• Keine Ergebnisse gefunden

OUT OUT

N/A
N/A
Protected

Academic year: 2022

Aktie "OUT OUT"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

CEA-FZJ Meeting LETI contribution

19-20 January 2012

C.Reita N.Gambacorti C.Prummel

(2)

A LETI program division sustained by  a 200‐300mm prototyping line

Nanotech 300 CMOS 200 mm

200 and 300mm Si capabities 8,000 m² clean rooms Continuous operation

Open platform for 3D

(3)

Innovative Device Laboratory

12 Patents and 50 Scientific Papers in 2010 300mmTechnologies 

Research Focus

Process integration for ultra‐scaled CMOS New transistor architectures

New substrates evaluation

3D monolithic integration for More Moore and More than Moore

New materials for beyond CMOS

Applications 

Low‐power / High‐perf CMOS ICs Sensors co‐integrated on CMOS

Market Areas   

Wireless

Microprocessors / Microcontrollers

Thierry POIROUX

Head of Innovative Device Laboratory

Key figures

Main Industrial Partners

glue

Main International cooperations

(4)

(b) (c) (d)

(e)

200nm Rectangular Circular Si NW

Si NWs (a) SiN

NWs HM

(001)

(f) 2nm

Si NW

(b) (c) (d)

(e)

200nm Rectangular Circular Si NW

Si NWs (a) SiN

NWs HM

(001)

(f) 2nm

Si NW

Tsi~10 nm TILD~25nm LG~50 nm

THFO2~2.5 nm TiN

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Tension de sortie VOUT (V)

Tension d'entrée V

IN (V) pMOS GeOI

nMOS SOI

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Tension de sortie VOUT (V)

Tension d'entrée V

IN (V) pMOS GeOI

nMOS SOI

ION[μA/wire]

IOFF[A/wire]

10-10 10-11

10-13 10-7

60 40

0

pFET

20 10-12

10-8 10-9

Rectangular Si NWs

C-strained SiGe NWs

70 50

30 10

Un-strained SiGe NWs

(Wtotal=12.0µm)

(Wtotal=11.8µm) (Wtotal=12.3µm)

VDD=1.2V LG: 80 to 640nm

ION[μA/wire]

IOFF[A/wire]

10-10 10-11

10-13 10-7

60 40

0

pFET

20 10-12

10-8 10-9

Rectangular Si NWs

C-strained SiGe NWs

70 50

30 10

Un-strained SiGe NWs

(Wtotal=12.0µm)

(Wtotal=11.8µm) (Wtotal=12.3µm)

VDD=1.2V LG: 80 to 640nm 0.5

1 1.5 2 2.5 3 3.5 4

10 20 30 40 50 60

AVt=σΔVt x sqrt(W.L) (mV.um)

Gate length L (nm) Bulk platform

FDSOI MOSFETs

ST 65nm ST 45nm

IBM 90nm

Intel 45nm Intel 65nm

Leti [VLSI'10]

[IEDM'08]

IBM [IEDM'09]

[IEDM'07]

IBM alliance [IEDM'08]

-0.3 0.0 0.3 0.6 0.9 10-14

10-12 10-10 10-8 10-6 10-4 10-2

ti=1s

adjusted V

T

nMOS

#A L=50nm e- inj.

h+ inj.

VBi=-50V, V

Di=1.5 to 3.2V VBi=50V, VDi=0.9 to 1.5V

ID@ VD=50mV (A)

VG(V)

Innovative Device Lab 2011 Projects (Selection)

Transistor integration on innovative / engineered substrates

High electrostatic control / low variability FDSOI technology for sub-20nm nodes

Industry

Industry Industry

Industry

(5)

Roadmap 2011 – Nanoelectronics

Market Analysis, Solution pursued

Low power logicapplications → thinfilm technologies scalingand innovativedevicearchitectures Support to industry→ expertise, short loops technologycapitalization

