• Keine Ergebnisse gefunden

and the dynamics of mucus trap formation in Alexandriumpseudogonyaulax spp. A search for mixotrophy and mucus trap production in Alexandrium Harmful Algae

N/A
N/A
Protected

Academic year: 2022

Aktie "and the dynamics of mucus trap formation in Alexandriumpseudogonyaulax spp. A search for mixotrophy and mucus trap production in Alexandrium Harmful Algae"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A search for mixotrophy and mucus trap production in Alexandrium spp. and the dynamics of mucus trap formation in Alexandrium pseudogonyaulax

Hannah E. Blossom

a,

*, Tine Dencker Bædkel

a

, Urban Tillmann

b

, Per Juel Hansen

a

aMarineBiologicalSection,UniversityofCopenhagen,Strandpromenaden5,3000,Helsingør,Denmark

bAlfred-WegenerInstituteforPolarandMarineResearch,ChemicalEcology,AmHandelshafen12,Bremerhaven,27570,Germany

ARTICLE INFO

Articlehistory:

Received6January2017

Receivedinrevisedform15March2017 Accepted17March2017

Availableonlinexxx

Keywords:

Alexandriumpseudogonyaulax Alexandriumspp.

Mixotrophy Mucustrap Phagotrophy

ABSTRACT

Recently,ahithertounknownfeedingstrategy,thetoxicmucustrap,wasdiscoveredinthedinoflagellate Alexandrium pseudogonyaulax.In this study, over40 strainsof 8 differentAlexandrium species (A.

ostenfeldii, A. tamarense, A. catenella, A. taylorii, A. margalefii, A. hiranoi, A. insuetum and A.

pseudogonyaulax)werescreenedfortheirabilitytoingestpreyand/ortoformmucustraps.Themucus trapfeedingstrategy,whereamucustrapistowedbythelongitudinalflagellumremainsuniquetoA.

pseudogonyaulax.Inadditionalexperiments,detailsofthetrapwereexaminedandquantified,suchas speedandfrequencyoftrapformationaswellaswhathappenstothetrapaftertheA.pseudogonyaulax celldetachesfromit.ThepercentageofA.pseudogonyaulaxcellsproducingamucustrapandthenumber ofpreycellscaughtincreasedwithincreasingpreyconcentration,whereasthephysicalsizeofthetraps wasindependentofpreyconcentration.Inonestraingivenanexcessofprey,within1hover90%of individualA.pseudogonyaulaxcellshadformedatrap,eachcontaininganaverageof45preycells.

IndividualA.pseudogonyaulaxcellssteadilyproducedtrapsandupto5trapswereproducedbyasingleA.

pseudogonyaulaxcellafteronly24h.TheattachmentofanA.pseudogonyaulaxcelltothetraponlyceased during,andjustfollowing,celldivision.Preycellswere,tosomeextent,capableofescapingfromthe mucustrap,butthetrapremainedstickyandcontinuedcatchingpreyforupto48hafterthetraphad beenabandonedbytheA.pseudogonyaulaxcell.Theseresultsrevealthattheeffectsofthemucustrap extendfarbeyondtheremovalofpreythroughingestion,andthepotentialimpactofthisstrategyon surroundingcellsishigh.

©2017ElsevierB.V.Allrightsreserved.

1.Introduction

Harmfulalgalblooms(HABs)areworldwidephenomenathat representanincreasingthreattoshellfishindustries,recreational activitiesandmarineenvironments(Hallegraeff,1993;Burkholder et al., 2008; Anderson et al., 2012). Species from the genus Alexandriumareresponsibleformanyofthemostsevereepisodes, astheyaregloballydistributedandatleasthalfofthe30species areknowntobetoxicortohaveotherharmfuleffects(Anderson, 1997,1998).OnamorphologicalbasistheAlexandriumgenushas been divided intotwo subgenera: Alexandrium and Gessnerium (Balech,1995).Theplacementofthefirstapicalplateisdistinctive, which in the Gessnerium is not connected to the apical pore

complex (APC), as opposed to the Alexandrium. In addition, in Gessneriumthe10plateisunderthe40plateratherthanadjacentto it(Hasleetal.,1996).SpeciesinthegenusAlexandriumarewell knownfortheirproductionofparalyticshellfishpoisoning(PSP) toxins,aswellasspirolides,andgymnodimines(Cembellaetal., 2000; Van Wagoner et al., 2011; Anderson et al., 2012).

Additionally,afewmembersofthesubgenusGessneriumproduce atoxinknownasgoniodominA,namelyA.hiranoi,A.pseudogo- nyaulax,andA.monilatum(Murakamietal.,1988;Hsiaetal.,2006;

Trikietal.,2016).

SpeciesinthegenusAlexandriumhavehistoricallybeentreated asphototrophic,usingonlylightforenergyandinorganicnutrients forgrowth.Recentstudieshaveshown,however,thattheyarealso able to consume other algae. At present, seven species of Alexandrium have been shown to exhibit phagotrophy:

A.andersonii(Leeet al.,2016), A.catenella (Jeonget al.,2005a;

Yooet al.,2009),A.minutum(Jeonget al.,2005b), A.ostenfeldii

* Correspondingauthor.

E-mailaddress:hblossom@bio.ku.dk(H.E. Blossom).

http://dx.doi.org/10.1016/j.hal.2017.03.004 1568-9883/©2017ElsevierB.V.Allrightsreserved.

ContentslistsavailableatScienceDirect

Harmful Algae

j o u r n a lh o m e p ag e :w w w . e l s e vi e r . c o m / l o c a t e / h al

(2)

(JacobsonandAnderson,1996;Gribbleetal.,2005),A.pohangense (Lim et al., 2015), A.pseudogonyaulax(Jacobson,1999; Blossom etal.,2012),andA.tamarense(Jeongetal.,2005a;Yooetal.,2009).

Mostofthesereportshavebuilttheirevidenceforphagotrophyon thepresenceoffoodvacuolesinthecytoplasmaoftheAlexandrium cellandverylittleisknownaboutpreycaptureandpreyuptake.

