• Keine Ergebnisse gefunden

High Density Gate Array

N/A
N/A
Protected

Academic year: 2022

Aktie "High Density Gate Array"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Master SLA3504 SLA3506 SLA3509 SLA3516

Total BCs (Raw Gates) 41,417 64,320 95,760 161,841

Usable Bcs 26,921 38,592 52,668 80,920

Number of PADs 110 130 162 210

Propagation Internal Gates tpd = 0.30ns (standard at 5.0V), tpd = 0.40ns (standard at 3.3V) Delay Input Buffers tpd = 0.48ns (standard at 5.0V), tpd = 0.63ns (standard at 3.3V)

Output Buffers tpd = 2.08ns (standard at 5.0V), tpd = 2.86ns (standard at 3.3V) CL = 50pF

I/O Level CMOS, TTL

Input Mode TTL, CMOS, Pull-up/Pull-down

Output Mode Normal, 3-state, Bi-directional

High Density Gate Array

SLA35000 Series

DESCRIPTION

The SLA 35000 series are Sea-of-gate type CMOS gate arrays adopting a super-high-density architecture and having a significantly increased number of gates per chip than their equivalent processing equipment.

This series are ideal for midsize systems having a relatively small number of I/Os and provide high cost performance.

There are four models ranging from 41,417 to 161,841 gates which can be operated on any power source of 3.0, 3.3 or 5.0V, enabling them to be used in a variety of low-voltage applied fields.

Their demands are approximately 30% smaller (0.77µ W/MHz/BC when the internal cell is 3.0V) than those of their equivalent SLA 30000 series. This allows them to be used more easily in high density circuits to be mounted on small packages and employed for various applications such as for image processing and in communication equipment.

To develop high-speed/high-density circuits in a shorter period of time, the series enable diverse design techniques to be employed during development such as high accuracy simulation of wiring resistance and blunted waveform in addition to the conventional wiring capacity components, and provide a new layout tool for reducing clock skew.

FEATURES

● Super-high density (adopting 0.6µm silicon gate CMOS with 3-metal layer)

● High-speed operation (operation delay of internal gate = 0.4ns at 3.3V, 2-input power NAND standard)

● Selectable supply voltage: 5.0V, 3.3V, and 3.0V

● Low power consumption (0.77µW/MHz/BC when internal cell = 3.0V)

● Output drivability (I

OL

= 1, 4, 8, 12 mA when 5.0V, I

OL

= 500µ, 2, 4, 6mA when 3.3V)

● On-chip RAM available

PRODUCT LINEUP

● Super-high-density gate array

● Operates on 3.0/3.3/5.0V power sources

● Number of gates: 41 to 162k gates (sea of gates)

(VSS = 0V)

Item Symbol Rating Unit

Power voltage VDD –0.3 to 6.0 V

Input voltage VI –0.3 to VDD+0.5 V

Output voltage VO –0.3 to VDD+0.5 V

Output current/pin IOUT ±25 (±50*1) mA

Storage temperature Tstg –65 to 150 °C

*1: For cell of 24mA output current

ABSOLUTE MAXIMUM RATINGS

(2)

RECOMMENDED OPERATING CONDITION

● Single power supply

Item Symbol Conditions Min. Typ. Max. Unit

Stand-by current * IDDS Stop position – – 400 µA

Input leakage current ILI – –1 – 1 µA

Off-state leakage current IOZ – –1 – 1 µA

IOH = –1mA (Type M), –4mA (Type 1),

VDD

High level output voltage VOH –8mA (Type 2),

–4 – – V

–12mA (Type 3) VDD = Min.

IOL = 1mA (Type M), 4mA (Type 1),

Low level output voltage VOL 8mA (Type 2), – – 0.4 V

12mA (Type 3) VDD = Min.

