• Keine Ergebnisse gefunden

Mode of Action

N/A
N/A
Protected

Academic year: 2022

Aktie "Mode of Action"

Copied!
58
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

and Their

Mode of Action

1. Gonyaulacales, Gymnodiniales

2. Dinophysiales, Peridiniales, Prorocentrales

3. Diatoms, Cyanobacteria and Others

(2)

Gymnodiniales

(3)

Gonyaulacales:

Alexandrium

andersonii Paralytic shellfish poisoning toxins (PSP) catenella Paralytic shellfish poisoning toxins (PSP) fundyense Paralytic shellfish poisoning toxins (PSP) minutum Paralytic shellfish poisoning toxins (PSP)

monilatum Goniodomin-A

ostenfeldii Spirolide

peruvianum Paralytic shellfish poisoning toxins (PSP) pseudogoniaulax Goniodomin-A

tamarense Paralytic shellfish poisoning toxins (PSP) tamiyavanichii Paralytic shellfish poisoning toxins (PSP) Gambierdiscus

australes Ciguatera fish poisoning toxins (CTX) pacificus Ciguatera fish poisoning toxins (CTX) toxicus Ciguatera fish poisoning toxins (CTX) yasumotoi Ciguatera fish poisoning toxins (CTX)

(4)

Gonyaulacales (continuation):

Gonyaulax

spinifera Yessotoxins (YTX)

Lingulodinium

polyedrum Yessotoxins (YTX)

Protoceratium

reticulatum Yessotoxins (YTX)

Pyrodinium

bahamense Paralytic shellfish poisoning toxins (PSP)

Gymnodiniales:

Gymnodinium

catenatum Paralytic shellfish poisoning toxins (PSP) Karenia

brevis Brevetoxins (PbTx)

mikimotoi Gymnocin-A

selliformis Gymnodimine (GYM)

(5)

ciguatoxins

O

O O

O O

O

O O

O O O

OH

O

O O

O O

O O

O O

O O O O O O

O O O O O O

OH

OH H

H H

OH

OH OH

H H H

H OH

H HO

OH

HOH

H OH

HOH HOH H H H H H H OH H H H H

OSO3Na OH H H H H

OHH H H H H H

OHH OH

OH H H H H H H H

H H H H OH HO

HO

H H HOH HO OH

HO OH OH

NaO3SO

H

Toxin classes

goniodomin-A O

O O

O O

O O

OH

O OH HO

OH

brevetoxins

O O

O O

O O

O O

O

O O

O

H H H

H H H

H H

H HO

H H H

H H H

O

gymnocin-A O O

O

O O

O O

O O

O O

O O

O O

OH

H H H H

H H H H H H H H

OH OH

H

H H H

H

H H H H H H

H

spirolides

O O

N

O

O O OH

HO 23

31

13

gymnodimine

O

N H O

HO O

1 5

10 15

20 24 25

26 27

28 29

yessotoxins O O O O

O O O

O O

-O3SO

Me H

H

Me

H

H Me

Me

Me H H H H H

H H

H H

H HO

OH

PSP

HN

N N

H HN

NH2 OH OH O

H2N O

H2N

(6)

Main Groups of Toxins

1. Tetrahydropurine derivatives (PSP)

HN

N N

H HN

NH2 OH OH O

H2N O

H2N

2. Macrolide toxins (goniodomins, gymnodimines, spirolides)

OO O

O O

O O

OH

O OH HO

OH

O

N H O

HO O

1 5

10 15

20 24 25

26 27

28 29

O O

N

O

O O OH

HO

2 3

31

13

3. Ladder frame polyether toxins (brevetoxins, ciguatoxins, gymnocins, yessotoxins)

O

O O

O O

O

O O

O O O

OH

O

O O

O O O O

O O

O O O O O O

O O O O O O

OH

OH H

H H

OH

OH OH

H H H

H OH

H HO

OH

HOH

H OH

HOH HOH H H H H H H OH H H H H

OSO3Na OH H H H H

OHH H H H H H

OHH OH

OH H H H H H H H

H H H H OH HO

HO

H H HOH HO OH

HO OH OH

NaO3SO

H O

O

O O

O O

O O

O

O O

O

H H H

H H H

H H

H HO

H H H

H H H

O

O O

O

O O

O O

O O

O O

O O

O O

OH

H H H H

H H H H H H H H

OH OH

H

H H H

H

H H H H H H

H

O

O O

O O

O O

O O

O O

-O3SO

Me H

H

Me

H

H Me

Me Me H H H H H

Me H H H H H

H H

H H

H HO

-O3SO

OH

(7)

