Dieter Bestle and Akin Keskin
Chair of Engineering Mechanics and Vehicle Dynamics Brandenburg University of Technology Cottbus
Some Applications of
Multicriterion Strategies in Mechanical Engineering
Classification of Optimization Problems
optimization
topology optimization
shape optimization
sizing
scalar optimization
multicriterion optimization
► scalarization
► hierarchization
unconstrained constrained )
(
min p
p
h
f
R
∈ I
) ( min p
p
f
∈ P
{ I R h u o }
P = p ∈ g ( p ) = 0 , h ( p ) ≤ 0 , p ≤ p ≤ p
What is Optimization Good For?
min
l P u
0
-
∈
Ω
Ω Ω
p
maximum stable speed range
0
0
0
: min . . max Re( ) 0 : min . . max Re( ) 0
l
l
j j u
j j
s t s t
λ λ
≤ Ω ≤ Ω
Ω < Ω ≤ Ω
Ω = Ω ≤
Ω = Ω >
{
2 3 4}
, ,
min max ( ) , ( ) , ( )
x t
x t x t x t
γ
∆ε minimum motion of inner balls
( )
min T
ρ ϕ
. . ( ) ˆ s t s T = s minimum time
• Designing Birthday Presents
What is Optimization Good For?
• Designing Birthday Presents
• Solving Problems of Existing Machines
ideal contact geometry
( )
( )
max min
r z
ρ ψ
ρ ψ
δ δ
. . tan
0s t ϕ ≤ µ
ideal ring shape min , ,
TS w
γ γ +
r r r
0 0
0 0
. .
rk k/ ,
rk rkrk
s
S S G
t S
S γ
µ − ≤
=
S rk
D
H S S
r k
ϕ
ρ ψ ( ) δ r
δ z
N
T
What is Optimization Good For?
• Designing Birthday Presents
• Solving Problems of Existing Machines
• System Identification
• actuator behavior
(hydraulic, pneumatic, electro-mechanical)
• dynamic behavior of passive components
• system parameters
• control behavior
What is Optimization Good For?
• Designing Birthday Presents
• Solving Problems of Existing Machines
• System Identification
• Virtual Prototyping
• hardware-in-the-loop optimization
• mechatronics (control design)
• multibody systems (vibrations)
• multi-disciplinary optimization
{ I R h u o }
P = p ∈ g ( p ) = 0 , h ( p ) ≤ 0 , p ≤ p ≤ p scalar
optimization
vector
optimization
min f(p)
p ∈ P
min
p ∈ P
f 1 (p)
. . .
f n (p)
P
f 1 f 2
f(P)
1
2
multiple optimal compromises f(p)
Why Multi-criterion Optimization?
a technical point of view
p 1
f
single optimal solution
scalar
optimization algorithm
Reduction Principles for Vector Optimization
vector optimization problem
scalar optimization problem
…
o b je c ti v e 1 o b je c ti v e n c o n s tr a in t 1 …
c o n s tr a in t m
• scalarization
(weighted obj., distance method, goal attainment)
• hierarchization
(hierarchical opt., compromise method)
• combination
(goal programming)
Example 1: Horizontal Platform Insulation
physical modeling
V
p
n
Q F
y A
Q
i+ A
iv
iQ
a+ A
av
ap
LV
p
n
Linearization
Equivalent Mechanical Model ( Q=0 )
2
2 D
1 D
D
D D
D
D
u
Gx y = ∆ − ∆
∆
problem: increase of horizontal damping
( )
( )
(
1 2)
2
2 1 0
1
2 2
2 2 2
1 1
1 1 1
0 1
,
p p q Q V
p p q y A V
V V p p n
V V p p n
A p p F
L L L
−
−
−
=
− +
−
=
−
=
−
=
−
=
ɺ ɺ ɺ
ɺ ɺ ɺ ɺ
( ) p A q y A y q Q dt
q p
A p F
L L
L
+ ∆ + ∆ + ∆ + ∫
−
=
∆
∆
=
∆
αβ α
αβ β
α ɺ
ɺ
1 1 0 00 1
( )
2 1 2
1 2
2 2
k k k
F F y k k y
d d
∆ + ɺ ∆ = ∆ + + ∆ ɺ
multi-measurement identification experimental
setup Simulink model
2
0
1 , ,
,
T i
F F
sim i meas i
where dt
T F meas i
ϕ
−
= ∫
0 ,
: = ∑
i≥
i
i
i
w
w
u ϕ
objectives
1 ,
:
/ 1
0
≥
−
= ∑ r
u
r r i
i
i
ϕ
ϕ
optimization (Matlab)
F
measF
simExample 1: Horizontal Platform Insulation
platform insulation
ˆ , ˆ
min
℘
∈
f H
p
,
ˆ ˆ min
℘
∈
T H
p
℘
∈
T f ˆ ˆ min
p D
M+F0ńg
F0
M
Ë1
d2 Ë2 Dw DuG
DxāDx. Q
L R
k1
d2 k2
DwL
M
Ë1
d2 Ë
2 Dw
DuG
Dxā,ĂDx.
