• Keine Ergebnisse gefunden

Optical and Electronic Properties of InGaAs and Nitride Quantum Dots

N/A
N/A
Protected

Academic year: 2021

Aktie "Optical and Electronic Properties of InGaAs and Nitride Quantum Dots"

Copied!
215
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)ITP. University of Bremen. FB 1 Institute for Theoretical Physics. Optical and Electronic Properties of InGaAs and Nitride Quantum Dots by Norman. Baer, June 2006.

(2)

(3)

(4)

(5) p.

(6)

(7) Multi-Exciton Spectra in InGaAs Quantum Dots.

(8) Multi-Exciton Spectra in Nitride Quantum Dots. 3X 4X 5X 6X. → 2X → 3X → 4X → 5X. Semiconductor Luminescence Equations. gijξ.

(9)

(10)

(11) δ.

(12)

(13)

(14)

(15)

(16)

(17) k·p.

(18) k·p. p.

(19) Hξα = εα ξα. Γ. H=−. 2 Δ + Vλ (r) 2mλ.

(20) ΔEλ  0 ; r Vλ (r) = ΔEλ ; λ=e. λ=h. r. = 16. h = 4.0 z0 = 1.6 ΔEe = 350 me = 0.065 m0.

(21) 350 300 250 200 150 100 50 0 0. 1. 2. 3. |m| ω. = 38.578. 4.

(22) 0.3. 0.2 0.15. 0.2. |m| = 0. 0.1. |m| = 1. 0.1 0.05 0. 0. −0.05. −0.1 −0.1. −0.2 0. 5. 10. 15. 20. 25. 30. −0.15 0. 5. 10. 0.14. 20. 25. 30. 0.14. 0.12. 0.12. 0.1. |m| = 2. 0.1. 0.08. 0.08. 0.06. 0.06. 0.04. 0.04. 0.02. 0.02. 0 0. 15. ρ. ρ. 5. 10. 15. 20. 25. 30. 0 0. |m| = 3. 5. 10. 15. 20. 25. ρ. ρ. k.p ∗ ξi,e = ξi,h = ξi. ∗ ξi,e = ξi,h. H. i. 30.

(23) H0. (e,h) εi. H. H0 =. . εei e†iσ eiσ +. iσ. HCoul. . εhi h†iσ hiσ. ,. iσ. 1  ee † † 1  hh † † = Vij,kl eiσ ejσ ekσ elσ + V h h  hkσ hlσ 2 ijkl 2 ijkl ij,kl iσ jσ σσ . −. . σσ . he Vij,kl h†iσ e†jσ ekσ hlσ .. ijkl σσ . eiσ e†iσ. σ |i. εei εhi. hiσ h†iσ r|i, λ = ψi,λ (r)     λλ 3 Vij,kl = d r d3 r  ψiλ∗ (r)ψjλ ∗ (r )V (r − r  )ψkλ (r  )ψlλ (r) V (r) = e2 /4π 0 r r. λ = e, h. r. ξiλ (r)uλk =0 (r). ξiλ (r). he, Vij,kl. =. . d3 r. uλk (r) . ψiλ. d3 r  ψih∗ (r)ψje∗ (r)V (r − r  )ψke (r )ψlh (r  ) uλk (r). k ·p. λλ. he, Vij,kl . λλ Xij = Vij,ij ∗ ξi,e = ξi,h hh ee Vij,kl = Vkl,ij. he ee and Vij,kl = Vlj,ki. ..

(24) me = 0.065 m0 mh = 0.17 m0. r = 13.69 losc = 5.4 m0. ee Vij,kl ∝ δmi +mj ,mk +ml. . 2. 2 /me losc. ωe =. = 40.20 ωh = 15.37 Ec = e2 /4π 0 r losc = 19.48 s m=0. s. p |i m = ±1. p. (αi , αj , αk , αl ). z p. Vαi αj ,αk αl /Ec. Ec = e2 /4π0 r losc m=0 s m = ±1.

(25) Ne. . |φ = P i. . (e†i )ni. e. i nei =Ne. P j. Nh. (h†j )nj |0 . h. j nh j =Nh. {|φi }. H = H0 + H. φi |H|φj  |ψ. I(ω) = |ψi  Ei. 2π  |ψf |H  f. |ψ =.  i. αi |φi . |ψi |2 δ(Ei − Ef − ω) .. |ψf . Ef.

(26) H =−. H.  n,m. |n dcv. |m. † † Edeh nm en, −σ hm, σ + n|er|m. deh nm dcv n|m E. e. deh nm. n|er|m ∝ δnm P=. . Pσ = d. σ. i,σ. d P z P†. . hi,σ ei,−σ.

(27) s. p. z lze + lzh S2e. Sez. z S2h. Ne , Nh , lze + lzh , S2e , S2h , Sez , Shz Shz.

(28) Ne = Nh = N X. NX. NX NX Sz z. z lz. ,e. + lz. lz =. ,h. s p s. s. p. 2(ωe + ωh ). p. ωe + ωh p 2:1. s.

(29) V = 0. V =0 lz. e ϕe +1 , ϕ−1. ϕe 0. = 0, ±2. lz. = ±1. lz lz lz. =0 = ±2 =0. lz. = ±1. lz. = ±1. lz. =0 lz. = ±1. lz. =0. p. s. ϕh 0. h ϕh +1 , ϕ−1. z. lz. = lz. ,e. + lz. ,h. s. p. |f  1X |0|P|f |2. |f . |0. P Sz. z +Sz. ,e. ,h. =0. lz. ,e. z +lz. ,h. =0.

(30) |ψa  Sz. Sz. ,e. + Sz. |ψb . ,e. ,h. =. lz ,e +lz ,h = 0 Sz ,h = − 12. 1 2. =0. lz Sz. z Sz. ,h. =. |ψc . ,e. ,e. + lz Sz. ,h. Sz. ,e. ,h. +Sz. =0. =0. ,h. Sz. − 12. ,e. =. 1 2. P†. ⎛ ⎜ H=⎜ ⎝. ⎞. εes + εhs − Dss. −Xsp. −Xsp. −Xsp. εep + εhp − Dpp. −Xpp. −Xsp. −Xpp. εep + εhp − Dpp. Xij = Vijij. Dij = Vijji. εep + εhp − Dpp + Xpp. |ψa  + |ψb  + |ψc  + |ψ  {|ψa , |ψb , |ψc } {|ψa , |ψb , |ψc } |f |P † |0|2 = |α + β + γ|2 (α, β, γ)t = (0, −1, 1)t. ⎟ ⎟ . ⎠. (0, −1, 1)t. |ψ  |ψ . |0|P|f |2 = |f |P † |0|2 P † |0 =. ˜ = α|ψa  + β|ψb  + γ|ψc  |f.