HN

N N

H HN

NH2 OH OH O

H2N O

H2N

Tetrahydropurine 2 imino functions Acetal moiety Carbamoyl group

N

N N

N

O O

caffeine

1. PSP: Chemical Structures

Alexandrium

andersonii catenella fundyense minutum peruvianum tamarense tamiyavanichii Pyrodinium

bahamense Gymnodinium

catenatum Anabaena

circinalis

lemmermannii Aphanizomenon

flos-aquae Cylindrospermopsis

raciborskii Lyngbya

wollei Microcystis

aeruginosa Alexandrium tamarense

Alexandrium catenella

Microcystis aeruginosa

(8)

N

N N

H HN

NH2 OH

OH O

H2N R1

R2 R3 R4

Toxin R1 R2 R3 R4

STX H H H

NEO OH H H

GTX1 OH H OSO3-

GTX2 H H OSO3-

GTX3 H OSO3- H

GTX4 OH OSO3- H

B1= GTX5 H H H

B2= GTX6 OH H H

C3 OH H OSO3-

C1 H H OSO3-

C2 H OSO3- H

C4 OH OSO3- H

dc-STX H H H

dc-NEO OH H H

dc-GTX1 OH H OSO3-

dc-GTX2 H H OSO3-

dc-GTX3 H OSO3- H

dc-GTX4 OH OSO3- H

H (Decarbamoyl-)

CO-NH-SO3- (N-Sulfocarbamoyl-)

CO-NH2 (Carbamoyl-)

STX = Saxitoxin NEO = Neosaxitoxin GTX = Gonyautoxin

1. PSP: Chemical Structures

(9)

STX

1 3

6 7

9

10 11

12

N N H

O

O N H2

NH

H2N NH

NH2

OH OH

2 4

5 8

15 13 14

C-2

1 3

6 7

9

10 11

12

N N H

O

O NH

NH

H2N NH

NH2

OH OH OSO3

O3S

2 4

5 8

15 13 14

GTX-3

NH2

1 3

6 7

9

10 11

12

N N H

O

O N H2

NH

H2N NH

OH OH OSO3

2 4

5 8

15 13 14

1. PSP: Charges and Toxicity

(10)

Toxin Toxicity factor

1,10 0,90 0,48 0,76 0,90

0,07

<0,01 0,01

- -

0,43 0,45 0,18 0,18 0,45

STX 1,00

NEO GTX1 GTX2 GTX3 GTX4

B1= GTX5 0,07

B2= GTX6 C3 C1 C2 C4

dc-STX 0,43

dc-NEO dc-GTX1 dc-GTX2 dc-GTX3 dc-GTX4 N

N N

H HN

NH2 OH OH O

H2N R1

R2 R3 R4

Double charged PSP-toxins (no sulfonyl group)

Single charged PSP-toxins (1 sulfonyl group)

Neutral PSP-toxins

(1 sulfonyl & 1 sulfate group)

1. PSP: Charges and Toxicity

LD50(STX): 8 µg/kg

(11)

1. PSP: Charges and Toxicity

(12)

1. PSP: Charges and Toxicity

(13)

O O

N

O

O O OH

HO

2 3

31

13 R

Spirolide A: R = H, Δ2,3 B: R = H

C: R = Me, Δ2,3 D: R = Me

Spirolide G: R = H 20-Me Spirolide G: R = Me

O O

N

O

O O

HO

2 3

32

13

HO

17

20

R

13-DesMeSpirolide C: R = Me 13,19-DidesMe Spirolide C: R = H

O O

N

O

O O OH

HO

2 3

31

13

R

2. Macrolides: Spirolides – Chemical Structures

Alexandrium

ostenfeldii

Alexandrium ostenfeldii

(14)

10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15,0 Time, min

0,0 2,0e5 4,0e5 6,0e5 8,0e5 1,0e6 1,2e6 1,4e6 1,6e6 1,8e6 2,0e6 2,2e6 2,4e6 2,6e6 2,8e6 3,0e6 3,2e6 3,4e6 3,6e6 3,8e6 4,0e6 4,2e6 4,4e6

12,38

12,00

12,85

O O

N

O

O O

HO

2 3

32

13 HO

17

20

20-Me Spirolide G

O O

N

O

O O OH

HO

2 3

31

13

Spirolide C

?

