• Keine Ergebnisse gefunden

Relevance of processing parameters for grain growth of metal-halide perovskites with nanoimprint

N/A
N/A
Protected

Academic year: 2022

Aktie "Relevance of processing parameters for grain growth of metal-halide perovskites with nanoimprint"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Supporting Information

for manuscript

Relevance of processing parameters for grain growth of metal-halide perovskites with nanoimprint

Andre Mayer1, Tobias Haeger2, Manuel Runkel2, Johannes Rond1, Johannes Staabs1, Frederic van gen Hassend3, Arne Röttger3, Patrick Görrn1,5, Thomas Riedl2,5,

Hella-Christin Scheer4

1 Chair of Large Area Optoelectronics, School of Electrical, Information and Media Engineering, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany

2 Chair of Electronic Devices, School of Electrical, Information and Media Engineering, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany

3 Chair for Novel Manufacturing Technologies and Materials, University of Wuppertal, Bahnhofstr. 15, 42651 Solingen, Germany

4 School of Electrical, Information and Media Engineering, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany

5 Wuppertal Center for Smart Materials & Systems, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany

(2)

Pristine layer:

Fig. S-1: Preparation of continuous layers of a MAPbBr3 perovskite is improved e.g. when the substrate (here Si with native oxide) is exposed with an excimer lamp (172 nm,

XERADEX 20, Radium, Germany) before spin-coating to increase the surface energy and thus to improve wetting with the precursor solution (MABr and Pb(Ac)2 in DMF). Exposure time was 60 s.

PHP process:

Fig. S-2: a) Temperature characteristics of the imprint system used for the experiments, dedicated imprint temperature here is 150°C (equivalent time: see text in section 3.2.6).

a) b)

0 5 10 15 20 25 30 160

140 120 100 80 60 40 20 0

a)

0 5 10 15 20 25 200

180 160 140 120 100 80 60 40 20 0

temperature T / °C

time t / min time t / min

imprint time equivalent time

b)

heat-up phase

(3)

Reference experiment: (N2-anneal)

Fig. S-3: Grain size distributions obtained with annealing experiments under nitrogen.

grain size D / µm

grain size D / µm 80

60 40 20 number of grains 0

ta = 10 min

Dm = 0.54 µm

LSD = 0.53

40 30 20 10 0

ta = 20 min

Dm = 0.71 µm

LSD = 0.51

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

40 30 20 10 number of grains 0

ta = 30 min

Dm = 0.81 µm

LSD = 0.41

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

40 30 20 10 number of grains 0

ta = 20s

Dm = 0.16 µm

LSD = 0.35

ta = 30s

Dm = 0.20 µm

LSD = 0.44

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 20

16 12 8 4 0 20

16 12 8 4 number of grains 0

ta = 45s

Dm = 0.22 µm

LSD = 0.41

80 60 40 20 0

ta = 1 min

Dm = 0.28 µm

LSD = 0.43

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

80 60 40 20 number of grains 0

ta = 3 min

Dm = 0.44 µm

LSD = 0.44

60 50 40 30 20 10 0

ta = 5 min

Dm = 0.46 µm

LSD = 0.42

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

number of grains

pristine layer

Dm = 0.10 µm

LSD = 0.50

0 0.1 0.2 0.3 0.4 0.5 0.6 60

50 40 30 20 10 0

0 0.1 0.2 0.3 0.4 0.5 0.6 60

50 40 30 20 10 0

Dm = 0.14 µm

LSD = 0.39 ta = 10s

(4)

Fig. S-4: XRD measurements referring to annealing under nitrogen. Similar to the pristine layer the orientation is preferential, (100) / (200) only.

Fig. S-5: Grain growth according to the theoretical relationship equ. (2) (with 𝑛 = 3, as with our experiments), when a finite initial grain size exists. The regime of small times is

dominated by the initial value (here 200 nm), whereas the regime of long times (with 𝐷! >

2𝐷") is dominated by the exponential term.

6000

4000

2000

0

counts

2 /° (100)

(200)

15 20 25 30 35 annealing time:

prisitine 1 min 30 min

Kornwachstum mit Exponential- gesetz Exponent:

n = 3 Vorfaktor:

V = 1e13 nm V-1: Original

100 0 101 102 103 104 105 1000

0 mean grain size Dm / nm

time t /min

(5)

Imprint at RT:

Fig. S-6: SEM micrographs of the pristine layer (a) and the layer imprinted at RT by a pressure of 100 bar for 5 min (b). Flattening is only observed rarely (soft-bake 125°C).