(31) V =0. V = 0. 2.5. X (×2). XX. 200. X. 150. XX. 2. 100 50. NX = 2. 1.5. 0. 120. V =0. V = 0 1. 100 80 60. 0.5. 40 20. NX = 1. 0. 0. 0. 10. 20. 30. ω/. 1X. ωe + ωh BXX = E (2X) − 2E (1X) , −1.90. E (1X). E (2X). 40. 50. 60. 70.

(32) BXX = −1.96 −2 −3. NX N. X. Se = Sh = 1/2 1/2 z. Sz. ,e. + Sz. ,h. Se = S h = 0.

(33) 6X → 5X 5X → 4X 4X → 3X 3X → 2X 2X → 1X 2. 1X → 0X. 1 0. 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. ω/. z Sz. ,e. + Sz. ,h. =0. s ω <. s. ω >. p p. 50. s p. S2e , S2h. P.

(34) s. p.

(35) s. p. p. s p. Vij,ji = Dij = Dji H. n ˆ hiσ = h†iσ hiσ. n ˆ eiσ = e†iσ eiσ.

(36) i = j. Vij,ij = Xij = Xji hh. H. n ˆ ei. n ˆ ei↑. +. ee σ = σ.     1 1 e e h εi − Dii n ˆi + εi − Dii n ˆ hi = 2 2 i i  e. . 1 ˆi − n ˆ ej − n + Dij n ˆ hi n ˆ hj 2 i,j  e e. 1  ˆ i,σ n . − Xij n ˆ j,σ + n ˆ hi,σ n ˆ hj,σ 2 i,j,σ. n ˆ ei↓. n ˆ hi. n ˆ hi↑. i=j +n ˆ hi↓. neiσ = nhi,−σ = nX iσ E=.  . X εei + εhi − Dii nX Xij nX i −2 i,σ nj,σ i. .. i<j σ. |i, σ. nX i,σ. EiX = εei + εhi − Dii. s p. s p. p. s s. p.

(37) −−. Dij Dii. Dii Dij. Dii. EiX. |i. Xij Xsp. Xpp ⎞. ⎛   Vijij. Dss Xsp Xsp. i,j. ⎟ ⎜ ⎟ , =⎜ X D X sp pp pp ⎠ ⎝ Xsp Xpp Dpp. i = j EsX EpX Xsp Xpp X X Es +Ep −2Xsp. s p s. z. z.

(38) 6X → 5X 5X → 4X 4X → 3X 3X → 2X 2X → 1X 2. 1X → 0X. 1 0. 0. 10. 20. 30. 40. 50. 60. 70. 80. ω/. p. p s. s Xij s s. p. s p 2Xsp. s s. 90.

(39) 1.5. s. p. 1. 0.5. 0. 0. 10. 20. 30. 40. 50. 60. 70. 80. ω/. 3X → 2X s. p 2Xpp. H ψi |H|ψi . |ψi . 90.

(40) 0.9. p 0.8. 0.7. 0.6. s 0.5. 0.4. 0.3. 0.2. 0.1. 0. 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. ω/. 4X → 3X. H. H. p p. p p.

(41) ,P. [H. ] = −E˜ X P P. i |ψ, NX +1 NX + 1 P |ψ, NX + 1 E|ψ,NX  = E|ψ,NX +1 − E˜ X a ˆ. H. |ψ, NX |P E˜ X.  P. H. E|ψ,NX +1 H. [H. ,a ˆ] = −ˆ a. . |ψ, NX + 1 = [H , P ] + P H |ψ, NX + 1  . X = − E˜ + E|ψ,NX +1 P |ψ, NX + 1 .. |ψ, NX + 1|. 2. P. H h i,σ iσ ei,−σ. .

(42) p. s s. p s s s s. p. s. s. (s). s. p. (p). (sp). Had = Had + Had + Had sp p i, j, k, l p. p s. s. (p). Had (p). Had =. .  1 1 Vij,kj e†iσ ekσ + εei n ˆ hiσ − Vij,kj h†iσ hkσ 2 2 iσ iσ ijkσ ijkσ    1 + Vij,kl e†i,σ el,σ − h†l,σ hi,σ e†j,σ ek,σ − h†k,σ hj,σ , 2 ijkl εei n ˆ eiσ −. σσ . s sp (s) Had.  =. εes.     e 2 1 1 1 e h ˆs − n − Dss n ˆ hs , ˆ s + εs − Dss n ˆ hs + Dss n 2 2 2.   e  e. (sp) ˆs − n ˆp − n n ˆ es,σ n Had = Dsp n ˆ hs n ˆ hp − Xsp ˆ ep,σ + n ˆ hs,σ n ˆ hp,σ , σ. n ˆ e,h s,p. s (εes +εhs −Dss )nX s,σ −2Xsp σ n ˆX ˆX s,σ n p,σ. p.

(43) i=k. Vijkj ∝ δmi +mj ,mk +mj = δmi ,mk Vijkj ∝ δi,k. εe,h i p. i. (p) Had.  =. (p). Had.    1 1 1 1 e h − Dpp − Xpp n ˆ p + εp − Dpp − Xpp n ˆ hp 2 2 2 2    1 + Vij,kl e†i,σ el,σ − h†l,σ hi,σ e†j,σ ek,σ − h†k,σ hj,σ . 2 ijkl. εep. σσ . Had s 2Xsp p. H Had. Pp. p p.   e†i,σ ej,σ − h†j,σ hi,σ , Pp = 0 Pp Pp p. Pp. .  n ˆ e,h p , Pp = −Pp Pp. s.  e,h  n ˆ s , Pp = 0 p s. ne,h s,σ = 1.  [Had , Pp ] = − εep + εhp − Dpp − Xpp − 2Xsp Pp. . p.

(44) 6X → 5X 5X → 4X 4X → 3X 3X → 2X 2X → 1X 2. 1X → 0X. 1 0. 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. ω/. EpX = εep + εhp − Dpp − Xpp − 2Xsp = EpX − Xpp − 2Xsp. ,. EpX = 82.5 meV p s.

(45) = εe. H. 1 1 Wi n ˆ e + εe n ˆh − Wi n ˆh 2 i 2 i    1 + Vij,kl e†i,σ el,σ − h†l,σ hi,σ e†j,σ ek,σ − h†k,σ hj,σ 2 ijkl n ˆe. −. σσ . p. [P. ,H. n ˆe n ˆ ei,↑ + n ˆ ei,↓. n ˆe ] (εe. + εh. i ¯ W. =. 1 N.  i. −. )P p. . Wi  i. j. Wi e†i h†i. Vijij. Wi. E˜ X P Wi Wi. N ˜ E. ≈ εe. + εh. ¯ −W. . ¯ W. s ¯ W. p. = Dpp − Xpp −2Xsp s. −2Xsp. p. = Dss. p. s s p p sp. p.