High level input voltage VIH1 CMOS level, VDD = Max. 3.5 – – V

Low level input voltage VIL1 CMOS level, VDD = Min. – – 1.0 V

High level input voltage VT1+ CMOS Schmitt, VDD = 5.0V – – 4.0 V

Low level input voltage VT1- CMOS Schmitt, VDD = 5.0V 0.8 – – V

Hysterisis voltage VH1 CMOS Schmitt, VDD = 5.0V 0.3 – – V

High level input voltage VIH2 TTL level, VDD = Max. 2.0 – – V

Low level input voltage VIL2 TTL level, VDD = Min. – – 0.8 V

High level input voltage VT2+ TTL Schmitt, VDD = 5.0V – – 2.4 V

Low level input voltage VT2- TTL Schmitt, VDD = 5.0V 0.6 – – V

Hysterisis voltage VH2 TTL Schmitt, VDD = 5.0V 0.1 – – V

Pull-up resistor RPU VI = 0V Type 1 25 50 100

KΩ

Type 2 50 100 200

Type 1 25 50 100

ELECTRICAL CHARACTERISTICS (V DD =5V)

(V

DD

= 5V, V

SS

= 0V, Ta = –40 to 85°C)

Item Symbol Min. Typ. Max. Unit

2.70 3.00 3.30

Power voltage VDD

3.00 3.30 3.60

4.75 5.00 5.25 V

4.50 5.00 5.50

Input voltage VI VSS – VDD V

Operating temperature Topr 0 25 70 °C

–40 25 85 °C

Normal input during input

t

ri – – 50 ns

rise time

Normal input during input

t

fi – – 50 ns

fall time

Schmitt input during input

t

ri – – 5 ms

rise time

Schmitt input during input

t

fi – – 5 ms

fall time

(3)

ELECTRICAL CHARACTERISTICS (V DD =3V)

(V

DD

= 3V ± 0.3V, V

SS

= 0V, Ta = –40 to 85 ° C)

Item Symbol Conditions Min. Typ. Max. Unit

Stand-by current* IDDS Stop position – – 500 µA

Input leakage current ILI – –1 – 1 µA

Off-state leakage current IOZ – –1 – 1 µA

IOH = –0.5mA (Type M), –1.8mA (Type 1),

VDD

High level output voltage VOH –3.5mA (Type 2),

–0.3 – – V

–5mA (Type 3) VDD = Min.

IOL = 0.5mA (Type M), 1.8mA (Type 1),

Low level output voltage VOL 3.5mA (Type 2), – – 0.3 V

5mA (Type 3) VDD = Min.

High level input voltage VIH1 CMOS level, VDD = Max. 2.0 – – V

Low level input voltage VIL1 CMOS level, VDD = Min. – – 0.8 V

High level input voltage VT1+ CMOS Schmitt, VDD = 3.0V – – 2.3 V

Low level input voltage VT1- CMOS Schmitt, VDD = 3.0V 0.5 – – V

Hysterisis voltage VH1 CMOS Schmitt, VDD = 3.0V 0.1 – – V

Pull-up resistor RPU VI = 0V Type 1 50 100 200

Type 2 100 200 400 KΩ

Pull-down resistor RPD VO = VDD Type 1 50 100 200

KΩ

Type 2 100 200 400

Input pin capacitance CI f = 1MHz, VDD = 0V – – 12 pF

Output pin capacitance CO f = 1MHz, VDD = 0V – – 12 pF

I/O pin capacitance CIO f = 1MHz, VDD = 0V – – 12 pF

* Stand by current is a representative value of eresy series

Item Symbol Condition Min. Typ. Max. Unit

Stand-by current* IDDS Stop position – – 500 µA

Input leakage current ILI – –1 – 1 µA

Off-state leakage current IOZ – –1 – 1 µA

IOH = –0.5mA (Type M), –2mA (Type 1),

VDD

High level output voltage VOH –4mA (Type 2),

–0.3 – – V

–6mA (Type 3) VDD = Min.

IOL = 0.5mA (Type M), 2mA (Type 1),

Low level output voltage VOL 4mA (Type 2), – – 0.3 V

6mA (Type 3) VDD = Min.