Recently,directevidenceofpreycaptureanduptakehasbeen shownthrough video recordings of twospecies: A.pohangense (Limetal.,2015)andA.pseudogonyaulax(Blossometal.,2012),in which both species engulf immobilized prey cells through the sulcus.WhileA.pohangensemayuseexcretedlyticcompoundsto assistinpreycapturethroughimmobilizationofpreycells(Lim et al., 2015), A. pseudogonyaulax, a member of the subgenus Gessnerium (Balech,1995), possesses a prey capture technique involvingtheproductionofamucustrap.Thismucustrapislikely used in combination with excreted toxins, as supernatant of A. pseudogonyaulax has been shown to lyse other protist cells (Blossometal.,2012).Potentialmotilepreycellswhichswiminto the mucus trap are caught, immobilized, and then can be consumedbytheA.pseudogonyaulaxcell(Blossomet al.,2012).

Theonlyotherdinoflagellatesknowntoproducemucusforprey capturearetheheterotrophicNoctilucascintillans(Kirchneretal., 1996)andDinophysisspp.(Mafraetal.,2016;Ojamäeetal.,2016;

Papioletal.,2016).N.scintillanscanonlyslowlymoveandmainly floatsinthewatercolumncatchingpreyinthemucus,whichis attachedtothetipofitstentacle.Whenthemucustrapisfullof preyanddetritus,thecellwillfeeduponthewholetrap(Kiørboe andTitelman,1998).Dinophysisacuta(Ojamäeetal.,2016;Papiol etal.,2016),D.acuminata(Ojamäeetal.,2016),andD. cf.ovum (Mafraetal.,2016)havenowalsobeenshowntoproducemucus usedfor preycapture, and although slightly different, preyget trappedinasimilarwaythathasbeenseenforA.pseudogonyaulax.

Thusfar,knowledgeofthemucustrapinAlexandriumislimited, and it has only been documented in the Alexandrium species A.pseudogonyaulax(Blossometal.,2012).Thegoalofthisstudy wastofirstcompleteabroadscreeningofAlexandriumspeciesto determinehowwidespreadphagotrophyandmucustrapforma- tionis inthisgenus,particularly inthespeciesof thesubgenus Gessnerium;andsecond,determinethefrequencyandrateoftrap formationinA.pseudogonyaulaxaswellasthefateofboththetrap, and the cells caught within the trap after the trap has been discardedbyA.pseudogonyaulax.Thisinformationcouldhelpto assess the potential impact of this strategy on co-occurring protists.

2.Methods

2.1.Strainsandcultureconditions

CulturesusedinthisstudyincludedfivestrainsofAlexandrium pseudogonyaulax,threestrains ofA.tamarenseandonestrainof A.ostenfeldii,A.catenella,A.taylorii,A.margalefii,A.hiranoiandA.

insuetum (Table 1). Algal cultures were obtained from the ScandinavianCultureCollectionforAlgaeandProtozoa(SCCAP), the Cawthron Institute Culture Collection for Micro-Algae and Protozoa(CAWD),theMarineBiologicalSectionoftheUniversity of Copenhagenin Helsingør, Denmark(MBL), and the National CenterforMarineAlgaeandMicrobiota(formerlytheCCMP).The A.tayloriistrainwasprovidedbyAntonellaPenna.Theorganisms used as potential prey were the cryptophytes Teleaulax acuta, Rhodomonas salina, and Hemiselmis sp., the ciliate Mesodinium rubrumandthedinoflagellateHeterocapsarotundata(Table1).All cultures, including prey organisms, were maintained in f/2 mediumwithsalinityof30,andkeptat15Cwithanirradiance of 90–120

m

mol photons m2s1 using cool white light on a

14:10hlight:darkcycle.

In addition, 15 strains of A. tamarense and 19 strains of A. ostenfeldii fromwestern Greenland isolatedapproximately 4 monthsprior tothefeedingexperiments(Tillmann etal.,2014, 2016)wereused.Thesestrainsweremaintainedasstatedabove, exceptthattheywerekeptat10Cwith20

m

molphotonsm2s1.

CulturesusedaspreyorganismsfortheGreenlandicstrainswere acclimatedto10Cforatleastoneweekpriortoexperiments.All experiments were done in the same conditions that the Alexandriumculturesweremaintainedat.

2.2.Experiment1.Screeningforfooduptake,mucusproduction,and trapformationinAlexandriumspp.

Abroadscreeningforfooduptakeinspeciesbelongingtothe genus Alexandrium was performed using 5 species from the subgenusGessnerium:A.hiranoi(CCMP-2215),A.insuetum(CCMP- 2082), A.margalefii(CAWD10), A.pseudogonyaulax(five strains:

K-1344,K-1345,MBL-AP1,CAWD138,andCAWD54),andA.taylorii (CBA-4), as well as 3 species from the Alexandrium subgenus:

A.catenella(K-1490),A.ostenfeldii(fourstrains:K-1354,aswellas P1F6, P1G11 and P2F4 from Greenland), and A. tamarense (six strains: H5, H7, Alex 2, including P2G7,P2G12 and P2H7 from Greenland). A rough screening of the remaining Greenlandic strains was also done with different concentrations as stated below.Thecryptophyte,Teleaulaxacuta,waschosenasapotential preyspeciesmainlybecauseitco-occurswithAlexandriumspp.in natureandisaknownpreyofA.pseudogonyaulax(Blossometal., 2012), but also because of its orange autofluorescence, which contrasts with the red autofluorescence of Alexandrium spp., makingitclearlyvisibleasafoodvacuolewhenconsumed.

ExponentiallygrowingAlexandriumculturesweremixedwithT.

acuta in a ratio of 1:5 or 1:10, in concentrations of 100:500, 300:1500 and 300:3000cellsml1, depending on the original concentrationoftheculture.Thesewereplacedintriplicatewells ofa24-wellplatewithf/2mediumforatotalvolumeof2.5ml.The remainingGreenlandic strains weretested byadding 1ml of a denseculturerangingfromapproximately500to1000cellsml1 and 1ml of a dense culture of T. acuta, ranging from 1 to 6104cellsml1totriplicatewellsona24-wellplate.Triplicate controlwells withonlytheAlexandrium species inf/2medium Table1

Culturesusedintheexperimentswithspeciesname,strainnumber,isolationplace anddate.TheK-strainswereprovidedfromSCCAP.SeeTable3forstrainnamesofA.

tamarenseandA.ostenfeldiiisolatedfromwesternGreenland.