Inserts: Inclined view to illustrate topography; scale bars similar to main micrograph.

Fig. S-7: Typical AFM results of the pristine layer (a) and the layer imprinted at RT by a pressure of 100 bar for 5 min (b). The rms roughness is similar (pristine: 25 nm, imprinted 27 nm).

a) b)

a) b)

180 160 140 120 100 80 60 40 20 0 204nm

240 220 200 180 160 140 120 100 80 60 40 20 251nm

0

4 µm 4 µm

(6)

Fig. S-8: Compaction of the perovskite layer by imprint at RT (100 bar), Pb-precursor is the trihydrate Pb(Ac)2.3H2O (soft-bake 75°C, 2 min).

a) Pristine layer; b) layer after imprint at RT.

Fig. S-9: XRD characterization of layers imprinted at different pressures (RT, 5 min) compared to the respective pristine layers. All samples were prepared from the same batch (same precursor solution) subsequently. The intensities and shifts of the (100)-peak do not feature significant differences (beyond sample-to-sample variation).

a) b)

15.0 15.2 15.4

2 /°

counts

15.0 15.2 15.4

3000 2500 2000 1500 1000 500 0

2 /°

15.0 15.2 15.4

2 /°

15.0 15.2 15.4

2 /°

imprint pressure: 10bar 25bar 50bar 100bar; respective pristine layer

a) b) c) d)

(7)

Imprint at 150°C:

Fig. S-10: Grain size distributions obtained with specific hot loading times (‘annealed’ part only).

grain size D / µm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

80 60 40 20 0

number of grains

Dm = 0.26 µm

LSD = 0.36

grain size D / µm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

60

40

20

0

number of grains

timp = 10s

Dm = 0.27 µm

LSD = 0.41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

60

40

20

0

Dm = 0.30 µm

LSD = 0.41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50 40 30 20 10 0

number of grains

timp = 30s

Dm = 0.34 µm

LSD = 0.39

30

20

10

0

timp = 1 min

Dm = 0.54 µm

LSD = 0.49

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

40 30 20 10 0

number of grains

timp = 5 min

Dm = 0.66 µm

LSD = 0.40

timp = 30 min

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

80 60 40 20 0

Dm = 0.30 µm

LSD = 0.37 timp = 20s

timp = 1 day

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(8)

0 1 2 3 4 5 6 7 8 70

60 50 40 30 20 10 0

number of grains

grain size D / µm timp = 1 day

Dm = 2.9 µm

LSD = 0.40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

80 60 40 20 0

number of grains

pristine layer for 10s - 1 min

Dm = 0.15 µm

LSD = 0.38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100 80 60 40 20 0

grain size D / µm

Dm = 0.17 µm

LSD = 0.43 pristine layer for 5 min - 1 day

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

80 60 40 20 0

number of grains

timp = 10s

Dm = 0.27 µm

LSD = 0.39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

60

40

20

0

timp = 20s

Dm = 0.29 µm

LSD = 0.38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

60

40

20

0

number of grains

timp = 30s

Dm = 0.28 µm

LSD = 0.40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50 40 30 20 10 0

timp = 1 min

Dm = 0.37 µm

LSD = 0.42

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

60 50 40 30 20 10 0

number of grains

timp = 5 min

Dm = 0.45 µm

LSD = 0.39

40 30 20 10 0

timp = 30 min

Dm = 0.74 µm

LSD = 0.41

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

(9)

Fig. S-12: XRD measurements comparing the ‘imprinted’ and the ‘annealed’ part of the sample (long-term experiment, 1 day; hot loading, 150°C).

Fig. S-13: Comparison of evaluated grain sizes during HL (‘imprinted’ part) with N2-anneal.

a) Overview over complete time range, b) detail of initial growth phase.

1600 1200 800 400 0

counts

2 /°

15 20 25 30 35 annealed

imprinted

PbBr2

(100)

(200)

Regressions- analyse Daten alles:

150°C

mean grain size Dm / µm

10-1 100 101 102 103 104 10

1

0

Regressions + Daten alles:

150°C SB: 125°C

N2 anneal TCI HL TCI Regr N2- TCI Regr HL TCI

0 10 20 30 40 50 60 0.5

0.4 0.3 0.2 0.1

0

time t / min time t / s

b) a)

(10)

Fig. S-14: Driving forces for grain growth, normalized to capillary force with 100 nm grain size; red: contribution of stress due to grain growth, imprint pressure and imprint temperature (thermal stress refers to temperature differences between 25K and 125K); blue: capillary driving force due to curvature. (Parameters: pressure 100 bar, a = 6.7 10-4/K, ggb = gs0/2 = 40 mN/m, D0 = 100nm) Linear (a) and logarithmic (b) representation.