High level input voltage VIH1 CMOS level, VDD = Max. 2.2 – – V

Low level input voltage VIL1 CMOS level, VDD = Min. – – 0.8 V

High level input voltage VT1+ CMOS Schmitt, VDD = 3.3V – – 2.4 V

Low level input voltage VT1- CMOS Schmitt, VDD = 3.3V 0.6 – – V

Hysterisis voltage VH1 CMOS Schmitt, VDD = 3.3V 0.1 – – V

Pull-up resistor RPU VI = 0V Type 1 45 90 180

Type 2 90 180 360 KΩ

Pull-down resistor RPD VI = VDD Type 1 45 90 180

Type 2 90 180 360 KΩ

Input pin capacitance CI f = 1MHz, VDD = 0V – – 12 pF

Output pin capacitance CO f = 1MHz, VDD = 0V – – 12 pF

I/O pin capacitance CIO f = 1MHz, VDD = 0V – – 12 pF

* Stand by current is a representative value of eresy series

ELECTRICAL CHARACTERISTICS (V DD =3.3V)

(V

DD

= 3.3V ± 0.3V, V

SS

= 0V, Ta = –40 to 85 ° C)

(4)

PERFORMANCE CURVES (V DD =5V)

● Output Current Characteristics (5.0V ± 10%) ● Measurement Circuit

● Output Buffer Characteristics (5V ± 10%) Standard Type

Schmitt – Trigger cell

Output current

TYPE number IOH (mA) IOL (mA)

TYPE M -1 1

TYPE 1 -4 4

TYPE 2 -8 8

TYPE 3 -12 12

The alphanumerics of the TYPE* (M, 1-3) indicate the output cell names (xx * x).

Example: XUO3 Å® Indicates TYPE3

VI

VDD

VSS

A

XIBC

VOH, VOL IOL IOH

6.0

5.0

4.0

3.0

2.0

1.0

1.0 2.0 3.0 4.0 5.0 6.0

VDD = 5.5V VDD = 5.0V VDD = 4.5V

Ta = 25°C

VIN (V)

VOUT (V)

0

6.0

5.0

4.0

3.0

2.0

1.0

1.0 2.0 3.0 4.0 5.0 6.0

VDD = 5.5V VDD = 5.0V VDD = 4.5V

Ta = 25°C

VIN (V)

VOUT (V)

0

6.0

5.0

4.0

3.0

2.0

1.0

1.0 2.0 3.0 4.0 5.0 6.0

VDD = 5.5V VDD = 5.0V VDD = 4.5V

Ta = 25°C

VIN (V)

VOUT (V)

0

6.0

5.0

4.0

3.0

2.0

1.0

1.0 2.0 3.0 4.0 5.0 6.0

VDD = 5.5V VDD = 5.0V VDD = 4.5V

Ta = 25°C

VIN (V)

VOUT (V)

0

(5)

● Output Driver Characteristics

Low level output current High level output current

0.5 1.0

I

0

OL(mA)

10

5

VOL(V) Ta = 25°C

TYPE M

VDD = 5.5V VDD = 5.0V VDD = 4.5V

1.0

I

0

OL(mA)

20

10

VOL(V) Ta = 25°C

VDD = 5.5V VDD = 5.0V VDD = 4.5V

TYPE 1

0.5

1.0

I

0

OL(mA)

50

25

VOL(V) Ta = 25°C

VDD = 5.5V VDD = 5.0V VDD = 4.5V

TYPE 2

0.5

IOH(mA) 0

-5

-10

Ta = 25°C

VDD = 4.5V VDD = 5.0V VDD = 5.5V

TYPE M

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

IOH(mA) 0

-10

-20

Ta = 25°C

VDD = 4.5V VDD = 5.0V VDD = 5.5V

TYPE 1

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

IOH(mA) 0

-25

-50

Ta = 25°C

VDD = 4.5V VDD = 5.0V VDD = 5.5V

TYPE 2

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

(6)