?

? ?

? ?

?

604.5 > 356.3 640.5 > 164.1 650.5 > 164.1 692.5 > 150.1 692.5 > 164.1 694.5 > 164.1 706.5 > 164.1 708.5 > 164.1 720.5 > 164.1 AOSH2

2. Macrolides: Spirolides – Chemical Structures

(15)

2. Macrolides: Spirolides – Cause of “Fast Acting Toxicity”

Novel compounds identified as

“spirolides”

• macrocyclic imines

• structural similarity to pinnatoxin

& gymnodimine

• pharmacologically active/inactive forms

O O

R1

N

O H

O

R2

O O

OH

R1 R2 MW

A H CH3 Δ2,3 691.5 desMeC CH3 H Δ2,3 691.5 B H CH3 693.5 desMeD CH3 H 693.5

C CH3 CH3 Δ2,3 705.5 D CH3 CH3 707.5

E H CH3 Δ2,3 709.5 F H CH3 711.5 O O

R1 NH2

O H

O

R2

O O

OH O

2 3

2 3

13 31

13 31

toxic

non-toxic

(16)

Mode of Action:

anticholinergic activity by blocking of muscarinic acetylcholin receptors

=> Paralysis of the parasympathetic nervous system (few toxicological studies)

Toxicity:

40 µg/kg in mice (ip) Oral toxicity: 1 mg/kg

2. Macrolides: Spirolides –Toxicity & Mode of Action

(17)

2. Macrolides: Gondiodomin

O O

O

O O

O O

OH O OH

HO

OH

Goniodomin A

Toxicity:

unknown Mode of Action:

conformational change of actin leads to actomyosin ATPase activity hemolytic, cytotoxic; mechanism unknown (few toxicological studies)

Alexandrium

monilatum

pseudogoniaulax

Alexandrium monilatum

(18)

O

N H

O

HO

O

1

5

10 15

20

24 25

26

27

28

29

O

N H

O

HO

O

OH H

Gymnodimine A Gymnodimine B

2. Macrolides: Gymnodimines

Toxicity:

LD50 (ip) in mice: 96µg/kg Mode of Action:

Competitive blocker of muscarinic receptors (similiar toxic effect as spirolides)

The potency to activate Na channels is much weaker than that of brevetoxins.

Karenia

selliformis

(19)

3. Ladder Frame Polyether Compounds: Gymnocin

O

O O

O

O

O

O

O O

O O

O

O

O O

OH

H H H H

H H H

H H H H

H

OH OH

H

H H H

H

H H H H H H

H

Gymnocin A

Toxicity:

unknown

Mode of Action:

mechanism unknown, cytotoxic, low ichthyotoxicity (even though Karenia mikimotoi blooms are extremely ichthyotoxic)

Karenia mikimotoi

Karenia

mikimotoi

(20)

O

O O

O O

O O

O O

O O

-O3SO

Me H

H

Me

H

H Me

Me Me H

H H H H

Me H H H H H

H H

H H

H HO

-O3SO

OH

Yessotoxin

3. Ladder Frame Polyether Compounds: Yessotoxins

First isolated from

Patinopecten yessoensis

Toxicity:

LD50 (ip): 286 µg/kg (mice) LD50 (oral): > 54 mg/kg Mode of Action:

mechanism unknown, no oral toxicity, not diarrheagenic, neurotoxic, causes cytological damage in the neuronal cell body

Gonyaulax

spinifera Lingulodinium

polyedrum Protoceratium

reticulatum

Protoceratium reticulatum

Lingulodinium polyedrum

Gonyaulax spinifera

(21)

PbTx-2: R = CH2C(=CH2)CHO PbTx-3: R = CH2C(=CH2)CH2OH PbTx-5: K-Ring acetate

PbTx-6: H-Ring epoxide PbTx-8: CH2COCH2Cl

PbTx-9: R = CH2CH(CH3)CH2OH PbTx-1: R = CH2C(=CH2)CHO

PbTx-7: R = CH2C(=CH2)CH2OH PbTx-10: R = CH2CH(CH3)CH2OH

O O

O O O

O O O O

O O

R OH

A B

C D

E F

G H I J

H

H

H H

H H H

H H

H H

H H

H H H

A-type brevetoxin skeleton

O O

O O

O O

O O

O

O O

O

H H H

H H H

H H

H HO

R

H H H

H H H

A B C D

E F G H

I J

K

B-type brevetoxin skeleton

3. Ladder Frame Polyether Compounds: Brevetoxins – Structures

Karenia breviswas formely named Ptychodiscus brevis

Karenia brevis

Karenia

brevis

(22)