2016 2014

2012 2010

FDSOI

Trigate / Nanowires Monolithic 3D

Module

Development

Strain techniques scaling and innovative substrates

Gate last 20nm Gate last 14nm Gate last 10nm

Self-aligned contacts 14nm Self-aligned contacts 10nm Source/drain optimization and scaling

28nm LETI C2 transfer

20nm LETI/ANT C2 transfer

14nm LETI/ANT C2 transfer 10nm LETI/ANT

MPW 20/65 MPW 20/28 MPW 14/28 MPW 10/20 e-1TDRAM eval e-1TDRAM optimization and co-integration

Trigate process dvpt 14nm device and circuit demo 10nm device and circuit demo Stacked nanowire dvpt 14nm circuit demo 10nm circuit demo Nanowires for more than Moore: heterogeneous integration of systems

3D mono for memory/CMOS and neuromorphic Cold CMOS 20nm device and circuit demo 14/10nm demo

(6)

Collaborations with FZJ

• Longstanding partnership in FP6, FP7, MEDEA,  CATRENE projects

• NANOCMOS, PULLNANO, STEEPER (running)

• SILONIS, DECISIF, REACHING22 (running)

• Hiper‐AN (submitted)

• some less successful submission in CATRENE (Industrial and political  problems, not scientific quality)

• Excellent complementarity

• FZJ  material research, basic devices

• CEA‐LETI integration on industrial flow, validation in circuits, complex  devices

• Topics already shared

• strain, nanowires, tunnel FETs, epitaxy

(7)

Energy & Power Devices Lab

1 Common Lab with Industrials 200mmProcess 

Research Focus

Materials and Process Development for :

‐ advanced PV Cells (support for CEA Ines)

‐ Si power devices

‐ GaNpower devices

Devices demonstrators for power converters

Applications 

Hybrid/electric cars

Switched‐mode power supply PV converters and safety systems

Markets Areas   

Automotive

Servers/desktops/laptops Photovoltaic

Thierry BILLON

Head of Energy & Power Devices Lab

Key figures

Main Industrial Partners

(8)

Advanced Substrates Lab

8Process Engineers and Technicians  1 Common Labs with Industrials

15 Patents and 30 Scientific Papers in 2010 From 50mm to450mmProcess 

Research Focus

Materials and Process Development

Direct bonding, ion implantation, mechanical  thinning

Thin Layer transfer using the Smart Cut™/  Smart Stacking™ technologies

Applications 

Low power electronics, power devices Photovoltaic, energy storage

3D circuits, RF filters, MEMS, LEDs

Markets Areas   

Consumer electronics

Energy production/storage, Lightning  Imaging and sensing

Entertainment

Thomas SIGNAMARCHEIX

Head of Advanced Substrates Lab

Key figures

Main Industrial Partners

(9)

Micro‐System Components Section

68 Engineers and Technicians 21 PhD students and post docs 5 Common Labs

200mmand 300mm technologies

Missions

Design & Develop Micro System Components on  Silicon wafers in strong partnership with 

international industrials

Develop the associated Design Kits

R&D Focus 

Micro Actuators & Micro Sensors

RF & Passive Components

MEMS Packaging

Energy Harvesting

Design Kits

Markets Areas   

Consumer, Mobile Phone, Automotive, Health,  Space, Defense

Marc Aïd

Head of the Division

Key Figures

Main Industrial Partners

CMOS NEMS

(10)

Micro‐Actuator Components Lab

2 Common Labs with Industrials 200mmand 300mmProcess 

Research Focus

Innovative actuators design and development  Piezoelectric and Electrostatic actuation

Materials and Process Development Energy harvesting 

Wafer Lever Packaging for MEMS

Vacuum measurement in packaged MEMS

Applications 

Inkjet head technology  Imaging: adaptive focus lens

Acoustic: digital MEMS loudspeakers 

Medical: energy harvesting in human body,  micro‐pump

StéphaneFANGET

Head of 

Micro‐Actuator Components Lab

Key figures

Main Industrial Partners

Areas   

Consumer, Audio, Gaming, Medical, Autonomous sensors

(11)