(46) d ±2 s d. p. p Pp† s. p. {εci }i. cv {εei }i. {εvi }i P. S−. eh. s. {εhi }i.

(47) n. μ p μ. 1 2.3.

(48) XX. 3 2 1. Slope (X) = 0.95 + 0.05. 4. 3. Slope (XX) = 2.31 + 0.05. 2 1. 0. Z. quasi−resonant excitation. 2 1. 2. Y XX. X. 0 1.334 1.336 1.338 1.340 1.342. Energy (eV). 400. 3. 2. log Power (W/cm ). 1.31. 4. Cross-Corr. 1.4. Z. Y. 1.2 1.0. 300. 0.8 Poisson. 200. 0.50 -20 -10 0. 10 20 30 40 50. 0.6 0.4. Delay τ (ns). μ p. IXX ∝ I 2. (2). X. Correlation Counts n(τ). PL Intensity (10 3 arb. units). 4. Off-resonant Excitation 5. Correlation Function g (τ). off−resonant excitation. log Intensity (arb. units). 5.

(49) τX ≈ 1.0. τXX ≈ 500. ΔEX−XX = 4.2 ± 0.1. p. 50/50. ω. ω τ. n(τ ) τ τ 20 5 15. τ = −15.

(50) t = t+τ. ω. ω n(τ ). t. 50/50 n(τ ). τ. n. p s. eh eh. X. XX.

(51) s. p X − XX −. X + XX +. +. X +. XX+. XX X+. −. XX. −. X. −. XX. −. X. 2. XX. X. 1. 0. 31. XX. 2. 32. 33. X. 1. 0 21. 22. ω/. 23. 24. 25. ω/. X. le eh. =6. XX. , lh. =7.

(52) X −∗. XX. 2. −. XX. X. 1 −*. X. 0 28. 29. 30. 31. 32. 33. 34. ω/ XX − → X −∗ → e. s. p. > 96% A EA = 2EsX +εep −Xsp εep. s. EsX Xsp. p s. p.

(53) X −*. XX −. A. EB = EsX + εep − Xsp. XX − → X −∗ → e B. EC = εep. s ≈2. p. ≈ 1.2. EA = 2EsX − Δ + εep − Xsp. Δ. EXX − = EA − EB = EsX − Δ EX −∗ = EB − EC = EsX − Xsp . ≈ 4.9. Xsp Δ. eh C. Xsp − Δ EX −∗ < EXX −. sp. p.

(54) sp −∗. B1. B2 B. s. B1. p B1. B2. eh B1. B1 B2. A B. S e = 1, Sze = 1. B1 e. S =0. p. B e S = 1, Sze = 0. B2 B1. B2 sp.

(55) p p p Xsp −∗. −∗.

(56)

(57) d. d 24 = 16. NX −1. s d. ωe + ωh p 3(ωe + ωh ). 2(ωe + ωh ) 1:2:3.

(58) |g lz. |d, |e, |f . |b, |c. |a. |a. |h ,e. + lz. ,h. = 0 Sz. |g. |f . ,e. =. 1 2. Sz. ,h. |g. |h. |f . = − 12. |a. |h. |f . |a. s p s. d d. p p. d. 120. 8×8 5. d. p. 4. 1. 0.1. s. 3. 0.01. 2. 0. 100. 50. 150. 200. 1. 0 20. 40. 60. 80. 100. 120. 140. ω/. s p. d. 160. 180.

(59) |a. |h. 3×3. (ωe + ωh ) , 2(ωe + ωh ) , 2(ωe + ωh ) , 3(ωe + ωh ), 3(ωe + ωh ) , 3(ωe + ωh ) , ωe + 3ωh , 3ωe + ωh .. V0 =. π 2. Ec =. π. e2 2 4πεr ε0 lk. ⎡. H. 1. ⎢ ⎢ 1 ⎢ ⎢ 4 ⎢ ⎢ 1 ⎢ 4 ⎢ ⎢ ⎢ 3 ⎢ 32 = −V0 ⎢ ⎢ 3 ⎢ ⎢ 32 ⎢ ⎢ 3 ⎢ 16 ⎢ ⎢ ⎢ −1 ⎢ 4 ⎣ − 14. t = ωe + ωh. 1 4. 1 4. 3 32. 3 32. 3 16. − 14. − 14. 11 16. 3 16. 31 128. 15 128. 7 64. 1 16. 1 16. 3 16. 11 16. 15 128. 31 128. 7 64. 1 16. 1 16. 31 128. 15 128. 585 1024. 105 1024. 57 512. 9 128. 9 128. 15 128. 31 128. 105 1024. 585 1024. 57 512. 9 128. 9 128. 7 64. 7 64. 57 512. 57 512. 153 256. 1 16. 1 16. 9 128. 9 128. 7 − 64. 11 16. 3 16. 1 16. 1 16. 9 128. 9 128. 7 − 64. 3 16. 11 16. +. |φn |P |0|. 2. 7 7 − 64 − 64. ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ . ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦. 8×8.

(60) |φn  |A = |a, 1 |B = √ (|b + |c), 2 1 |C = √ (|b − |c), 2 1 |D = √ (|d + |e + |f ), 3 1 |E = √ (|d − |e), 2 1 |F  = √ (|d + |e − 2|f ), 6 1 |G = √ (|g − |h), 2 1 |H = √ (|g + |h). 2 [A, B, H, D, F, G, C, E] ⎡. t−1. ⎢ √ ⎢ ⎢ − 42 ⎢ √ ⎢ ⎢ 42 ⎢ √ ⎢ ⎢ − 3 8 ⎢ H=⎢ √ 6 ⎢ ⎢ 32 ⎢ ⎢ ⎢ 0 ⎢ ⎢ ⎢ 0 ⎣ 0. −. √ 2 4. √. 2 4. 2t−. 7 8. − 18. − 18 2t− √. 7 8. √. √. 3 8 √ − 5326 √ − 966. −. 6 32 √ − 3643 √ − 231923 √ 3 2 256. 0. 0. 0. 0. 0. 0. ΔE. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. √ − 5326 √ − 3643. √ − 231923. √ 3 2 256. 0. ΔE. 0. 0. 0. 0. 0. 0. 0. 2t−. 0. 0. 0. 0. 0. − 18. − 966. 3t−. 51 64. 3t−. ΔE = ωh − ωe 6×6. ΔE = 0. 243 512. 2t−. 6×6. 2×2 5×5. 2×2 2×2. P + |0 = |A +. √. 2|B +. √. 1 2. 1 2. ⎤. − 18 3t−. 15 32. ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ , ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦. V0 1×1 P + |0. 3|D |C. |E. |A, |B.