Toxicity:

LD50 PbTx-1: 180 mg/kg (mice)

3. Ladder Frame Polyether Compounds: Brevetoxins – Toxicity & Mode of Action

Baden et al (2005): Environmental Health Perspectives 113(5), 621-625

Na channel activaters, repetitive neuronal firing

until exhaustion of the nerve cell

Mode of Action:

Bind on site 5 of the

α-subunit

of voltage sensitive sodium

channels

(23)

O

O O

O O

O

O O

O O O

OH

O

O O

O O

O O

O O

O O O O O O

O O O

O O O

OH

OH H

H H

OH

OH OH

H H H

H OH

H HO

OH

HOH

H OH

HO H HOH H H H H H H OH H H H H

OSO3Na OH H H H H

OHH H H H H H

OHH

OH HOH H H H H H H

H H H H OH HO

HO

H H OH H HO OH

HO OH OH

NaO3SO

H

Maitotoxin

3. Ladder Frame Polyether Compounds: Ciguatoxins

Named after Cigua (caribbean snail) Gambierdiscus toxicus

Gamberdiscus spp.

O O

O O

HO

O O

O O

H

H H H H H

OH

OH H H H H H H

Gambierol

O O

O O

O

O O

O O

O

O

O O

H H H H

H H

HO H H

H H

H OH

H H H

H H H

H H H H OH H H

HO OH Ciguatoxin-4B

O

O O

O

O O

O O

O

OH O

HO H

HO

H H H

OH H

H HO

H

H H H H H H

H H

O Gambieric acid A H

(24)

Toxicity:

LD50 CTX-1: 0.25 µg/kg (mice) LD50 MTX-1: 0.05 µg/kg (mice) LD50 Gambierol: 50 µg/kg (mice)

LD50 Gambieric acid A: > 1000 µg/kg (mice)

Mode of Action:

Same as Brevetoxins: Na channel activaters;

additionally block voltage gated potassium channels, prolongation of the duration of presynaptic action potentials, enhancing neurotransmitter release => strong convulsions

3. Ladder Frame Polyether Compounds: Ciguatoxins

(25)

Peridiniales

Prorocentrales

(26)

Dinophysiales:

Dinophysis

acuminata Dinophysistoxins (DTX), Pectenotoxins (PTX) acuta Dinophysistoxins (DTX), Pectenotoxins (PTX) caudata Dinophysistoxins (DTX), Pectenotoxins (PTX)

fortii Pectenotoxins (PTX)

miles Dinophysistoxins (DTX)

mitra Dinophysistoxins (DTX)

norvegica Dinophysistoxins (DTX), Pectenotoxins (PTX)

rapa Dinophysistoxins (DTX)

rotundata Pectenotoxins (PTX)

sacculus Dinophysistoxins (DTX)

tripos Dinophysistoxins (DTX)

(27)

Prorocentrales:

Prorocentrum

arenarium Dinophysistoxins (DTX)

belizeanum Dinophysistoxins (DTX) cassubicum Dinophysistoxins (DTX)

faustiae Dinophysistoxins (DTX)

hoffmannianum Dinophysistoxins (DTX)

lima Dinophysistoxins (DTX)

maculosum Dinophysistoxins (DTX)

Peridiniales:

Heterocapsa

circularisquama Mussel toxins Protoperidinium

crassipes Azaspiracids (AZA), Pectenotoxins (PTX)

(28)

Toxin classes

2. Dinophysistoxins HO

O O OH

O

O O

O

OH O

OH

OH O

3. Pectenotoxins

O O

O O O O

O

O

OH O

OH

OH

O O A

B C

E D F

7

14

1. Azaspiracids

NH

O

O

O O O O

O O OH

O

OH HO H

H H

H

H

H

H A

B

C D

E

F H G I

1

10

13 14

21

28 26

32 37

40

(29)