MEMS Sensor Lab

25 Years background on MEMS sensors 14 Patents in 2010

7 Industrial transfers  2 Startups

Research Focus

ƒ

Inertial Sensor : Accelero, gyroscope

ƒ

Membrane based sensor: cMUT, Pressure

ƒ

Magnetic sensor : GMR, TMR, magnetometer

ƒ

Gaz sensor: NEMS‐sensor, Mass‐Spec, humidity

Core technologies

ƒ

MEMS, NEMS, CMOS integration, Si‐nanowire,…

ƒ

Magnetic and Piezoelectric material integration

Key competencies   

ƒ

MEMS Simulation and Design

ƒ

Process development & process integration

ƒ

Magnetic material development

ƒ

Sensor characterization 

Philippe ROBERT

Head of MEMS Sensor Lab

Key figures

Main Industrial Partners

(12)

Narciso GAMBACORTI – LETI / DTSI

Nanocharacterization Program Manager 

Nanocharacterization CEA/LETI

(13)

X Ray X Ray

Anaysis OpticalOptical

Electron Microscopy

Electron Microscopy Contamination

Contamination

Scanning Probe Scanning

Probe

Competence Centers

Surface Analysis Surface Analysis

Ion Beam Analysis Ion Beam

Analysis

Thickness Composition

Thickness Composition

Morphology Observation Morphology Observation

Sample Preparation Sample Preparation

MEIS TOF-SIMS

SIMS

VPD-TXRF ICPMS

Ellipso XPERT

MXPS X-PEEM

HR-STEM FIB-DB

Polishing

PFNCPFNCPFNC PFNC

PFNC PFNCPFNC PFNC

PFNCPFNCPFNC PFNC PFNC PFNCPFNC PFNC

NMRNMR

In-line FIB SEM AFM

PFNCPFNCPFNC PFNC

HR DNP/NMR SS

(14)

NanoCharacterization @ CEA‐Leti Capabilities 

State‐of‐the‐art techniques

> ATR and MIR‐FTIR Photometer

> EUV Ellipsometer

> Focused Ion Beam Microscope

> Medium Energy Ion Scattering

> PhotoElectronMicroscopy

> TEM with Double Corrector

> Time‐of‐Flight SIMS

> UHR SEM‐STEM

> UV Micro Raman

> UHV‐SPM

> Atom‐Probe

> NanoAuger

Multidisciplinary skills

> Biotechnology

> Material Science

> Micro & Nanosystems

> Nanoelectronics

> Photovoltaic

> Optoelectronics Comprehensive expertise

> Electron Microscopy

> Ion Beam Analysis

> Optical Techniques

> Sample Preparation

> Scanning Probe Microscopy

> Surface Analysis

> X ray Analysis 

> Trace & Contamination Analysis

> Clean Room Metrology

Partner of the MINATEC

Partner of the MINATEC®® NanocharacterizationNanocharacterization CentreCentre Close to Leti Si technology Platform & 3D Pilot

Close to Leti Si technology Platform & 3D Pilot--lineline Close to ESRF and ILL

Close to ESRF and ILL

(15)

Investment

Investments (M€)

TEM HR holo

XPEEM NanoESCA Dual Beam

FIB

MEIS

SEM UHR ToF SIMS

X-ray gonio Dual Beam FIB

TEM UHR 0,05 SPM UHV

3D Atom probe Auger Nanoprobe

(16)

CEA‐Leti & FZJ on characterization / analysis

> Both Leti and FZJ in the submitted project:

> FP7‐INFRA 2011: NFFANanoscience Foundriesand Fine Analysis(WP5 ‐TNA5)

> Surface analysis (Olivier Renault)

> Past collaborations

> FZJ access to LETI NanoESCAXPEEM instrument jointly operated with CEA‐IRAMIS at synchrotrons beamlines(BESSY,  ELETTRA, SOLEIL)

> Financial contribution of FZJ to  instrument move.