Species Strain Isolationplace Date

A.pseudogonyaulax CAWD54 TamakiStrait,NewZealand 1997 A.pseudogonyaulax CAWD138 Kerikeri,NewZealand 2004 A.pseudogonyaulax MBL-AP2 Helsingør,Denmark 2010 A.pseudogonyaulax MBL-AP1 Helsingør,Denmark 2010 A.pseudogonyaulax K-1344 Limfjorden,Denmark 2009 A.pseudogonyaulax K-1345 Limfjorden,Denmark 2009

A.hiranoi CCMP-2215 Misaki,Japan 1984

A.taylorii CBA-4 AeolianIs.,Italy 2009

A.margalefii CAWD10 BreamBay,NewZealand 1993

A.insuetum CCMP-2082 UchiumiBay,Japan 1985

A.tamarense H7 Argentina 2012

A.tamarense H5 Argentina 2012

A.tamarense Alex2 Scotland 2009

A.ostenfeldii K-1354 Helsingør,Denmark 2009

A.catenella K-1490 Canada 2010

A.ostenfeldii 19strains WestGreenland 2012

A.tamarense 15strains WestGreenland 2012

Heterocapsarotundata K-0483 Denmark 1988

Teleaulaxacuta K-1486 Nivåbay,Denmark 2009

Mesodiniumrubrum MBL- DK2009

Helsingør,Denmark 2009

Rhodomonassalina K-1487 Denmark unknown

Hemiselmissp. K-0513 France 1991

(3)

werealsosetup.Another controlintheformofawell withA.

pseudogonyaulax which was known to feed regularly (strain K-1344, or CAWD138 acclimated to 10C for the Greenlandic strains) mixed with T. acuta was also made in all screenings performedtomakesurethatthefixationworkedand thatfood vacuoleswould bevisible in theAlexandrium; theA. pseudogo- nyaulaxcellsthathadengulfedT.acutacellscouldtherebybeused asapositivecontrol.After24hatcultureconditions,allwellswere observed under the light microscope to assess if any of the Alexandriumspecieshadproducedmucusorformedamucustrap.

Thiswasdonebylookingforclumpingorstrugglingbehaviorofthe preyspeciesaswellasdraggingbehaviorbytheAlexandriumcell.

Aftertheseobservations,allsampleswerefixedwithglutaralde- hyde to a final concentration of 2% (v/v), collected onto black polycarbonatefilters(5

m

mporesize).Allsampleswereexamined

underalightmicroscope(BX50,Olympus,Japan)withepifluor- escenceusingaU-MWGwidebandgreenfluorescencefiltercube withexcitationwavelengthof510–550nm(Olympus,Japan). At least200cellsineachtriplicatewerecheckedforthepresenceof foodvacuoles.

Toexamineifadditionaltimewasneededtoinducefeedingorif otherpreyspecieswerepreferred,additionalincubationtimeand preyspecieswereofferedtoasubsetoftheAlexandriumstrains usedabove(Table2).

2.3.Observationsfromthefield:formationofmucusinA.

pseudogonyaulaxcollectedfromfieldsamples

InordertoconfirmthatthemucustrapsofA.pseudogonyaulax areformedandusedinthenature,microscopicobservationswere madeof A.pseudogonyaulax cells obtainedfromfreshplankton towsandwatersamplesdirectlyfromHelsingørharbor,Denmark usinganinvertedmicroscope(CK2,Olympus,Japan).Thesewere keptintissuecultureflasksundercultureconditionsandobserved immediatelyand after24h. Atleast20A.pseudogonyaulaxcells withmucustrapswereobservedandtheorganismsthathadbeen caught were identified. Photographs of food vacuoles in A.

pseudogonyaulaxweretakenusingamicroscope(BX50,Olympus, Japan)equippedwithacamera(DP71,Olympus,Japan)withboth normallightandepifluorescence.

2.4.Experiment2.PreyspecificityandpreyuptakeinA.

pseudogonyaulax

TotestpreyspecificityinA.pseudogonyaulax(K-1344),different preyspecieswereofferedinascreeningexperiment.Preyspecies consisted of A. hiranoi (CCMP-2215), Hemiselmis sp. (K-0513), Heterocapsa rotundata (K-0483), Mesodinium rubrum `(MBL- DK2009), and Rhodomonas salina (K-1487). The screening was

performedwithapredator:preyratioof1:5andaconcentrationof 100:500cellsml1.TheexponentiallygrowingA.pseudogonyaulax cultureandthedifferentpreyspeciesweremixedintriplicatesina 24-well plate. Additionally, a control well was made with A.pseudogonyaulax cells alone.After24hatculture conditions, observationsoflivingcellsweremadetoseeiftrapswereformed and prey species were caught. To confirm feeding by A.pseudogonyaulaxonthespecificpreyspecieswhichhaveorange autofluorescence (Hemiselmis sp., M. rubrum, and R. salina), sampleswerefixedinafinalconcentrationof2%glutaraldehyde (v/v) and collected on black polycarbonate filters as described above.Alloratleast200A.pseudogonyaulaxcellswereexamined foreachtriplicate.ThecellsinthetreatmentswithH.rotundataand A. hiranoi were not mounted on a black filter, but instead the examination for foodvacuoles in A. pseudogonyaulaxwas done directly in the well using an inverted light microscope (CK2, Olympus,Japan).Inthiscase,foodvacuoles,whenpresent,were visiblebutwerenotasobviousaswhenusingpreyspecieswith contrasting autofluorescence, and thusthis methodwas not as efficientasthemethoddescribedaboveusingepifluorescence.

2.5.Experiment3.Quantitativeanalysesofmucustrapformationin A.pseudogonyaulax

To trackthe frequencyand rate of mucus trapformation in individualA.pseudogonyaulaxcellswhenmixedwithprey,single cellswereisolated,mixedwithH.rotundata,andobservedafter1, 2,3,4and24handinonecase,after48and72h.Forsinglecell isolation,a1mlsamplefromanexponentiallygrowingcultureof A.pseudogonyaulax(strainsK-1344andCAWD138)wastakenand transferredtoacleanSedgewick-Rafterchamber.Cellswerethen isolated using glass micropipette and transferred to a well containing 200

m

lf/2medium in a 96-wellplate.This was left

foraboutanhouratcultureconditionssotherecentlyisolatedcells could acclimate. A culture of H. rotundata with a known cell concentration was diluted to a concentration of 5103 and 1105cellsml1and100

m

lofthissolutionwasaddedtothewells

containing individual A. pseudogonyaulax cells to a final prey numberofeither500(“low”)or1104(“high”)cellsperwell.The ratio of A. pseudogonyaulax to prey was thereby 1:500 and 1:10,000.ThenumberofindividualA.pseudogonyaulaxobserved wasbetween17and44cells(strainK-1344with500preyn=29 andwith10,000preyn=44;strainCAWD138with500preyn=25 andwith10,000preyn=17).