NH

O

O

O O O O

O O OH

O

OH HO

H

H H

H

H

H

H A

B

C

D

E F

G H I

1

10

13 14

21

28 26

32 37

40

R3

R1

R2

R4

Toxin R1 R2 R3 R4

AZA-1 H CH3 H H

AZA-2 CH3 CH3 H H

AZA-3 H H H H

AZA-4 H H OH H

AZA-5 H H H OH

AZA-6 CH3 H H H

AZA-7 H CH3 OH H AZA-8 H CH3 H OH AZA-9 CH3 H OH H AZA-10 CH3 H H OH

1. Azaspiracids – Structures

Protoperidinium crassipes

Protoperidinium crassipes

(30)

1. Azaspiracids – Structures

Distribution of P. crassipes

(31)

1. Azaspiracids – Toxicity and Mode of Action

Toxicity:

LD50 AZA-1: 0.2 µg/kg (mice)

Mode of Action:

effects of AZA-1 on the arrangement of F-actin

⇒concurrent loss of pseudopodia, cytoplasmic extensions that function in mobility and chemotaxis; effects on cytoskeleton

Increases cytosolic calcium levels in lymphocytes diarrheagenic, tumorigenic

(32)

HO

O

O OH

O

O O

O

OR1 O

OH

OH O

R2

R3

R1 R2 R3

OA H CH3 H

DTX1 H CH3 CH3

DTX2 H H CH3

DTX3 CH3CO CH3 CH3

Acyl-OA CH3CO CH3 H

2. Dinophysistoxins – Structures

OA: Okadaic acid (first isolated from the sponge Halichondria okadaii)

Prorocentrum lima

Dinophysis spp.

Prorocentrum spp.

Dinophysis acuminata

(33)

Pan, Y. et al. Marine Biology (1999) 134: 541-549

2. Dinophysistoxins – Biosynthesis

(34)

backward swimming of protozoa

Cohen et al. (1990) TIBS 15(3), 98-102

2. Dinophysistoxins – Toxicity & Mode of Action

Toxicity:

LD50 OA: 192 µg/kg (mice)

Mode of Action:

specific inhibitor of protein phosphatases 1 and 2a (inhibition of dephosphorylation of serine and threonine) => Long lasting

contractions of smooth muscles

diarrheagenic, tumorigenic

(35)

O O

O O

O O O

O

OH O

R1

OH R3

OH

O O

R2

7

O O

O O

O O

O

OH O

R1 OH

R3

O O

R2

O

OH

R1 R2 R3 C7

PTX2 CH3 H

H H H H H H OH OH H

CH3 R

PTX2b CH3 CH3 S

PTX1 CH2OH CH3 R

PTX4 CH2OH CH3 S

PTX3 CHO CH3 R

PTX6 COOH CH3 R

PTX7 COOH CH3 S

PTX11 CH3 CH3 R

PTX11b CH3 CH3 S

PTX12 CH3 =CH2 R

R1 R2 R3 C7

PTX2c CH3 H CH3 S

PTX8 CH2OH H CH3 S

PTX9 COOH H CH3 S

PTX11c CH3 OH CH3 S

3. Pectenotoxins – Structures

First isolated from

Patinopecten yessoensis

Dinophysis

acuminata acuta

caudata fortii

norvegica

(36)

3. Pectenotoxins – Toxicity and Mode of Action

Toxicity:

LD50 PTX2: 219 µg/kg (mice)

Mode of Action:

causes actin depolymerization => characteristic liver injuries. Within 1 hr after the injection of pectenotoxin-1 numerous non-fatty vacuoles

appeared in the hepatocytes around the periportal regions of the hepatic lobules

increased permeability of capillaries in the digestive tract and liver nondiarrheagenic

(37)

Mussel Toxins

N

NH N

HN

CHO

CHO HOOC

HO

OH

H2-a

Toxic to shellfish but not ichthyotoxic Light dependent hemolytic effect

Heterocapsa circularisquama

Heterocapsa

circularisquama

(38)

Cyanobacteria

and Others

(39)

Diatoms:

Nitzschia

varis-varingica Domoic Acid (ASP) Pseudo-Nitzschia

australis Domoic Acid (ASP)

calliantha Domoic Acid (ASP)

delicatissima Domoic Acid (ASP)

multiseries Domoic Acid (ASP)

multistriata Domoic Acid (ASP)

seriata Domoic Acid (ASP)

turgidula Domoic Acid (ASP)

ASP: Amnesic Shellfish Poisoning

(40)

Domoic Acid

Toxicity:

LD50 : 2.4 mg/kg

(mice)

NH HOOC

HOOC

2

3 4

5 7 6

8

1'

5'

6'

7' 8'

COOH

Domoic acid

Mode of Action:

Glutamic acid agonist, binds to certain glutamic acid receptors (kainate receptors) in the brain and causes neuronal firing due to the inability of glutamate transporters to clear DA from the synaptic cleft, thus prolonging neuronal excitation.