(61) |D. +. |f |P |0|. |f . 2. 1, 2. 3 5×5. 3×3. 1 [ g|H0|g + g|H0|h − h|H0 |g − h|H0|h ] 2 1 = [ g|H0|g − h|H0|h ] 2 1 = [ (3ωh + ωe ) − (ωh + 3ωe )) ] = ωh − ωe = ΔE . 2. G|H0|H =. 5×5. 3×3. 5. 4. 1. 3. 0.1. 2. 0.01 0. 100. 50. 150. 200. 1. 0 20. 40. 60. 80. 100. 120. 140. 160. 180. ω/. ωh = ωe = t/2. t. ωh. ωe. ΔE = 0. s d p |g. |h. |b. |c.

(62) Sz. = 0. ω < 40. s 90 ω > 130. p d. p d p. s. p d. s p. p d p. d d.

(63) 12X → 11X 11X → 10X. 10X → 9X 9X → 8X 8X → 7X 7X → 6X 6X → 5X 5X → 4X 4X → 3X 3X → 2X 2X → 1X 1X → 0X. 1 0 0. 20. 40. 60. 80. 100. 120. 140. ω/ s p d =0. Sz s. p. d. s. d. p.

(64) 6X → 5X. 5X → 4X. 4X → 3X 3X → 2X 2X → 1X 1 0. 1X → 0X 0. 20. 40. 60. 80. ω/. 3X. d sp. spd. 3X. |ψa .

(65)  Hes/t =. . ee εes + εep + Dsp. ee −Xsp. ee −Xsp. ee εes + εep + Dsp. ee ee )1− Xsp = (εes + εep + Dsp. 0 1. ee ee Es/t = εes + εep + Dsp ± Xsp. ee 2Xsp. hh 2Xsp. .. 1 0. ee 2Xsp. ts. st. hh 2Xsp. ee Xsp. d |ψa . |ψb . |ψc  d. E. 1+A. A. |ψa . |ψb . |ψc . |ψa  3X → 2X |ψb . d. d. |ψc . |ψa . 4X s.

(66) ←3 ←2. Pp. Ps. ←3. p. ← 3×3 ← 2×2. s. s p 3 + 3 × 3 × 4 = 39. 2×3 = 6. s. s. d p. s. d. p. d d. s. p. s p.

(67) p d. p. 12X → 11X. 11X → 10X. 10X → 9X. 9X → 8X 8X → 7X 2 1 0. 7X → 6X 0. 20. 40. 60. 80. 100. ω/ Sz. =0 p. d p s p s. s p. 120. 140.

(68) s 2Xsp p. Xpd Xp+ d− Xp+ d0 p− lz = +2, 0, −2. +, 0, −. z +, −. d. m = ±2. m=0. Xp+ d+ lz = +1, −1. p. d 2Xp+ d− + 2Xp+ d0 + 2Xp+ d+ = 18.16. d d. p [H, Pp ]. Pp s. p. d. p d. (s). (p). (sd). (pd). (d). Had = Had + Had + Had + Had + Had. s. p d. (s) Had. [Had , Pd ] s p. (p) Had. Pd. d (sd) Had. d (sd). Had =. . s.  e e Dsdj n ˆ hs (ˆ ˆ hdj ) − ˆs − n ndj − n. j∈{+,0,−}. . Xsdj (ˆ nes,σ n ˆ edj ,σ + n ˆ hs,σ n ˆ hdj ,σ ) .. j∈{+,0,−},σ. s Pd. Xs,d+ Xsdj. n ˆ es = Xs,d− = Xs,d0.  e e. ¯ sd  n ˆ d,σ + n ˆ hs,σ n ˆ hd,σ X σ ˆ s,σ n.

(69) Pd d s d. p s. p i ∈ {+, −}. Xpi,dj. j ∈ {+, 0, −}. d (d) Had. (d). d. 1 1 Wi n ˆ e + εe n ˆh − Wi n ˆh 2 i 2 i    1 + Vij,kl e†i,σ el,σ − h†l,σ hi,σ e†j,σ ek,σ − h†k,σ hj,σ 2 ijkl. Had = εe n ˆe −. Wi  i. σσ .  j. (d). Vijij. Wi e†i h†i. d. d. s. W+ = W− = W0 × Pd p. [Pd , Had ] (εed + εhd )Pd −. d d Xsdj. Xpi ,dj. ¯ pd X. j ∈ {+, 0, −} Wi d. ¯ sd X ¯ W. ¯ − 2(X ¯ sd + 2X ¯ pd ) EdX ≈ εed + εhd − W ¯ sd + 2X ¯ pd ) −2(X p. ωe + ωh. p. s EdX. ≈ 133.

(70)

(71)

(72)

(73) 2 0.7.

(74) s. s. p. p dij = ψie |er|ψjh . dij ∝ δi,j. s p. s p. p.

(75)

(76)

(77) k·p.

(78) V |α, R. α R , α | −. R. t. i−1. 2 Δ2 2m. +V. (r)|R, α. t. i+1. i. t. α |Rα. Ri , αi | −. ε δij + t δi,j±1. t. 2 Δ2 2m. +V. ε H=. . ε|ii| + t. i. |ψl  =. i 2πl m N. e. El. |m ,. m. l m. N 0. N −1. |i + 1i| + |i − 1i|. i. |ψl  . .  2π  l . El = ε + 2t cos N. i (r)|Rj , αj .

(79) N →∞. 2π l N. k. k=0. El. El ≈ ε + 2t − 2tk 2 t. ε + 2|t| ε ε − 2|t|. −N/2. +N/2. 0 l. t<0. s p N N ×N. N. tA. tA. tB. tB. ×N. ×N. tA. tA.

(80) εA − εB. εi. α=s. p. ΔV. sp3 |α, R α = p x , py , pz. s R. EαR,α R = αR|H. |αR  .. H EαR,α R ∼ 10 meV. 16 × 16 N. H (k) ×N EαR,α R Γ. ψi (r). k = 4 × 4 = 16.

(81) z. φαR (r) = r|α, R ψi (r) =. . R. ciRα. ciRα φαR (r).. Rα. . α , R|H|α, RciRα − E i ciR α = 0,. Rα. Ei α , R|H|α, R. 0.5. 106 ×106.

(82) c. P P φp Vp (r) = −eφp (r) Δ φp = − 01r ρp. P = −ρp. ρp. r P P. P P P. =P. ez P. ∼ ez. 5.5 MV/cm. e ψ1,2,3. c 1.609. 1.6259. s. a. a c. =. p.  8/3 ≈ 1.633.