TheplatecontainingtheA.pseudogonyaulaxcellswasincubated at 15Con alight tableunder thestandard cultureconditions.

Observationsofeachwellweredoneafter1,2,3,4and24h,by scanningtheentirewellunderaninvertedlightmicroscopeand recordingthenumberoftraps,thenumberofpreycaughtineach trap,themaximumlengthofeachtrap(longestaxis),andwhether or nottheAlexandriumcellwas attachedtothetrap.For strain K-1344,incubationwascontinuedandobservationsweremadeat 48and72h.TrapswereidentifiedasagroupofH.rotundatacells clumpedtogether,withaminimumofthreepreycellsconstituting atrap.AnexampleofamucustrapwithH.rotundatacaughtinitis shown in Fig.1. With experience, these traps are quite easily recognized,however it is onlythe preythat is visible.For this reason,arelativelyhighconcentrationofH.rotundatawaschosen aspreyastheyarelesslikelytolyse,andthuswouldbevisibleover time.

Sinceitistheentrappedpreythatmakesatraprecognizable,it isimpossibletovisualizetrapswithoutpreypresent.Despitethis, itwasimportanttoattempttodetermineiftrapsareformedatall times,eveninmonoculture,oriftheyareformedonlyinresponse tothepresenceofprey.TheA.pseudogonyaulaxcells’swimming behavior when attached toa trapis quite distinct. The trap is Table2

Speciesusedforadditionalfeedingexperimentsandtheincubationtimeafter additionofpreyspecies.Ta=T.acuta,He=Hemiselmissp.,Rs=Rhodomonassalina, Mr=Mesodiniumrubrum.

Alexandriumspp. Preyoffered Incubationtime(h)

A.taylorii(CBA-4) Ta 48,72

A.catenella(K-1490) Ta 24

A.tamarense(Alex2) Ta 24

A.tamarense(P2G7) He 24

A.tamarense(P2H7) He 24

A.tamarense(P2G12) He 24

A.ostenfeldii(P2F4) He 24

A.ostenfeldii(P1G11) He 24

A.ostenfeldii(P1F6) He 24

A.tamarense(H5) He,Rs,Mr 48

A.ostenfeldii(K-1354) He,Rs,Mr 48

A.taylorii(CBA-4) He,Rs,Mr 48

(4)

usuallystationaryandatthebottom,andtheA.pseudogonyaulax cellswimsbackuponitselfinadraggingmotion,andcannotswim forward quickly, if at all. Therefore, swimming behavior was observedinsinglecellsplacedinwellsofa96wellplatewithout preyandcomparedtotheswimmingbehaviorofcellswithprey andthusvisibletraps.

2.6.Experiment4.Fateofthepreycellscaughtinanabandonedmucus trap

Thisexperimentwasperformedtodeterminewhathappensto thepreycellstrappedinanabandonedmucustrap,whennofree- swimmingH.rotundatacells remainedinthemedium.Thiswas doneinordertoexaminetowhatextentthepreycellscouldescape from themucus trap,without influence from theA. pseudogo- nyaulax cell. An exponentially growing culture of A. pseudogo- nyaulax(strainCAWD138)withaknowncellnumberwasdiluted withf/2mediumandmixedwithacultureofH.rotundatatoafinal ratio of 1:100 in a 65ml tissue culture flask and incubated at Fig.1.ThemucustrapofA.pseudogonyaulax.AnA.pseudogonyaulaxcellisdragging

behindamucustrapwhichhascaughtmanyH.rotundatacells.

Table3

TheAlexandriumspeciestestedforphagotrophicabilitiesaswellasmucusproductionandmucustrapformation.(+)Indicatestheingestionofpreyconfirmedbyvisiblefood vacuoleswithinthecell,theproductionofmucus,ortheformationofmucustraps.()Indicatesthatnoneoftheexperimentsorobservationscouldconfirmproductionof mucusortheingestionofprey.TheGreenlandicstrainsareindicatedwith(y)andthosethatweretestedwithmorethanonetypeofpreyindicatedwith(*).

Species/strain Foodvacuoles Formationoftraps Mucusproduction

A.catenellaK-1490

A.hiranoiCCMP-2215

A.insuetumCCMP-2082

A.margalefiiCAWD10

A.ostenfeldiiK-1354

A.ostenfeldiiP1D5y

A.ostenfeldiiP1F4y

A.ostenfeldiiP1F5y

A.ostenfeldiiP1F6y*

A.ostenfeldiiP1F8y

A.ostenfeldiiP1F11y

A.ostenfeldiiP1G3y

A.ostenfeldiiP1G5y

A.ostenfeldiiP1G11y*

A.ostenfeldiiP1H10y

A.ostenfeldiiP2F3y

A.ostenfeldiiP2F4y*

A.ostenfeldiiP2G9y

A.ostenfeldiiP2H2y

A.ostenfeldiiP2H4y

A.ostenfeldiiP2H8y

A.ostenfeldiiP3F1y

A.ostenfeldiiP4E3y

A.ostenfeldiiP4F4y

A.pseudogonyaulaxK-1344 + + +

A.pseudogonyaulaxK-1345 + + +

A.pseudogonyaulaxMBL-AP1 + + +

A.pseudogonyaulaxCAWD138 + + +

A.pseudogonyaulaxCAWD54 + +

A.tamarenseAlex2

A.tamarenseH5

A.tamarenseH7

A.tamarenseP1H8y

A.tamarenseP1H4y

A.tamarenseP2E5y

A.tamarenseP2E6y

A.tamarenseP2G7y*

A.tamarenseP2G12y*

A.tamarenseP2H7y*

A.tamarenseP2G5y

A.tamarenseP2G6y

A.tamarenseP2H6y

A.tamarenseP2H10y

A.tamarenseP3B10y

A.tamarenseP3C1y

A.tamarenseP3H6y

A.tamarenseP3H8y

A.tayloriiCBA-4 +

(5)

cultureconditionsfor24h.After24h,severalmucustrapswere presentcontainingH.rotundatacells.A1mlsampleofthissolution wastransferredtoa cleanSedgewick-Rafterchamber where30 traps, without the A. pseudogonyaulax cell were isolated by micropipette.Eachtrapwas carefullywashedintwodropsoff/

2mediumtoavoidtransferringanyfree-swimmingH.rotundata, and then placed in a well,ona 96-well plate, each containing 250

m

lf/2medium.ThetrappedH.rotundatacellswerecounted

initiallyandthe96-wellplatewasplacedatcultureconditions.The numberofpreyineachindividualtrapwascountedevery12hfor 48husinganinvertedlightmicroscope.Iftherewasavisiblylysed H.rotundatacell,thiswascountedasalysedcell.