Low level output current High level output current

● Delay Characteristics

t pd vs. V

DD

t pd vs. Ta

0.5 1.0

I

0

OL(mA)

100

50

VOL(V) Ta = 25°C

TYPE 3

VDD = 5.5V VDD = 5.0V VDD = 4.5V

1.0

I

0

OL(mA)

100

50

VOL(V)

TYPE 1 to 3

TYPE2 TYPE1 Ta = 25°C

VDD = 5.0V

TYPE3

0.5

IOH(mA) 0

-40

-80

Ta = 25°C

VDD = 4.5V VDD = 5.0V VDD = 5.5V

TYPE 3

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

IOH(mA) 0

-40

-80

TYPE 1 to 3

TYPE2 TYPE1

Ta = 25°C VDD = 5.0V TYPE3

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8 2 3 4 5 6

t

1

pd(ratio)

VDD (V) Ta = 25°C VDD = 5.0V t = 1.0pd

1.3

1.2

1.1

1.0

0.9

0.8

0.7 -40 -20 0 60

t

-60

pd(ratio)

Ta (°C)

20 40 80 100 120

Ta = 25°C VDD = 5.0V t = 1.0pd

(7)

● Output delay time vs. C

L

t

PLH

vs. CL t

PHL

vs. CL

80

t

40

PLH(ns)

20 18 16 14 12 10 8 6 4 2

0 0 120

CL (pF) VDD = 5.0V Vth = 2.5V Ta = 25°C

XPDV1AT+XUO1 XPDV1AT+XUO2

XPDV1AT+XUO3 XPDV1AT+XUOM

160 200 40 80

20 18 16 14 12 10 8 6 4 2

0 0 120

CL (pF) VDD = 5.0V Vth = 2.5V Ta = 25°C

XPDV1AT+XUO2 XPDV1AT+XUO1

XPDV1AT+XUO3

160 200

tPHL(ns)

XPDV1AT+XUOM

● Output Buffer t r, t f vs. C

L

t r vs. C

L

characteristics t f vs. C

L

characteristics

80

t

40

(10-90)(µs)

0.25

0.2

0.15

0.1

0.05

0

0 120

CL (pF)

160 200

VDD = 5.0V Ta = 25°C

r

XUOM

TYPE M

80

t

40

(10-90)(µs)

0 120

CL (pF)

160 200

VDD = 5.0V Ta = 25°C

f

0.25

0.2

0.15

0.1

0.05

0

XUOM

TYPE M

80 40 30

25

20

15

10

5

0 0 120

CL (pF) XUO1

XUO3

160 200

XUO2 t(10-90)(ns)r

VDD = 5.0V Ta = 25°C

TYPE 1 to 3

80 40 30

25

20

15

10

5

0 0 120

CL (pF) XUO1

XUO3

160 200

t(10-90)(ns)f XUO2

VDD = 5.0V Ta = 25°C

TYPE 1 to 3

(8)

PERFORMANCE CURVES (V DD =3.3V)

● Output Current Characteristics (3.3V ± 0.3V)

● Output Buffer Characteristics (3.3V ± 0.3V)

Standard Type Schmitt–Trigger cell

Output current

TYPE number IOH (mA) IOL (mA)

TYPE M -0.5 0.5

TYPE 1 -2 2

TYPE 2 -4 4

TYPE 3 -6 6

The alphanumerics of the TYPE* (M, 1-3) indicate the output cell names (xx * x).