Neurotoxic, causes neurobehavioural effects, loss of short term memory

HOOC

HOOC

NH2 Glutamic acid

Pseudo-nitzschia multiseries

Pseudonitzschia spp.

(41)

Freshwater Cyanobacteria:

Anabaena

circinalis Anatoxin-a, Microcystins (MC), PSP

flos-aquae Anatoxin-a, Anatoxin-a(s), Microcystins (MC) lemmermannii Anatoxin-a(s), PSP

Anabaenopsis

milleri Microcystins (MC)

Aphanizomenon

flos-aquae Anatoxin-a, PSP, Cylindrospermopsins (CYN)

gracile PSP

ovalisporum Cylindrospermopsins (CYN), Microcystins (MC) Cylindrospermopsis

raciborskii Cylindrospermopsins (CYN), PSP Lyngbya

wollei PSP

(42)

Freshwater Cyanobacteria (contiunation):

Microcystis

aeruginosa Microcystins (MC), PSP

botrys Microcystins (MC)

viridis Microcystins (MC)

Planktothrix

agardhii Microcystins (MC)

formosa Anatoxin-a

mugeotii Microcystins (MC)

rubescens Microcystins (MC)

Nodularia

spumigena Nodularins (NOD)

Nostoc spp. Microcystins (MC)

Umezakia

natans Cylindrospermopsins (CYN)

(43)

Anatoxin-a

NH O

Anatoxin-a

NH O

Homoanatoxin-a

Toxicity:

LD50: 200 µg/kg (mice)

Mode of Action:

Binds to nicotinic acetylcholin receptor (nAChR)

⇒ Opening of the postsynaptic sodium channels

⇒ generation of action potentials until exhaustion of the nerve cell neurotoxic

Anabaena

circinalis flos-aquae Aphanizomenon

flos-aquae Planktothrix

formosa

Aphanizomenon flos-aquae Anabaena circinalis

Anabaena flos-aquae

(44)

Anatoxin-a(s)

Anatoxin-a(s)

HN N

HN

O N

P O

HO O

Toxicity:

LD50: 50 µg/kg (mice)

Mode of Action:

Acetylcholin esterase (AChE) inhibitor

=> Opening of the postsynaptic sodium channels

⇒generation of action potentials until exhaustion of the nerve cell neurotoxic

Anabaena

flos-aquae lemmermannii

Anabaena lemmermannii Anabaena flos-aquae

(45)

Cylindrospermopsins – Structures

Cylindrospermopsin

N NH HN NH

N

O

O OH

H H

H HO3SO

N NH HN NH

N

O

O OH

H H

H HO3SO

7-epi-Cylindrospermopsin

N NH HN NH

N

O

O

H H

H HO3SO

deoxy-Cylindrospermopsin

Aphanizomenon flos-aquae ovalisporum Cylindrospermopsis

raciborskii Umezakia

natans

Cylindrospermopis raciborskii Umezakia natans

(46)

Cylindrospermopsins – Mode of Action

Toxicity:

LD50: 2 mg/kg (mice)

Mode of Action:

competitive binding of the toxin to a catalytic site(s) involved in the synthesis of pyrimidine nucleotides (i.e., uridine)

Inhibition in a noncompetitive manner of the in vitro activity of uridine monophosphate (UMP) synthase complex

hepatotoxic

(47)

Microcystins – Structures

NH

HN H

N

HN O NH N

HN

O

O O

O

O O

R2 COOH

R1 COOH

OCH3 (1) D-Ala

(2) L-X

(3) D-erythro-β-methylAsp (iso) (4) L-Z

(5) Adda

(6) D-Glu (iso)(7) N-methyldehydroAla (Mdha)

Anabaena

circinalis flos-aquae Anabaenopsis

milleri Aphanizomenon

ovalisporum Microcystis

aeruginosa botrys

viridis Planktothrix

agardhii mugeotii rubescens Nostoc spp.