DwR DuG
Q k2
d2 k1
passive
active
x D Q = ∆ ɺ
stream flow control
6 0 ≤ s
BV≤
bar 6 bar
4 ≤ p
0≤
[ p
0s
BV]
T= p
0 ) Re( λ
i<
0.010 0.012
- ≤ D ≤
bar 6 bar
4 ≤ p
0≤
[ p
0D ]
T= p
0 ) Re( λ
i<
bi-criterion problems
1 1.5 2 2.5 3 3.5 4
0 1 2 3 4 5
H^
^f Ăā(Hz)
^f Ăā(Hz)
0 1 2 3 5
0.14 0.16 0.18 0.2 0.22 0.24 0.28 T^Ăā(s)
1 1.5 2 2.5 3 3.5 4
0.14 0.16 0.18 0.2 0.22 0.24 0.28
H^ T^Ăā(s)
3.26 3.27 3.28 0.201
0.202 0.203
passive
passive passive
active
active
active
( )
(
i)
i
T
i H i
H f
i H H
λ
ω ω
π ω
ω
ω ω
Re max ˆ 1
) ( max ˆ )
( :
2 ˆ / ˆ
) ( ˆ max
−
=
=
=
=
objectives to be minimized
Example 1: Horizontal Platform Insulation
f 1 f 2
f(P)
* j
f
i *
f
* *
: = i j F f f
Fβ β β β
n Fβ + t
n
single EP-solution
) ( p f n Fβ + t =
t
t P
min
∈ , p
s t . .
. const
= β
) (p f n Fβ + t =
t
t P
min
, , β p ∈
s t . .
1 ,
0 ∑ =
≥ i
i β
β
knee search
Normal Boundary Intersection Approach
related to I. Das and J.E. Dennis
recursive knee search
2) lower and upper recursion limits
Recursive Knee Search
individual minima
• initial design initial design
knee search
global optimality local
optimality
stopping criteria
trade-off curve
2 λ / λ =
fulfilled
fulfilled
recursion loop
• stopping criteria
• bounds on knee search
( ) ( )
(0)
i
λ 1 ε rand 1,1
j i∗ ∗ ∗
= + + − −
p p p p
( 0,1 , ) 0, min 1, 1 1
λ ε
λ
∈ ∈ −
. . 0.2, 0.5
e g ε = λ =
| | t ≤ t , e g t . . = 0.1 1)
1)
2) β ∈ [ β
min, β
max], e g . . β ∈ [0.4, 0.6]
, ] 1 , [− 1
∈ t
• local optimality 1) solution feasible 2) local EP-optimality
3) limits on No. of non-successful restarts
Matlab applet
VIT-project (Virtual Turbomachinery, LuFo III)
Improvement of current Rolls-Royce compressor design process by tool integration and optimization
step 1: tool by tool analysis of current compressor design process step 2: automation and integration of
single analysis tools into an optimization environment step 3: partial automation of
multidisciplinary design process
Tool8
Tool7
Tool5 Tool1
Tool2
Tool3
Tool4 Tool6
iSight
the future: automation of whole multidisciplinary design process
Example 2: Compressor Design Process
Aerodynamics (Keskin)
c w
u
Meanline
Prediction Throughflow 2D Blading 3D Blading
Design 2D-Thermal Design and Stress (Otto)
High Cycle and Low Cycle
Fatigue
Meanline Prediction
annulus parameterization
0 5 10 15 20 25 30
4 6 8 10 12
Annulus Line
• classical
point-wise definition
• Reduced parameter definition
(Bézier-splines
with 4 control points)
0 10 20 30
5 6 7 8 9
Mid-Height Line
0 10 20 30
0 2 4 6
Thickness Line
2
,
2,
3,
3,
2,
2,
3,
3T
x y x y x y x y
design parameters p = b b b b t t t t
Matlab applet
c, poly
max η
p
6 . 0
max i ≤
i Ψ
1 . 1 max I ' R , i ≤
i
M
8 . 0 max I S , i ≤
i
M
55 . 0 max i R ≤
i
DF
55 . 0 max i S ≤
i
DF
58 . 0 max i R ≥
i
DH
58 . 0 max i S ≥
i
DH 92
. 0
max h , i ≤
i
C
27 .