(83) electrons E1e = 1.7320 eV px : 0.051 py : 0.051 pz : 0.144 s : 0.754. E2e = 1.9621 eV px : 0.041 py : 0.136 pz : 0.118 s : 0.705. E3e = 1.9621 eV px : 0.136 py : 0.041 pz : 0.118 s : 0.705. Y X. holes E1h = 0.6256 eV px : 0.499 py : 0.499 pz : 0.001 s : 0.000. E2h = 0.6158 eV px : 0.144 py : 0.834 pz : 0.016 s : 0.006. E3h = 0.6158 eV px : 0.834 py : 0.144 pz : 0.016 s : 0.006. 10 % p. E1,2,3. 50 %.

(84) 5% R, R Vijkl ≈. . j∗ k l ci∗ Rα cR β cR β cRα. RR αβ. α, β e20 . 4πε0 εr |R − R |. i, j, k, l i, l. e0. j, k. ε0. εr = 8.4 e h deh ij = e0 ψi |r|ψj .

(85) C∞v z z xy C∞v k·p. C3v C2v C3v C2v.

(86) y. x sp3. c. a. z. z sp3. IC2x (x, y, z) → (−x, y, z). x. π x.

(87) sp3. z. z. sp3. z C2z z. π 2. IC4z.

(88) y 2π 3. z. 4π 3. C3v. 2π 3. z. C3z IC2y. 2π. x. y. C3v. A. B. H A [H, B] = 0. A B H A. B. H. [A, B] = 0 H. A. B p J2. Jx Jy. Jz.

(89) x. M yR. x. y. x. = My. y. =. x. y. =. x. y. =R. y. (x, y, z) → (x, −y, z). J2. (2j + 1). p p. C3v C2v. p. C3z. =RM y. y. My. R. 2 j(j + 1). x.

(90) C3v. C3v. C2v. D2d. D2d IC4z. (T ψ)(r) = ψ(T −1 r) (Rψ)(r) = ψ(R−1 r) Rψ −1 ψ R r. T. R−1 r. r. s. p |φ =. r. . |sR a(R) +. R. r|sR = ψs (r − R) r|piR = ψpi (r − R) p. R . |pj R bj (R) ,. R,j. s i ∈ {x, y, z}. R p. p± =. √1 (px 2. R ± ipy ) R. y MR 2π. M y |p+  = |p−  ,. 2π. M y |p−  = |p+  .. R|p+  = e−i 3 |p+  , R|p−  = e+i 3 |p−  ,.

(91) C3v s |φs (r) s. pz |φp± (r). p± px. |φpy (r). . |φpx (r). py. a(R). |φs (r) =. |φp± (r). {bi (R)}3i=1 s |φs (r).    ∗ |sR α(R) + |pz R βz (R) + |p+ R ZR β(R) + |p− R ZR β ∗ (R). R. R. α(R) βz (R). β(R). C3v ZR. β(R) . 2 XR + YR2 eiφR R φR. XR + iYR. XR. YR. R s α(R) = α(R) |p+ . s C3v. 2π. e−i 3. pz α(R) βz (R) C3z ∗ ZR. . +i 2π 3. β(R ) = β(R). ∗ ZR e. ∗ ZR . R = R−1 R .  2 2π 2 iφR ∗ 2 = XR  + Y R  e = XR + YR2 e−i(φR − 3 ) = |p− . s s. |φs (r).

(92) s |s. |pz . s. ∗ 2 2|ZR β(R)|2 = 2(XR + YR2 )|β(R)|2 ∗ ZR β(R) |p+  R → 0. β(R). |φp± (r) px. py. |φpx (r). 2 3 p |φpx (r). . |φp± (r) ∝ |φpx (r) ± i|φpy (r) E1 = 1.7320 eV. E2,3 = 1.9621 eV. E1 = 0.6256 eV. E2,3 = 0.6158 eV.  |φpx (r)+i|φpy (r) |φpx (r) |φpy (r)   √1 |φpx (r) − i|φpy (r) 2 C3z √1 2. |φpx (r). . |φpx (r). p |φpy (r). Epx. . H(R|φpx (r)) = H cos θ|φpx (r) + sin θ|φpy (r) = Epx cos θ|φpx (r) + sin θ H|φpy (r)  . . H R|φpx (r) = R H|φpx (r) = Epx cos θ|φpx (r) + sin θ|φpy (r) . 2π 3.

(93) H|φpy (r) = Epx |φpy (r) Epx = Epy. C2z R|φpx (r) = −|φpx (r) Epx Epy. |φpy (r). edeh ij. e. xy. e z√ e = 1/ 2(1, 1, 0) deh ij. deh ss s i, j ∈ {x, y}. deh pi pj. ⎛ deh ij. 0 ⎜ eh ⎜ = ⎝ dp + s deh p− s. deh sp+. deh sp−. 0. 0. 0. 0. ⎞ ⎟ ⎟ . ⎠. s p λz |x ± iy|λz . 2π 3. p. s 2π. λz = 0. s. λz = ±1. e−iλz 3 p±. −1 −1 λz |x + iy|λz  = λz |R+ R+ (x + iy)R+ R+ |λz  . −1  = e+i(λz −λz )θ λz |R+ (x + iy)R+ |λz  . = e+i(λz −λz −1)θ λz |x + iy|λz  , R+. θ=. 2π 3. −1 R+ (x + iy)R+ =.

(94) eiφ (x+iy). λz |x+iy|λz . (λz − λz − 1)θ λz −. λz. λz − λz − 1 = 0. deh s,pi C3z. 2π z. θ. + 1 = 0 λz |x − iy|λz  |λz − λz | = 1. λz |x ± iy|λz  = 0. eh deh ss dpi ,pj. deh pi ,s. deh p± ,s. deh λz ,λz i, j ∈ {±}. |λz − λz | 3 = 1 eh dss = dp+ p+ = dp− p− = 0 deh deh deh s,p± p+ p− = 0 p− p+ = 0. deh ij. s s s C∞v deh, = 0. deh, = 0. J j=. 3 2. mj = ± 32.

(95) s |φh+ (r) =. . |p+ ↑R β(R) ,. R. β(R). |φh− (r) =. . |p− ↓R β ∗ (R) ,. R. p. θ e±iθ. j =. 1 2. j = s. s C∞v. |p− . ↑. C∞v. ↓. s β(R). C∞z. Δj = 1. 1 2. p. |p+ . 3 2.

(96) cc Vijkl /. (i, j, k, l). |φs (r). ±. |φp± (r). C∞v. θ = 2π 3 |r−r| ee ee Vijkl = ei(λi +λj −λk −λl )θ Vijkl . z. Vijkl C∞z. z. z. z. (λzi + λzj − λzk − λzl ). (s, px , py ) (s, p+ , p− ). 3 = 0.