> Present collaborations

> LETI access (in‐house beamtine) to FZJ‐NanoESCAat ELETTRA/Nanospectroscopybranchline

> Bilateral agreement LETI‐FZJ in preparation

> Common publications

> Future subjects

> Regular access by LETI to FZJ‐NanoESCAat synchrotron beamlines(graphene, nanowires, …)

> Regular access by FZJ to LETI‐NanoESCAfor experiments with lab‐sources

> Quantitative XPEEM and Hard X‐ray XPEEM

> Electron microscopy (David Cooper)

> Past collaborations

> David Cooper is an old PhD student of RafalDunin‐Borkowski

> We have worked continuously together since 2002

> Proposed collaborations (during the visit of D. Cooper to Julichon September 2012)

> Proposal to work on OXRAM samples with Regina Dittmannto determine the structure of (vacancy) filament in these  memories by off‐axis electron holography. This will be done by switching the memories in‐situ in the TEM.

(17)

Disruptive technologies   for medicine

CLINATEC

(18)

Tomorrow, microelectronics, nanotechnologies, 3D  integration will breed the next medical revolution

> New materials, new devices for  new physical interaction with the  body

> New bio‐medical paradigms

> New business models

> As consequence: a new CEA‐Leti  roadmap 

> And the decision for an unique,  cutting edge translational facility: 

CLINATEC

(19)

> Hospitalization unit associated with the university  hospital

> Neurosurgery room of the future

> Multimodality: MEG, SPECT‐CT, behavior, intra‐

operatory MRI, optic, biology

MRI MEG Surgery room

CLINATEC: A dedicated building

(20)

Clinical level

Biology, technology level Preclinical level

Conference room

CLINATEC:

toward

demonstrators

> Preclinical/clinical validations of innovative technologies (electronics, medical devices, implanted

micro-nanotechnologies…)

> A response to the medical, regulatory, industrial needs:

biocompatibility and accelerated clinical proof of concept

(cancer, neurodegenerative diseases and handicaps)

(21)

A unique

BioTechno-Medical cluster:

“Leti-HEALTH”

Physicians Biologists

Technologists

(22)

CLINATEC: a new approach for medicine

> Major opportunities for patients and disruptive technologies  for industry

> A comprehensive platform for technical integration, packaging,  multimodal biocompatibility, translational medicine

> Early and close contact between physicians and technologists  for quick validation of technological options

> Opportunity to test and develop innovative micro‐

nanotechnologies that have never been used for medical  applications

> An international network  

(Caltech, CNSI‐UCLA, Houston, EPFL, VTT, Fraunhofer…)

(23)

CLINATEC : Multi‐functional devices

Local drug delivery optogenomic

Electro-delivery 3D-personalized neurostimulation

Infra-red stimulation

Opto-genomic

(24)

and disruptive applications for medecine

Neurodegenerative and psychiatric diseases

Neuroprotective therapy Cancer treatment

Regenerative medicine

Finding new targets

New therapeutical strategies

New monitoring

Referenzen

ÄHNLICHE DOKUMENTE

8 Baskets punkten für die Stadt Bonn | Sport als Wirtschaftstreiber und Aushängeschild für Kommunen 10 Gemeinsam mehr bewegen | In der Region Rhein-Neckar bewährt sich ein

Wenn die Kommunen diese auch für den Klimaschutz bedeutenden Aufgaben nicht allein stemmen können, muss der Bund sie dabei stärker unterstützen.. Denn von einer

Mein besonderer Dank richtet sich hier auch an die vielen Be- schäftigten in den Kommunen, der Wirtschaft und der Gesund- heitsbranche, die in einer Ausnahmesituation

Aber andererseits eben auch unglaublich be- reichern sind, denn nur durch Verant- wortungsübernahme können Frauen die Gesellschaft prägen, für ihre Kinder eine gute Zukunft