2.7.Experiment5.Abilityoftheabandonedmucustrapstocatchprey Thisexperimentwasdonetodeterminethefateofthemucus trapafterbeingabandonedbytheA.pseudogonyaulaxcellandto see if the mucus continued to catch prey regardless of the attachmentoftheA.pseudogonyaulaxcell.Here, thenumberof prey cells in the trap was counted, when left with a known concentrationofpreycellsinthemedium,aftertheA.pseudogo- nyaulaxcellwasremoved;thisincludesnewcellsgettingtrapped aswellasthoseremainingcapturedinatrap.

An exponentially growing culture of A. pseudogonyaulax (CAWD138) with a known cell density was diluted with f/2 mediumtoafinalconcentrationof4cellsml1ofwhich200

m

lwas

addedtoonewellona96-wellplate.Onlythewellswithexactly oneA.pseudogonyaulaxcell,whichhadalsoformedatrapwasused asreplicatewells(33wells).Inaddition,acultureofH.rotundata with a known cell density was diluted to a concentration of 1000cellsml1and100

m

lofthissolutionwasaddedineachwell

withtheAlexandriumcellsgivingatotalnumberof100preycellsin eachwell.

Theplateswereincubatedfor24hatcultureconditionstoallow theA.pseudogonyaulaxtoformmucustraps.Aftertheincubation, 33wells,allcontainingmucustraps,wereselectedasreplicates and the A. pseudogonyaulax cells were removed by single-cell isolation,leavingbehindthemucustrapswithcapturedpreycells aswellasfree-swimmingpreycells.Thelocationsofthemucus trapsonthebottomofeach well wererecorded,aswellasthe

number of prey in each trap. The whole well was three- dimensionally scannedfor the presenceof traps, but nearlyall trapswerelocatedatthebottomofthewell.Thenumberofprey cellsineachindividualtrapwasthencountedevery12hfor48h usinganinvertedlightmicroscope.

3.Results

3.1.Experiment1.ScreeningforfooduptakeinAlexandriumspp.

AmongtheAlexandriumspeciestestedforphagotrophyonlyA.

pseudogonyaulaxwasconfirmedtoingestfood.TheA.pseudogo- nyaulaxstrainsK-1344,K-1345,CAWD138,MBL-AP1allhadvisible foodvacuolesofthecryptophyteTeleaulaxacutawhenmixedfor 24h(Table3).OnestrainofA.pseudogonyaulax(CAWD54)andall otherspeciesofthegenusAlexandriumtestedwerenotconfirmed to take up food particles (Table 3). None of the selected Alexandrium species offered additional preyspecies or allowed moretimetointeractwiththepreyspecies(Table2),werefound withfoodvacuoles.

Orangeaccumulationbodies(OAB)werefoundinmonoculture of many of the strains from Greenland, as well as in A.

pseudogonyaulaxCAWD138acclimatedto10C.TheseOABmight resemblefoodvacuolesastheyweresimilarinsizetoaT.acutacell, butweredistinguishedfromfoodvacuolesbasedonthebrightness andnumberofvacuoles;therewasalwaysonlyoneOABpercell, andthiswasdimorangecomparedtothebrightorangeT.acuta cellssurroundingtheAlexandriumcellontheblackfilteror,inthe caseofA.pseudogonyaulax,fluorescingfrominsidefoodvacuoles.

3.2.Observationsofmucusproductionandtrapformationin Alexandriumspp.

OnlyA.pseudogonyaulaxandA.tayloriiwerefoundtoproduce mucus. Threestrainsof A.pseudogonyaulax(CAWD138, K-1344, and K-1345)produced typicalmucustraps,similartowhathas been observed before (Blossom et al., 2012). The last A.

pseudogonyaulax strain CAWD54 was only observed with very fewmucustrapsandsomemucusthreadswhenmixedwithprey comparedtoallotherstrainsofA.pseudogonyaulax;thisstrainwas

Fig.2.A.pseudogonyaulaxcellsisolatedfromawatersamplefromHelsingørHarbor,DenmarkonJuly5,2013.A)Twoarrowsshowlargeredfoodvacuoles,amongothers,in twoA.pseudogonyaulaxcells.B)A.pseudogonyaulaxcell,withfoodvacuoles;arrowindicatesonefoodvacuoleamongothers.C)ThesamecellasinBwithgreen epifluorescenceexcitationlightwiththreevisiblefoodvacuoleswithanarrowindicatingthesamefoodvacuoleasinpictureB.(Forinterpretationofthereferencestocolorin thisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(6)

alsotheonly A.pseudogonyaulax strainin which foodvacuoles werenotobserved(Table3).MucusformationinA.tayloriicultures wasvisible,regardless ofthepresenceofprey.Thecellsformed largesharedformationsofmucusthreadswiththecellsattached.

Eachcellformedadistinctmucusthreadextrudingfromthesulcal groovethatattachedtosurfacesandotherthreadsproducedby othercells.Thecellscircledtheattachmentpointandseemedto formathickerformation.Afterafewdays,thickthreadsofmucus extendedfromthebottomofthe65mltissuecultureflasktothe surface (several centimeters long). The cells of A. taylorii surrounded the mucus threads, moving sporadically but still attachedto the mucus. WhenA. taylorii was mixed with prey speciessuchasT.acutaorH.rotundata,thepreyonlygotstuckin themucustoaminordegreeandseemedtobeabletoescapeagain mostofthetime.

3.3.Observationsfromthefield:formationofmucustrapsinA.

pseudogonyaulaxcellscollectedfromfieldsamples

Microscopic examinations of fresh plankton tow samples, which were observed within 24h, provided evidence of the productionofmucustrapsbyA.pseudogonyaulaxinsituaswellas the capture of other protists such as diatoms, Protoperidinium speciesand small heterotrophicflagellates. Foodvacuoles were visible in freshly collected A. pseudogonyaulax confirming the ingestionofpreyinsitu(Fig.2andTable4).Thesefoodvacuoles ranged in size, color, and autofluorescence, but a taxonomic determinationoftheingestedpreywasnotpossible.