(97)

(98)

(99) s x. y.

(100) p+. p. p+ , p−. ∝ eimφ. 2π 3. R |s. |s ,. = +i 2π 3. |p+  ,. −i 2π 3. |p−  .. R |p+  = e R |p−  = e 0, +1, −1. z. λz. p−. 3. λz = 0, +1, −1 λz. C3v. C∞v. C3v. (1, 1, 0) deh s,p±. deh p± ,s. k·p P P=P P P. +P. ,.  eh∗ = deh ps ep+ , σ hs, −σ + dps σ  eh∗ = deh sp es, σ hp , −σ + dsp σ. +.  ep , σ hs, −σ , −  es, σ hp , −σ . −.

(101) s. p. p P. p. + 0. s. s p. 0, +, −. −. −. 0. +. P z. z.

(102) sp. ss αβ. ps α s. ps. pp β. p sp. εep + εhs. εes + εhp. 13 12 11 10 9 8 7 6 5 4 3 2 1 0. 0X → 1X. 1.150. 1.200. 1.250. 1.300. 1.350. 1.400. 1.450. 1.500. ω/. s. p s. Sze = + 12. − 21 Λz Λz P. †. p. Λz = 0 3 = ±1 3 = +1. Λz |ψa . 3 = −1 |ψb  P†. Szh = z.

(103) |ψa  |ψa . |ψb . |ψb . Λz = +1, +1. |ψc . |ψc  −2. ⎛ ⎜ H=⎜ ⎝. eh Vijkl. eh εes + εhp − Dsp. eh Vss,−+. eh Vs+,−−. eh Vss,−+. eh εep + εhs − Dps. eh V++,s−. eh Vs+,−−. eh V++,s−. eh εep + εhp − Dpp. Dijeh Λz = −2. |ψa . eh Vs+,−−. ⎞ ⎟ ⎟ . ⎠. eh Vijji. eh V++,s−. Λz = 1. |ψc . |ψb . 2×2 Λz. Λz. 2 |deh sp |. Λz. 2 |deh ps |. 3 eh εes + εhp − Dsp. eh εep + εhs − Dps.

(104) deh ss s. p p. 6X → 5X. 5X → 4X 4X → 3X 3X → 2X 2X → 1X 1X → 0X. 1 0 1.150. 1.200. 1.250. 1.300. ω/. Sztot = 0. 1.350. 1.400. 1.450. 1.500.

(105) p. p. p. p s. s p. 5X → 4X.

(106) εep +εhs. εes +εhp. |A ΔEA→B = εee¯ + εhh¯ − Deeh ¯ + ¯h +. ΔEA→B. |B . e eh h ee e Deee ¯i ni − De¯i ni − Xe¯i ni. ¯ i =e¯,h. . h eh e hh h Dihh . n − D n − X n ¯ ¯ ¯ i h i ih i ih. ¯ i =e¯,h. ¯ h. e¯. λλ Vijji. . e¯.  Dijλλ. ¯ h. i . Xijλλ ¯ e¯ h. λλ Vijij. i εee¯. εhh¯. −Deeh ¯ ¯h e¯. ¯ h. 3X eh hh ee ee eh hh eh hh eh E3X→2X = εep + εhs − Dps − Xsp − Xsp + 2Dsp − Dps + Dps − Dpp + Dss − 2Dss .. E3X→2X = εep + εhs + Dsp − Dpp − Dss − 2Xsp P.

(107) E4X→3X = E3X→2X + ΔE. ee hh − Xpp − Xsp ,. E5X→4X = E4X→3X + ΔE. ,. E6X→5X = E5X→4X + ΔE. . ee eh hh eh (Dpp − Dpp ) + (Dps − Dps ). ΔE ee Xpp. Vpee + p− p+ p− 4X. 3X. e↔h. 6X → 5X. 5X → 4X. 4X → 3X 3X → 2X 2X → 1X 1X → 0X. 1 0 1.150. 1.200. 1.250. 1.300. ω/. 1.350. 1.400. 1.450. 1.500.

(108) 3X → 2X. 1. 3X → 2X. 0 1.150. 1.200. 1.250. 1.300. 1.350. 1.400. 1.450. 1.500. ω/. Sztot = 0. |A. |A. p 3X. 3X. |B p + ↔ p−.

(109) P 2X, i|P. |A2X, i|P |B∗ |2X, i|P. P. Λz |2X, i  |A + |B |2 |2X, i. |A. |A |B P |B. i. −. |A. |B 3X. |A. 2X. P. ts. Sztot = 0. ss ee 2Xsp. 2X hh 2Xsp. eh deh sp /dps. 4X → 3X 4X → 3X 3X → 2X. P. |B. P. z. P. |A.

(110) P. −−→. ±. |  3X sp. 2X. P. 2X. 3X → 2X 3. 2. 4X → 3X. 1. 0 1.150. 1.200. 1.250. 1.300. 1.350. 1.400. 1.450. 1.500. ω/. Sztot = 0. 4X. P. 3X 3X Λz = +1. Szh = − 12. Λz 3X. Λz = −1 3 = ±1 Sze = + 12.

(111) P. −−→ |. ;.  4X. 3X. sp. H ⎡ H=E. ee Xpp. ⎢ ⎢ 1 − ⎢ Xspee ⎣ Xspee. Xspee. Xspee. Xspee. ee Xpp. ee Xpp. Xspee. ⎤ ⎥ ⎥ ⎥ . ⎦. E. Eα = E Eβ = E Eγ = E |α. ee ee − (Xsp − Xpp ), ee ee + (2Xsp + Xpp ), ee ee + (Xsp − Xpp ),. |α = (−2, 1, 1)t , |β = (1, 1, 1)t, |γ = (0, 1, −1)t .. |β |γ |α. Λz , Sze 4X → 3X. Szh. (S Se =. 1 2. )2.

(112) Eβ − Eα. |β ee 3Xpp. 3 2. Se =. hh 3Xpp. ee 3Xpp eh deh sp /dps. Sz = 0. 5. 4. 5X → 4X 5X. 5 4. 5X → 4X. 3 2 1 0 1.150. 1.200. 1.250. 1.300. 1.350. 1.400. 1.450. 1.500. ω/. Sztot = 0. 5X lztot = 0 Sze = 0. Sztot = 0 lztot = −1 Szh = 0. 4X. 16 × 16. ±1.

(113) −. Sztot = 0. 6×6 ps 2es 2ep 1hs 3hp 1es 3ep 2hs 2hp 5X → 4X. p+. p−. p− ss. |ψ1,...,4  5X → 4X lz. =0. |ψ5,6  Sz. =0.