, ≤ 0
S N E
sM i ∈ { 1 , … ,N s }
SM max
p
25 SM ≥ %
Meanline Prediction criteria
constraints
87.5 88 88.5 89 89.5 90 90.5
Pareto Opitimal Solutions for Meanline Annulus Modification
Datum, Human Designer iSight, MIGA, 4CP Pareto Optimal Design
Results for Bézier-splines with 4 control points
E3E
human design Meanline
Prediction
Polytropic Efficiency, η η η η
poly
[%]
S u rg e M a rg in , S M [ % ]
0 10 20 30 5
6 7 8 9
Mid-Height Line
0 10 20 30
0 2 4 6
Thickness Line
0 5 10 15 20 25 30
4 6 8 10 12
Annulus Line
4 control points allow
1 turning point, only !
E3E has two turning points
explanation for sub-optimal solution 1. parameterization too restrictive
5 control points Meanline
Prediction
poly
max η c, p
6 . 0
max i ≤
i Ψ
1 . 1 max I ' R , i ≤
i
M
8 . 0 max I S , i ≤
i
M
55 . 0 max i R ≤
i
DF
55 . 0 max i S ≤
i
DF
58 . 0 max i R ≥
i
DH
58 . 0 max i S ≥
i
DH 92
. 0
max h , i ≤
i
C
27 .
, ≤ 0
S N E
sM i ∈ { 1 , … ,N s }
SM max
p
25 SM ≥ %
criteria
constraints
explanation for sub-optimal solution 2. constraints too restrictive Meanline
Prediction
0.93
0.285
Pareto Opitimal Solutions for Meanline Annulus Modification
Datum, Human Designer iSight, MIGA, 4CP
iSight, MIGA, 5CP Pareto Optimal Design
Matlab applet
Meanline Prediction
E3E
human design
Polytropic Efficiency, η η η η
poly
[%]
S u rg e M a rg in , S M [ % ]
E3E
max. efficiency E3E
max. surge margin Meanline
Prediction
Pareto Opitimal Solutions for Meanline Annulus Modification
Datum, Human Designer iSight, MIGA, 5CP
iSight, NLPQL, 5CP Pareto Optimal Design
Meanline Prediction
E3E
human design
Polytropic Efficiency, η η η η
poly
[%]
S u rg e M a rg in , S M [ % ]
Pareto Opitimal Solutions for Meanline Annulus Modification
Datum, Human Designer iSight, MIGA, 5CP
iSight, NLPQL, 5CP Pareto Optimal Design
SM increase 17.3%
η
pincrease 0.17%
Meanline Prediction
E3E
human design Polytropic Efficiency, η η η η
poly
[%]
S u rg e M a rg in , S M [ % ]
pressure ratio
1 2 3 4 5 6 7 8 9
1 1.2 1.4 1.6 1.8
Parametric Stage Pressure Ratio Distribution
1 2 3 4 5 6 7 8 9
1 1.2 1.4 1.6 1.8
Applied Stage Pressure Ratio Distribution
2
,
2,
3,
3,
4,
4,
2,
2,
3,
3,
4,
4,
x y x y x y x y x y x y
b b b b b b t t t t t t
= p
1
,
2,
2,
3,
3,
4,
4,
5T
y x y x y x y y
p p p p p p p p
Meanline Prediction
Annulus Line & Pressure Ratio Optimization
poly
c,
max η
p
6 . 0
max i ≤
i Ψ
1 . 1 max I ' R , i ≤
i
M
8 . 0 max I S , i ≤
i
M
55 . 0 max i R ≤
i
DF
55 . 0 max i S ≤
i
DF
58 . 0 max i R ≥
i
DH
58 . 0 max i S ≥
i
DH 93
. 0
max h , i ≤
i
C
285 .