Fig. S-15: Evaluation of activation energy from grain sizes obtained at 125°C, 150°C and 180°C. The slope indicates an activation energy of Qn = 1.19 eV.

normalized driving forces p / pcap

0 200 400 600 800 1000 2.5

2.0 1.5 1.0 0.5

0

102 103 104 101

100

10-1

10-2

grain size Dm / nm grain size Dm / nm

b) a)

2.2 0 2.3 2.4 2.5 100

10

1

0 (Dm)n - (D0)n

1000/T / 1/K

(11)

Fig. S-16: Additional information with respect to characteristics of the high-purity material B.

a) SEM micrographs of the ‘annealed’ and ‘imprinted’ part, HL time 30 min

b) Grain size distribution in normalized form; merged result obtained for HL-times of 5 min to 20 min.

Simulation:

Fig. S-17: Comparison of experimental data obtained with HL and with PHP with the growth law, assuming our specific parameters (𝑇 = 150°𝐶, 𝑛 = 3.43, 𝑄# = 1.19 𝑒𝑉). Double-log plot to emphasize differences at small times.

0 0.5 1 1.5 2 2.5 35

30 25 20 15 10 5 0

number of grains

mean normalized grain size D/Dm

b)

3 µm

a) annealed hot loading

timp = 30min

Kornwachstum mit Exponential- gesetz Exponent:

n = 3.4 Vorfaktor:

V = 3.5e22 nm Q = 1.19 eV t-1 = 10 min

0.1 1 10 100 1

0.1 mean grain size Dm / µm

imprint time timp / min

(12)

Fig. S-18: Proof of concept, that PHP experiments are well suited to determine the growth exponent n, when regarding the PHP-times after heat-up, only (here the data of the HL experiment were used for illustration). The grain size of 354 nm is used as the new ‘initial’

grain size obtained after HL for t0 = 1 min, and the time is rescaled accordingly.

a) Linear plot with initial values (nest = 3.1, Qn = 1.2 eV)

b) Logarithmic plot of a) to validate the ‘quality’ of the simulation

c) Logarithmic plot with refined exponent for exact reproduction of experiment (n = 2.8, Qn = 1.2 eV)

n aus PHP- daten (neuer Nullpunkt) Exponent:

n = 3.128 Vorfaktor:

V =7e21nm Q = 1.19 eV t-0 = 1 min d-0 = 373 nm

mean grain size Dm / µm

10-1 100 101 102 103 104 10

1

0.1

n aus PHP- daten (neuer Nullpunkt) Exponent:

n = 2.8 Vorfaktor:

V =5e20nm Q = 1.19 eV t-0 = 1 min d-0 = 373 nm

rescaled time (t - t0)/ min

c) b)

10-1 100 101 102 103 104 rescaled time (t - t0)/ min

10

1

0.1

n aus PHP- daten (neuer Nullpunkt) Exponent:

n = 3.128 Vorfaktor:

V = 7e21 nm Q = 1.19 eV t-0 = 1 min d-0 = 373 nm

mean grain size Dm / µm

0 500 1000 1500 3.0

2.5 2.0 1.5 1.0 0.5

0

rescaled time (t - t0)/ min

a)

Referenzen

ÄHNLICHE DOKUMENTE

Advanced methods like the Warren-Averbach analysis [2] allow the determination of a volume and an area averaged mean grain size and so enable to calculate the width of the

While the production of pea in Canada and Russia might indirectly influence the prices of pea in some European countries, the demand of faba bean in Egypt or the

KEYWORDS: SUPER AUSTENITIC STEEL – GRAIN REFINEMENT – SOLIDIFICATION STRUCTURE – CERIUM – HETEROGENEOUS

The prediction model was finally applied to the question, how far the formation of oscillation marks (OM) at the surface would result in a local increase of the final austenite

9: Temperature profile of the samples at different soak temperatures (1050°C, 1150°C, 1250°C) The evaluation of the selected micrographs resulted not only in an average grain size,

We propose a numerical model of the evolution of the average grain size in deep ice cores that takes into account recrystallization processes such as normal grain growth and

evaluation of the undercooling the transformation temperature at a cooling rate of 0.03°C/s is taken as a reference temperature. The experimentally determined

Um möglichst wenig Aufnahmeverluste zu verursachen, ist also eine tiefe Führung des Rotors notwendig, bei der gesichert werden kann, daß sowohl alle Ähren