(114) ψ1. ψ4. ψ5. ψ6. st. H {|ψi }6i=1 ⎡. ee −Xsphh −Xpp. 0. H=E. ⎤. eh Xpp. 0. 0. ⎢ ⎢ ee eh ⎢ −Xsphh 0 0 −Xpp 0 Xpp ⎢ ⎢ ⎢ −X ee eh 0 0 −Xsphh −Xpp 0 ⎢ pp ⎢ 1+⎢ ee eh ⎢ 0 −Xpp −Xsphh 0 0 −Xpp ⎢ ⎢ ⎢ X eh eh 0 −Xpp 0 0 −Xsphh ⎢ pp ⎣ eh eh 0 Xpp 0 −Xpp −Xsphh 0. ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ . ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦. E. E. ee ee ee ee = 2(εes + εep ) + εhs + 3εhp + (Dss + Dpp + 4Dsp − 2Xsp ) hh hh hh hh eh eh eh eh + (3Dsp + 3Dpp − Xsp − Xpp ) − (2Dss + 6Dsp + 2Dps + 6Dpp ) .. {|ψi }6i=1 U ⎡. − 12. − 12. − 12. 0 ⎢ ⎢ 1 1 ⎢ 0 − 12 2 ⎢ 2 ⎢ ⎢ −1 1 1 0 ⎢ 2 2 2 ⎢ U=⎢ 1 ⎢ 12 0 − 12 2 ⎢ ⎢ ⎢ 0 − √1 0 0 ⎢ 2 ⎣ √1 0 0 0 2. 0. 1 2. ⎤. ⎥ ⎥ ⎥ 0 ⎥ ⎥ 0 12 ⎥ ⎥ ⎥ . 1 ⎥ 0 2 ⎥ ⎥ ⎥ 1 ⎥ √ 0 ⎥ 2 ⎦ √1 0 2 1 2.

(115) U† HU ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣. H ⎤. ee Xsphh − Xpp. 0. 0. Xsphh. √. 0. √. 0 eh 2Xpp. eh ee 2Xpp Xsphh + Xpp. 0. 0. 0. 0. 0. 0. 0. 0. 0. √ eh ee t = 2 2Xpp /Xpp ee Xpp E. 0. 0. 0. 0. 0. 0. 0. 0. 0. √ eh ee −Xsphh + Xpp − 2Xpp √ eh −Xsphh − 2Xpp 0. 0. 0 0 ee −Xsphh − Xpp. hh ee t˜ = Xsp /Xpp + t˜ + 12. H H. 1 H = 2. = − 32 ,. . −1 t. , t 1 3 = −2t˜1 − H ss , H = −2t˜ − , 2 √ √ E = − 32 E = ± 12 1 + t2 E −2t˜∓ 12 1 + t2. −2t˜ t˜ √ t=2 2 4X, i|P i {|ψi }6i=1 P. |5X, |5X,. 1 2. eh ∝ deh ps |ψ1  + dps |ψ5  +. ∝. deh ps |ψ4 . −. deh ps |ψ6 . E −2t˜− 32 t˜ ≈ 0.47. t. P. ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ . ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦. +. t. eh hh Xpp = Xpp. |5X, j  |5X, j  5X. |4X, i. ×. ,. ×. ..

(116) 3 2. ss−dim. 1. st−dim. 0. ss−bri g. ht. −1. ts−bright. −2. tt−bright. st−brig. ht. −3 −4 0. 0.5. 1. 1.5. 2. 2.5. 3. 3.5. 4. |t|. √ eh ee t = 2 2Xpp /Xpp. ee Xpp. + t˜+ 12. E t˜ ≈ 0.47. t. H. =. βi.  j. |ψj Uj,3. 2 |deh ps |. (αi , βi )t. !α βi !!2 ! i √ + ! . ! 2 2 |4X,. {|ψi }6i=1. = αi |ψ˜2  + βi |ψ˜3  |4X, i  = αi j |ψj Uj,2 +. i. t st ! βi !!2 2 ! αi √ − = |deh | ! ! ps 2 2 H H v  = (−β, α)t. (α, β)t. v =. e↔h t ≈ −2.83. t ≈ −1.23.

(117) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 −3. −2. −1. 0. 1. 2. 3. ss t t<0. t < −2. 5X → 4X. eh ee Xpp ≈ Xpp. 6X → 5X sp 0X → 1X. 0X → 1X. 0X → 1X. 6X → 5X. ps.

(118) 11 10 9 8 7. 6X → 5X. 6 5 4 3 2 1 0 1.150. 1.200. 1.250. 1.300. ω/. 5X → 4X. 1.350. 1.400. 1.450. 1.500.

(119) 6X → 5X. 5X → 4X 4X → 3X 3X → 2X 2X → 1X 1X → 0X. 1 0 1.050. 1.100. 1.150. 1.200. 1.250. 1.300. 1.350. 1.400. 1.450. 1.500. ω/. Sztot = 0. eh ee Xpp ≈ Xpp. d = 5.7. h = 2.3. s. p. p k·p deh sp.

(120) p. s. p s. εep + εhs. εes + εhp. s. |a. 2X Ea = Eb < Ec < Ed. |a |b |c. |d.

(121) 6X → 5X 5X → 4X 4X → 3X 3X → 2X 2X → 1X 0.5. 1X → 0X. 0 0.650. 0.750. 0.850. 0.950. 1.050. 1.150. 1.250. 1.350. ω/. d = 5.7. h = 2.3 Sztot = 0. |a . |c. s. s. p s. |d s. s. |  Ec < Ed. | . | . |  |c. Ea = Eb <.

(122) |c. s. EA < EB < EC. | . | . |C. |  |C. EC. s. s s. EA < EB <.

(123)

(124)

(125)

(126) β.

(127)

(128)

(129) H = H0. +H. + H0 + H .. H0 + H. H0. =. . εci c†i ci +. i. H.  i. εvi vi† vi. ,. 1 1 = Vij,kl c†i c†j ck cl + V v † v † vk vl 2 ijkl 2 ijkl ij,kl i j  + Vij,kl c†i vj† vk cl . ijkl.

(130) i, j, k, l i = (ν, σ). ci c†i |i vi vi†. i = (k , σ) εci. (c,v). εvi. εi. . λλ Vij,kl. H. 0 Hph. =. .  ωξ. b†ξ bξ. ξ. ωξ ξ. 1 + 2.  .. ξ e (q). q. b†ξ (bξ ) =±. ωξ = c|q| Uξ (r) = e (q) ei qr. H = −i. .  gijξ c†i vj bξ + gijξ vi† cj bξ −. ijξ. H ˆ+ E.  ˜ E i ξ Eξ Uξ (r)bξ. = −eEr ˆ =E ˆ+ +E ˆ− E.