, ≤ 0
S N
E s
M
M max S
p
{ , ,N s }
i ∈ 1 …
1 0 2 0
y
j. ≤ p ≤ .
{ 1 , , 5 }
j ∈ … c
max Π
p
criteria
constraints Meanline Prediction
25 SM ≥ %
ignored
Annulus Line & Pressure Ratio Optimization
21.5886 22.0712 22.5538 23.0363 23.5189 24.0015 24.4841 24.9667 25.4492 25.9318 26.4144 26.897
Π
i*
Meanline Prediction
E3E
human design
Annulus Line & Pressure Ratio Optimization
Polytropic Efficiency, η η η η
poly
[%]
S u rg e M a rg in , S M [ % ]
Meanline Prediction
Annulus Line & Pressure Ratio Optimization
Comparison: some numbers
18.2h 839
(~8%) 10637
(~99%) 10768
NLPQL 5CP (Annulus)
94.1h 30.5h 19.3h total time
11909 (~28%) 42854
(~79%) 54000
MIGA 5CP (Annulus+PR)
5559 (~40%) 13743
(~86%) 16000
MIGA 5CP (Annulus)
4174 (~58%) 7166
(~90%) MIGA 4CP 8000
(Annulus)
feasible converged
function evals
17min 24
(~16%) 151
(100%) 151
NLPQL 5CP (Annulus) best efficiency Meanline
Prediction
Off-Design
Process Overview
Throughflow
-0.59293051 0.964143808
0.03 K 0.023 %
0.19 %
~2.1min 3.6 h
98 iSight (Case1)
1.01857 design parameter χ
0.83 K T criterion (∆T ≤ 1K)
-0.59 design parameter ∆D
0.53 % η criterion (∆η/η ≤ 1%)
0.22 % Π criterion (∆Π/Π ≤ 1%)
~21min time for one iteration
8 h overall opt. time
No. iterations (feasible) 23 human
eng.
min
D ,T
χ
η η
∆
∆
∆Π Π
∆
multi criteria problem
nonlinear programming
problem
Dmin u
∆ ,χ
where ( )
2 2
100 100
2u η T
η
∆ ∆Π
= ⋅ + ⋅ + ∆
Π
best fastest
-0.5 1.0 1.2 K 0.544 % 0.063 %
~2.1min 1.6 h
46 iSight (Case2)
0.95351 0.98 K -0.62655
0.162 % 0.032 %
~2.1min 0.76 h
22 iSight (Case3) Throughflow
eng.
20
20
20
20
02
20
20
20
20
20
40
40
40
40
40
40
40
40 40
40
40
40
40
40 60
60
60
60
60
60
60
60 60
60
60
60
60 80
80
80
80
80
80
80
80 80
80
80
80
80
0 10
0 10
0 10
0 10 100
100
100
100
100
100
100
0 12
0 12
0 12
0 12 120
120
120
120
120
120
0 14
0 14
0 14 140
140
140
140
140
0 16
160
0 16 160
160
160
160
0 18
0 18
0 18 180
180
180
0 20
0 20
0 20 200
200
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
A d d it io n a l D e v ia ti o n [d e g ] ∆ D
0.6 0.8 1.0 1.2 1.4
0.6 0.8 1.0 1.2 1.4
Pressure Loss Coefficient Factor χ [-]
0 20 40 60 80 100 120 140 160 180 200
Converged Solution