3.4.Experiment2.PreyspecificityinA.pseudogonyaulax

Different prey items were offered to A. pseudogonyaulax to examinetherangeofpreytypesthatA.pseudogonyaulaxisableto feed upon. Hemiselmis sp., Heterocapsa rotundata, Mesodinium rubrum,Rhodomonassalina,andTeleaulaxacutawereshowntobe acceptablepreyitemsforA.pseudogonyaulaxandwereallengulfed andvisibleasfoodvacuolesinalightmicroscopeorilluminatedby epifluorescence (Table 4).In order toseeif A.pseudogonyaulax would feedon a bigger, closely related species, A.hiranoi was offeredasprey,alsotoseeifitcouldresistgettingcaughtinthe mucustraps.After24hA.hiranoiwas notcaughtinthemucus trapsformedbyA.pseudogonyaulaxandwasnoteaten(Table4).

3.5.Experiment3.QuantitativeanalysisofmucustrapformationinA.

pseudogonyaulax

ThepercentageofA.pseudogonyaulaxcellsformingmucustraps varied slightly between strains, but mainly depended on prey concentration.Whenpreycellswereabundant(1104cellsml1),

nearly100%ofallindividualcellsofbothstrainswerecapableof formingtraps,andtheydidsowithin24hafterexposuretoprey, with100%ofonestrainformingtrapsafterjust2h(Fig.3).Atlow preyconcentrations,someA.pseudogonyaulaxcellsdidnotform visibletraps:after24h,44%ofstrainCAWD138and71%ofstrainK- 1344hadformedatrap(Fig.3).Manyofthecellsformedtraps withinminutes(personalobservations)andby1hwithhighprey concentration,76% of strain CAWD138 and 94% of K-1344 had formedatrap(Fig.3).

Theaveragenumber oftrapsproduced byeach A.pseudogo- nyaulaxcell increasedover time(Fig.4Aand B). After72hthe averagenumberoftrapsperA.pseudogonyaulaxcellwas5,but,the maximumnumberoftrapsproducedbyonecellwas11(Fig.5).

Afterjust1h,67%oftheA.pseudogonyaulaxcellshadformedone trap,and7%ofthecellshadalreadymadetwotraps(Fig.5).At24h, most A. pseudogonyaulax cells had formed at least three traps (Fig.5). Thetotal number ofpreycaughtby each individualA.

pseudogonyaulax cell increased over time, and was higher at elevatedpreyconcentrations(Fig.4CandD).

Theslightincreaseovertimein totalpreycaughtreflectsan increaseinthenumberoftraps,ratherthananincreaseinpreyper trap,astheaveragenumberofpreypertrapincreasedinitiallyand thenstartedtodecreaseafter2–5h,withtheexacttimevarying withpreyconcentrationandstrain(Fig.4EandF).Overall,when thepreyconcentrationwashigh,thereweremorepreycellscaught pertrapthanwhenthepreyconcentrationwaslow(Fig.4EandF).

Inthefirst4h,ateachtimepoint,mostofthetrapshadbetween31 and60preycellsineach,buttherangewaslarge,withsometraps

Table4

Preyorganismsobservedinfoodvacuolesduringpreyspecificityexperimentandfieldobservations.Withepifluorescence,inA.pseudogonyaulaxafter24h(M.rubrum, Hemiselmissp.,R.salinaandT.acuta)andwithoutepifluorescence(H.rotundata).(*)Indicatespreycaughtinthemucustrapsobservedinfreshplanktonnettows.(+)Indicates eitherfoodvacuolesobservedinA.pseudogonyaulaxortheactualobservationofthepreyspeciescaughtinamucustrapwithanA.pseudogonyaulaxcellattached.()Indicates noobservationhasbeenmadeofthepreyspeciesasfoodvacuolesornoobservationofthepreyspeciescaughtinthemucustrap.Identificationofingestedorganismsin planktontowsampleswasnotpossible(“unknown”).

Preyorganism Visibleasfoodvacuoles Caughtinmucustrap

M.rubrum + +

H.rotundata + +

Hemilselmissp. + +

R.salina + +

T.acuta + +

A.hiranoi

*Protoperidiniumspp. Unknown +

*Diatoms Unknown +

*Smallheterotrophicflagellates Unknown +

Fig.3. FractionofA.pseudogonyaulaxcellsformingatleastonetrap.Triangles representstrainCAWD138,andcirclesrepresentstrainK-1344.Solidlinesrepresent highpreyconcentrationof1104H.rotundatacellsperwellanddashedlines representthelowerpreyconcentrationof500H.rotundatacellsperwell.

(7)

containing 3 cells and some containing 128 preycells (Fig.6).

Towards the end of the experiment when there were many

abandonedtraps,mostofthetrapscontainedbetween3and30 preycells(Fig.6).

Fig.4.Detailsofmucustrapformationovertimein2strainsofA.pseudogonyaulaxwith2differentconcentrationsofpreycells.Closedtriangleswithasolidlinerepresentthe highpreyconcentrationof1104H.rotundatacellsperwellandopentriangleswithdashedlinesrepresentthelowerpreyconcentrationof500H.rotundataperwell.Aand B)NumberoftrapsproducedbyeachA.pseudogonyaulaxcellforA)strainK-1344andB)strainCAWD138.CandD)AveragenumberofH.rotundatacellscaughtintotalbyone individualA.pseudogonyaulaxcellforC)strainK-1344,andD)strainCAWD138.EandF)AveragenumberofH.rotundatacellspertrapforE)strainK-1344andF)strain CAWD138.GandH)AveragesizeoftrapsproducedbyG)strainK-1344andH)strainCAWD138.Pointsrepresentmeanvalueswitherrorbarsrepresentingstandarderror,for strainK-1344with500preycellsn=29,with1104preycellsn=46(exceptfor48and72hwheren=44);forstrainCAWD138with500preycellsn=25,andwith1104 preycellsn=17.ForstrainK-1344with1104preycells,theexperimentcontinuedfor48and72h.ThenumbersshowninBandDareperoriginalA.pseudogonyaulaxcelland doesaccountforcelldivision.

(8)

Theonlycharacteristicinvestigatedthatdidnotdependonprey cell concentrationwas the size of the traps. Initially the traps exposedtolesspreywereslightlylargerthanthetrapswithhigh preyconcentration,butafterafewhourstheaveragesizeofthe traps decreased or remained the same over the course of the experiment(Fig.4GandH),andweresimilarinsizeregardlessof preyconcentration.Thelargesttrapwas observedafter4hand measured350

m

m(Fig. 7), but the majority of the traps were

between101and150

m

m(Fig.7).

