as my Ph D committee chair. Dr. Sinden’s book helped me understand the nature of DNA.

(34)

Last, I had the good fortune to join the scientific community again, by joining Dr. Claudia D. Baldus’ laboratory. She also had the patience for me to ‘catch up’ on the five years of absence in science. She gave me the opportunity to integrate into science again and integrate into Germany. Also, the opportunity to full-fill this accomplishment would not have been possible without her support. I would like to thank my colleagues Jutta, Conny, Juliane, Ebru, Sandra, Martin N., Martin K., Lars, Nasrin, Marlene, Eva, Isabel, and Dr. WK Hofmann for this opportunity to learn from you.

Referenzen

ÄHNLICHE DOKUMENTE

Finally, although the MSTN variants shown to be associated with muscle fiber type proportions are found most commonly within the extended haplotype putatively under selection,

GWAS for height at withers and other conformation traits We initially selected a representative sample set of 1,151 FM horses from the active breeding population and obtained

Furthermore, variants replicating with the same risk allele as the GOFA discovery set at nominal significance (P < 0.05) and not reaching the Bonferroni corrected P value in the

v1.0 did not match the Araport11 annotation [29, 30], indicating that bona fide genes were missed by ab initio annotation of the Nd-1 genome sequence because they contain

Analyzing 121 plant genome sequences based on their annotation revealed strong splice site conservation across species, annotation errors, and true biological divergence from

PAVs were also identified based on the coverage in read mappings [53,213]. This method is probably still the best approach to perform pan-genomic investigations in A.

I, Seda Salar certify under penalty of perjury by my own signature that I have submitted the thesis on the topic “Blood-brain barrier dysfunction and pharmacoresistance of

The broad-spectrum kinase inhibitor K252a was able to strongly reduce the Suc induced activation of the 6-SFT promoter in barley leaflets as well as in transgenic Arabidopsis leaves,