Example: XUO3 Å® Indicates TYPE3

6.0

5.0

4.0

3.0

2.0

1.0

1.0 2.0 3.0 4.0 5.0 6.0

VDD = 3.6V VDD = 3.3V VDD = 3.0V

Ta = 25°C

VIN (V)

VOUT (V)

0

6.0

5.0

4.0

3.0

2.0

1.0

1.0 2.0 3.0 4.0 5.0 6.0

VDD = 3.6V VDD = 3.3V VDD = 3.0V

Ta = 25°C

VIN (V)

VOUT (V)

0

(9)

● Output Driver Characteristics

Low level output current High level output current

0.5 1.0

I

0

OL(mA)

5

2.5

VOL(V) Ta = 25°C

VDD = 3.3V VDD = 3.0V

TYPE M

IOH(mA) 0

-2.5

-5

Ta = 25°C

VDD = 3.0V VDD = 3.3V

TYPE M

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

0.5 1.0

I

0

OL(mA)

20

10

VOL(V) Ta = 25°C

VDD = 3.3V VDD = 3.0V

TYPE 1

IOH(mA) 0

-10

-20

Ta = 25°C

VDD = 3.0V VDD = 3.3V

TYPE 1

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

IOH(mA) 0

-25

-50

Ta = 25°C

VDD = 3.0V VDD = 3.3V

TYPE 2

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

0.5 1.0

I

0

OL(mA)

50

25

VOL(V) Ta = 25°C

VDD = 3.3V VDD = 3.0V

TYPE 2

(10)

Low level output current High level output current

● Delay Characteristics

t pd vs. V

DD

0.5 1.0

I

0

OL(mA)

50

25

VOL(V) Ta = 25°C

VDD = 3.3V VDD = 3.0V

TYPE 3

IOH(mA) 0

-25

-50

Ta = 25°C

VDD = 3.0V VDD = 3.3V

TYPE 3

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

0.5 1.0

I

0

OL(mA)

100

50

VOL(V) Ta = 25°C

VDD = 3.3V

TYPE3 TYPE2 TYPE1

TYPE 1 to 3

IOH(mA) 0

-25

-50 TYPE1

TYPE2

TYPE3

TYPE 1 to 3

Ta = 25°C VDD = 3.3V

0 -1.0

VOH|VDD(V)

-0.8 -0.6 -0.4 -0.2

1.8

1.6

1.4

1.2

1.0

0.8

0.6 2 3 4 5 6

t

1

pd(ratio)

VDD (V)

Ta = 25°C VDD = 3.3V t = 1.0pd

(11)

● Output delay time vs. C

L

t

PLH

vs. CL t

PHL

vs. CL

● Output Buffer t r, t f vs. C

L

t r vs. C

L

characteristics t f vs. C

L

characteristics

tPLH 30

25

20

15

10

5

0

CL(pF)

(ns)

40 80

0 120 160

VDD = 3.3V Vth = 1.5V Ta = 25°C

XPDV1AT+XUO2

200 XPDV1AT+XUO1 XPDV1AT+XUOM

XPDV1AT+XUO3

tPHL 30

25

20

15

10

5

0

CL(pF)

(ns)

40 80

0 120 160

VDD = 3.3V Vth = 1.5V Ta = 25°C

XPDV1AT+XUO2

200 XPDV1AT+XUO1 XPDV1AT+XUOM

XPDV1AT+XUO3

80

t

40

(10-90)(µs)

0.25

0.2

0.15

0.1

0.05

0

0 120

CL (pF)

160 200

r

XUOM VDD = 3.3V

Ta = 25°C

40

30

20

10

0

CL(pF)

40 80

0 120 160

VDD = 3.3V Ta = 25°C

UO3

200 t(10-90)(ns)r

UO1

UO2

40

30

20

10

0

CL(pF)

40 80

0 120 160

VDD = 3.3V Ta = 25°C

200 t(10-90)(ns)f

UO1

UO2 UO3 80

t

40

(10-90)(µs)

0 120

CL (pF)

160 200

VDD = 3.3V Ta = 25°C

f

0.25

0.2

0.15

0.1

0.05

0

XUOM

(12)

ELECTRONIC DEVICES MARKETING DIVISION Electronic Device Marketing Department IC Marketing & Engineering Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

All product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©Seiko Epson Corporation 1998 All rights reserved.

Referenzen

ÄHNLICHE DOKUMENTE

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,