Withinonehour,nearly90%ofallA.pseudogonyaulaxthathad produceda trap,werestill attachedtotheirtrap.After4h,the percentage of A.pseudogonyaulax attached to a trapstarted to decreaseandreached25% at48h. After48h,the numberof A.

pseudogonyaulaxcellsattachedstartedtoincreaseagain.Cellsfirst startedtodivideafter24h.Between24and48h,17individuals (39%)haddividedandofthose,only1wasattachedtoatrap;the otherswereswimmingaroundatahigherspeedwithoutforming traps yet.At 72h, 33 had divided (75%) and 14of these were attached.Thedecreaseinnumberofattachedcellsalongsidethe

increaseofthenumberofdividedcells(Fig.8)showsthatcellsthat hadjustdivideddidnotimmediatelyformtraps;afterdivision,the cells continuouslymovedat anapparently faster(although not quantified)speed, andapproximately within24hafterdivision, theybecamestationary,andwereformingandattachedtotheir owntrapagain(Fig.8).

Based on observations of A. pseudogonyaulax swimming behavior and movementwhen attachedto a trap compared to inmonoculture,itappearsthatthereisalsomucusformedwhen preyisabsent.Thecellsattachedtoatraparebasicallystationary andmakeadraggingmotion;thissamedistinctmovementwas seeninthecellskeptinmonoculturealmosttothesamedegreeas thosewithpreypresentand visible traps.Therefore,A.pseudo- gonyaulax appears to form mucus even without prey present, althoughtheextentofthemucustrapsinmonoculturecouldnot beassessedwithabsolutecertainty.

3.6.Experiment4.Fateofthepreycellscaughtinanabandonedmucus trap

Afterthetrapshadbeenseparatedfrombothfree-swimming prey cells, and theA. pseudogonyaulax cells, the percentage H.

rotundatacellsremainingdecreasedrapidlyandwentfrom100%to Fig.5.PercentageA.pseudogonyaulaxformingdifferentnumbersoftrapsateach

timepoint.TheseresultsaretakenfromtheexperimentusingstrainK-1344with 1104preycellsperwell.Eachpatternrepresentsacertainnumberoftraps formed,forexampleblackbarsrepresentthepercentageofA.pseudogonyaulaxthat hadformed1trap,darkgreybarsrepresentthepercentageofA.pseudogonyaulax thathadformed2traps,etc.ThetotalnumberofA.pseudogonyaulaxwas46,forthe first24h,andthenat48and72hthetotalwas44duetotwoindividualsdying.The highestnumberoftrapsformedwas11,andpercentageA.pseudogonyaulaxwith0 trapsformedarenotincludedinthebars.

Fig.6.Percentageoftrapscomposedofacertainnumberofpreypertrap.These resultsaretakenfromtheexperimentusingstrainK-1344with1104preycellsper well.Thetrapsweregroupedinincrementsof30preycellspertrapexceptfortraps containinggreaterthan150cells.Eachpatternrepresentsacertainnumberofprey pertrap,forexampletheblackbarsarethepercentageoftrapscontainingbetween 3and30preycells,etc.Thetotalnumberoftrapsformedateachtimepointis writtenaboveeachcolumn.

Fig.7.Percentageoftrapsofacertainsizecategory.Theseresultsaretakenfromthe experimentusingstrainK-1344with1104 preycellsperwell.Eachpattern representsadifferentsizerangelistedinthelegend.Thetotalnumberoftraps formedateachtimepointiswrittenaboveeachcolumn.

Fig.8. FractionofA.pseudogonyaulaxcellsofstrainK-1344(with1104preycells) attachedtoatrapandpercentageinitialA.pseudogonyaulaxcellsthathaddivided.

Percentageattachedcellsarerepresentedbyopensquaresandpercentagecellsthat haddividedduringtheincubationarerepresentedbyclosedcircles.Thenumberof attachedcellsisrelatedtoallA.pseudogonyaulaxcells,includingthosethathadnot formedatrapyet;thisalsoincludesthecellsthathaddivided,soeachofthe2 dividedcellswereincludedinthetotal(onlyappliesto48and72htimepoints).For percentage divided cells, the total only includes the original number of A.

pseudogonyaulaxcells.

(9)

33% after 12h. After 24h only 17% of the H. rotundata cells remainedinthetrapandafter36and48h12%and10%remained, respectively(Fig.9).The initialamountofpreyper trap varied greatly between traps and ranged between 7 and 57 with an averageof25preycellspertrap.Thenumberofvisiblylysedcells whenthemucustrapwasleftalonewasquitelowandthetotal amountoflysedH.rotundatacellsinallthemucustrapscombined didnotexceed12outofatotalof739cells.Eventhoughthiswas onlybasedonvisiblylysedcells,thedecreaseofH.rotundatacells caughtinthemucusdidnotappeartobearesultofthecellslysing, butwasbecausesomeoftheH.rotundatacellswereeventually abletoescape themucus, whichwas, in fact, observedseveral timesduringcounting.

3.7.Experiment5.Abilityoftheabandonedmucustrapstocatchprey AftertheremovaloftheA.pseudogonyaulaxcellsfromthewells, the mucus traps were left with 100 H. rotundata cells freely swimming around in the wells. The prey therefore had the possibilityto getstuckin themucustraps if theyencountered them.Themucustrapsthuscontinuedcatchingpreyfor12hand increasedthenumberofpreywithover50%,onaverage.Therewas alargerangewithsometrapsgainingcellsandsomelosingthem astheinitialtrapshadbetween3and19preycellspertrapwithan average initial size of 10 prey cells per trap. After the initial increase, the number of preystarted todecrease as prey cells escaped.Thedecreaseinpreywasnotashighasintheexperiment where free-swimming prey was absent and thus would be attributed to recaptured cells indicating that the traps could continuecatchingpreyforatleast48h(Fig.9).

4.Discussion

4.1.PhagotrophyandmixotrophyinAlexandriumspp.

In this screeningof over 40 strainsbelonging to8 different speciesofAlexandrium,phagotrophywasconfirmedin4outofthe 5strainsofA.pseudogonyaulax,andwasnotobservedinanyofthe otherspeciestested(Table3).Phagotrophyofalgaeand/orbacteria has been documented in several species of Alexandrium:

A.andersonii(Lee etal., 2016), A.catenella(Jeongetal.,2005a;

Yooetal.,2009), A.minutum(Jeongetal.,2005b),A.ostenfeldii (Gribbleetal.,2005;JacobsenandAnderson,1996),A.pohangense (Lim et al., 2015), A.pseudogonyaulax (Jacobson,1999; Blossom etal.,2012),andA.tamarense(Jeongetal.,2005a;Yooetal.,2009).