Planktothrix agardhii

Microcystis aeruginosa Nostoc

(48)

Microcystins – Structures

NH H

N H

N HN

O NH N HN

O

O O

O

O O

R2 COOH

R1 COOH

OCH3

(1) D-Ala

(2) L-X (3) D-erythro-β-methylAsp (iso) (4) L-Z

(5) Adda

(6) D-Glu (iso) (7) N-methyldehydroAla (Mdha)

AA 1 AA 2 AA 3 AA 4 AA 5 AA 6 AA 7

D-Ala L-Leu D-MeAsp L-Arg Adda D-Glu Mdha

D-Ser L-Ala D-Asp L-Aib ADMAdda D-MeGlu Dha

L-Glu L-Ala DMAdda OC2H3(CH3)OH-Glu Dhb

L-GluMe L-Glu (6Z)Adda L-Ala

L-Har L-GluMe L-MeSer

L-Hil L-Har L-Ser

L-Hph L-Hph Mdhb

L-Hty L-Hty MeLan

L-Met L-Leu

L-Met(O) L-Met

L-Phe L-Met(O)

L-ThTyr L-Phe

L-Trp L-Trp

L-Tyr L-Tyr

L-Val

(49)

Nodularins – Structures

NH

HN NH

O

O

O NH

COOH

OCH3 N

O O COOH

NH

NH2 HN

Adda

D-Glu (iso) N-Methyl- 2-amino- butenic acid

D-erythro-β-methyl-iso-Asp L-Arg

Nodularia

spumigena

Nodularia spumigena

(50)

Microcystins/Noduarins – Toxicity and Mode of Action

Tumor promotion is attributed also to PP inhibition

Oxidative stress by formation of ROS stimulated by MCs

Toxicity:

LD50 MC-LR/NOD: 50 µg/kg (mice)

Mode of Action:

ADDA blocks the catalytic site of protein serine/threonine phosphatases PP1 and PP2A

=> Hyperphosphorylation => cytoskeletal rearrangements => changes in whole-cell morphology

(51)

Marine Cyanobacteria:

Lyngbya

majuscula Aplysiatoxins, Lyngbyatoxins Oscillatoria

nigroviridis Aplysiatoxins Schizothrix

calcicola Aplysiatoxins, Lyngbyatoxins Gracilaria (Polycavernosa tsudai)

edulis ?? Polycavernoside-A

(52)

Marine Cyanobacterial toxins – Structures

O

O O O

O

OH MeO

OMe OMe MeO

OMe

O

O

Polycavernoside-A

O N

HN

NH

OH

Lyngbyatoxin-A

O O

O

O O

OH

O Br

OH

O

Aplysiatoxin

Aplysia - seaslug

Schizothrix calcicola

Lyngbya majuscula

(53)

Marine Cyanobacterial toxins – Toxicity Polycavernoside-A

Oral toxicity

Aplysiatoxin:

Swimmer‘s itch (contactdermatitis) diarrheagenic, vomiting

Bleeding of the small intestine

Tumor promotin (potentiation of protein kinase C)

Lyngbyatoxin-A

Dermonecrotic Tumor promoting

(54)

Haptophytes:

Chrysocromulina

leadbeateri Ichthyotoxins

polylepis Ichthyotoxins

Phaeocystis

pouchetii Ichthyotoxins (?)

Prymnesium

calathiferum Ichthyotoxins

faveolatum Ichthyotoxins

parvum Ichthyotoxins, prymnesins (PRM)

patelliferum Ichthyotoxins

zebrinum Ichthyotoxins

Chrysochromulina polylepis

Referenzen

ÄHNLICHE DOKUMENTE

Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen.. Dies gilt auch für

The hypothesis was thus con- firmed that free fluoride ions in solution around the tooth or enamel crystals play a much more important role in caries prevention than

The typical mitochon- drial staining of control trypanosomes was completely absent in parasites treated with compound 2 (Figure 4a,b), indicating that addition of compound 2 resulted

This allows the T6SS to translocate its substrates across a broad range of eukaryotic and fungal cell membranes, as well as Gram-negative cell envelopes (Alcoforado Diniz et

While we cannot presently say to what degree the observed protein alkylation signatures contribute to the antimalarial activity of the peroxides, we think that the identified

An Interbacterial NAD(P) + Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells. Rigid tetrazine fluorophore conjugates with fluorogenic properties in

Microarray results were confirmed with quantitative real-time PCR (qPCR). 3) Fluorescent imaging: To determine the intracellular localization of the site of action of the

To address this hypothesis, we used ex vivo and in vitro approaches to determine whether IFN-β1b influenced the CXCL12-mediated migration by primary human T cells, and to