FoodvacuoleshavebeenobservedinsituinA.ostenfeldii(Jacobson andAnderson, 1996;Andersonetal.,2005;Gribbleetal.,2005)and during feeding experiments in the other species (Jeong et al., 2005a,b;Yooetal.,2009;Limetal.,2015;Leeetal.,2016).Threeof thesespeciespreviouslydocumentedtoingestprey:A.tamarense, A.ostenfeldii,andA.catenella,werealsotestedinthecurrentstudy;

however no evidence of phagotrophy was observed. This discrepancycouldbeattributedtostrainvariation,howeverwith the screening of 15 strains of A. tamarense and 19 strains of A.ostenfeldiifromGreenlanddonehere,apotentialvariabilityin phagotrophyamongstrainsfromthesamelocationwasaccounted for.Time keptin laboratoryculturemayalso influencefeeding capabilities and the recent successof some studies,which use freshlyisolatedAlexandriumspecies,supportsthis(Limetal.,2015;

Leeetal.,2016).Thiswashopefullytakenintoaccountbyusing strainsofA.ostenfeldiiandA.tamarensethatwereonlyinculture for a few months prior to the beginning of the experiments (Table1).Thelackofphagotrophyinthepresentstudycouldalso beduetothetypeofpreyspeciesoffered.Strongpreyselectionhas beenseeninothermixotrophicdinoflagellates,i.e.Dinophysisspp.

feedingonred-pigmentedMesodiniumspp.(Parketal.,2006)and Fragilidium subglobosum feeding on Ceratium spp. (Skovgaard, 1996;HansenandNielsen,1997;Hansenetal.,2000;Skovgaard etal.,2000).RecentresearchsupportsthisforAlexandriumaswell, as A. pohangese only fed on Cochlodinium polykrikoides despite being offered 17 different prey species (Lim et al., 2015) and A.andersoniifedononly3outof20algalpreyspeciesoffered(Lee etal.,2016).Incontrast,foodvacuolesofmanydifferentpreytypes have been observed in A. tamarense (Jeong et al., 2005a), and A.pseudogonyaulaxcanconsume6differentpreyspeciesBlossom etal.,2012andthecurrentstudy).Atleast4differentpreyspecies were offered here to select Alexandrium species (A. ostenfeldii, A.tamarense,andA.taylorii),includingRhodomonassalina,which Jeongetal.(2005a)successfullyfedtoA.tamarense,buthere,none ofthesewereconsumed.

Anotherexplanationforthelackofphagotrophyinthisstudy couldbebecauseexperimentsweredonewithhigh(f/2)nutrients and feeding might only be induced under nutrient limiting conditions. Many mixotrophic dinoflagellates, like A. pseudogo- nyaulax, take up prey irrespective of nutrient concentration (Hansen,2011).SomespecieslikeCeratiumfurcaonlyingestprey atlownutrientlevels(Smalleyetal.,2003),whileinothers,like Karlodiniumveneficum,feedingincreasesduringnutrientstarva- tion(Lietal.,2000).Insomeofthesuccessfulfeedingstudieswith Alexandriumspp.thenutrientlevelswerenotreported,however culturesweredilutedwithlocalseawaterpriortoexperimentsand there could potentially be some kind of nutrient limitation occurring (Jeong et al., 2005a,b; Yoo et al., 2009; Lim et al., 2015;Leeetal.,2016).Morenutrientlimitationexperimentswith Alexandriumspp.shouldbedonetoattempttoinducefeeding.To conclude,thelackoffooduptakeinthestrainsofA.catenella,A.

ostenfeldiiandA.tamarenseusedheredoesnotnecessarilymean they are not mixotrophic, but rather theoptimalconditions to induce and promote phagotrophy were not found and/or the specificpreyrequiredwasnotoffered.

Inthisstudy,theonlyAlexandriumspeciesthatingestedprey wasA.pseudogonyaulax.Thereasonforthisspecies’successinprey captureislikelythecapabilitytoproduceamucustrap,whichin thisstudy,wasconfirmedtobeverynon-specificinpreycapture (Table4).NotonlycouldA.pseudogonyaulaxcatchmanydifferent speciesinthetraps,butitwasalsoabletoingestawidevarietyof preyspecies.Thisstudydidnotdirectlytestforapreypreference, but theoretically, the A. pseudogonyaulax cell does have the possibility tochoosepreycells, possiblyof a highernutritional value,andleaveotherscaughtinthetrap.Perhapsthisiswhythey arecapableofcapturingmanymorecellsthantheyactuallyeat Fig.9.ThefractionofH.rotundatacellsremaininginamucustrap.Theopencircles

showthepreyinthemucustrapswithnopreyinthewellwhiletheclosedsquares showthepreyinthemucustrapwhenfree-swimmingpreycellswerepresent.Both areintheabsenceoftheA.pseudogonyaulaxcell.Pointsareaverages(mucustrap alone n=30; with free-swimmingprey present n=33).Error bars represent standarderrorofthemean.

Referenzen

ÄHNLICHE DOKUMENTE

% of the population with completed tertiary education (LMICs, UMICs). Notes: See notes of Figure 7a. Figure 8c reveals that among the East Asian LMICs, Mongolia has seen spectacular

1 After decades of extraordinarily high (on average, double-digit) growth rates, the recent growth slowdown has made China anxious about whether this growth slowdown would follow

In contrast, our results regarding the share of coun- tries with a civil law origin are in line with the standard literature: In all three samples the propor- tion of countries with

In contrast, our results regarding the share of coun- tries with a civil law origin are in line with the standard literature: In all three samples the propor- tion of countries with

In contrast, in our model all voters share the same information and beliefs, but are eventually hindered from learning the truth because further inference becomes impossible once

One of the challenges related to astronomical observations, in particular of absorptions in diffuse interstellar clouds, is to measure in the laboratory the

The 23 September election is a trap for Western democracies because Lukashenka may fool them again by playing his joker card (releasing political prisoners) before

Figure 6: Membrane modifications during NETosis. 1) Vesicle formation of the nuclear membrane. 3) Intracellular LPS and bacteria activate Caspase-11 (murine)/4