(131) ˜ξ = E.  ωξ /2 r 0 V.  gijξ. = E˜ξ. V. d3 r ψic∗ (r)erUξ (r)ψjv (r) . ξ |i. |j. fie = c†i ci . b†ξ bξ . i . . . =. i. ∂ !! ! ∂t H. ∂ !! ! A = [A, H] . ∂t H . . .. {ρ0 . . .}. fie fie = i. =. ρ0. H. c†i ci . ∂ !! ! ∂t H. ξ. c†i ci  =. ∂ !! i ! ∂t H. ci =. ∂ !! i ! ∂t H. c†i = −. ". . i. ∂ !! ! ∂t H.  ∂ !! c†i ci + c†i i ! ∂t H. Vijkl (c†j ck + vj† vk )c†l. jkl.  jkl. ∗ Vijkl cl (c†k cj + vk† vj ) ,. ci. #. ..

(132) ∂ !! i ! ∂t H. fie = −. . ∗ { Vijkl c†l (c†k cj + vk† vj )ci  + Vijkl c†i (c†j ck + vj† vk )c†l } .. jkl. 1. 2. fie 3. H. H. H. H. 1 − → 2 − → 3 − → 4 − → ... N. N H. H. − →.  ij. a†i a†j ak al  ≈ a†i a†j ak al . hij a†i aj. = a†i al a†j ak  − a†j al a†i ak  ..

(133) H = H1 + H2 H1. i. H2. 2. 1. ∂ 1 = F1 {1} + F2 {2} ≈ F1 {1} + F2 {2 ∂t. } = F1 {1} + F2 {11} .. ∂ i ∂t 1. H1 F1 {1}. H2 F2. F2. 2. 2. 2. δ2 2 = 2. + δ2 = 11 + δ2 .. δ3 = 3 − = 3 − 1δ2 − 111 . 1δ2. 111. 3 N. 1 = δ1. N N.

(134) N N N >1. i. i. ∂ 1 = F1 {1} + F2 {2} = F1 {1} + F2 {11, δ2} ∂t. ∂ ∂ δ2 = i 2 − 11 = G1 {2, 11} + G2 {3, 21} ∂t ∂t ≈ G1 {δ2, 11} + G2 {1δ2, 111} . F1. F2. δ2 G1 {2, 11} G2 H2 2 −→ 3. 2 = 11 + δ2 H1 H1 H1 2 −→ 2 11 −→ 11 H2 3 21 H. 2 11 −→ 21. 3 = 1δ2 + 111 + δ3 δ3. 3SD = δ21 + 111.

(135) a†i a†j a†k al am an SD = + a†i al  δa†j a†k am an  − a†i am  δa†j a†k al an  + a†i an  δa†j a†k al am  − a†j al  δa†i a†k am an  + a†j am  δa†i a†k al an  − a†j an  δa†i a†k al am  + a†k al  δa†i a†j am an  − a†k am  δa†i a†j al an  + a†k an  δa†i a†j al am  − a†i al a†j am a†k an  + a†i al a†j an a†k am  − a†i am a†k al a†j an  + a†i an a†j am a†k al  − a†i an a†j al a†k am  + a†i am a†j al a†k an  . 1δ2. 111. i. b†ξ (t). =.  ∂ !! † † gijξ c†i vj . ! bξ = −ωξ bξ + i ∂t H ij. b†ξ (0)e+iωξ t. 1 + gijξ  ij. . t 0. . dt e+iωξ (t−t ) c†i (t )vj (t ) .. b† v † c. b†q  = 0 b†ξ a†i a†j ak al SD = + δb†ξ a†i al  a†j ak  + δb†ξ a†j ak  a†i al  − δb†ξ a†j al  a†i ak  − δb†ξ a†i ak  a†j al  ..

(136) δb†ξ a†i aj  = b†ξ a†i aj . b†ξ b†ξ a†i aj SD = b†ξ b†ξ a†i aj  .. δ.

(137)

(138) c†i cj  i. ∂ † ci cj  = − (εci − εcj )c†i cj  ∂t $  ∗ † † ∗ % ∗ b†ξ v1† cj  + gj1ξ bξ v1 ci  −i gi1ξ 1ξ. +.  234. −. . & ' Vi234 c†j c†2 c3 c4  − c†j v2† c4 v3  ' & † † ∗ Vj234 c4 c3 c2 ci  − c†4 v3† ci v2  .. 234. 1, 2, 3. 4 H0. H. c =: Cj234. ( )* + † † cj c2 c3 c4  = δc†j c†2 c3 c4  −c†j c3 c†2 c4  + c†2 c3 c†j c4  , c†j v2† c3 v4  = δc†j v2† c3 v4  −c†j c3 v2† v4  . * +( ) X =: Cj234. v2† c3 c†j v4  b† v † c (i = j) i. ∂ † c ci  = − 2i ∂t i + 2i. $ 1ξ. $. ∗ gi1ξ b†ξ v1† ci . %.  c X Vi234 C2i43 − Ci243 − c†i c3 c†2 c4 . 234. + c†2 c3 c†i c4  + c†i c4 v2† v3 . %. ..

(139)  i.  i. $. fiλ. λ.  c % † † † † † † X Vi234 C2i43 − Ci243 − ci c3 c2 c4  + c2 c3 ci c4  + ci c4 v2 v3 . 234. 2↔3 ! ∂! i ∂t !.  H. i. fic = 0. b†ξ bξ . ξ d b† b  dt ξ ξ. b†ξ bξ  i. i↔4. ∂ † bξ bξ  = − (ωξ − ωξ )b†ξ bξ  ∂t   ∗ † † ∗ ∗ +i b†ξ v2† c1  + i g12ξ g12ξ  bξ v2 c1  . 12. i. ∂ † b bξ  = 2i ∂t ξ. 12. $ 12. ∗ g12ξ b†ξ v2† c1 . %. ξ = ξ  † % ∂ $ † b bξ  + ci ci  = 0 . ∂t ξ ξ i.

(140) b† v † c. i. ∂ † † bξ vi cj  = (εcj − εvi − ωξ )b†ξ vi† cj  ∂t  & ' X +i g21ξ c†2 cj (δi1 − vi† v1 ) + C2ij1 12. +i. . & ' b†ξ bξ  g1iξ  c†1 cj  − gj1ξ  vi† v1 . 1ξ . −. . & V123i b†ξ v1† cj c†2 c3  − b†ξ v1† c3 c†2 cj . 123. +.  234. + b†ξ v1† cj v2† v3  − b†ξ v2† cj v1† v3 . '. & Vj234 b†ξ vi† c4 c†2 c3  − b†ξ vi† c3 c†2 c4 . + b†ξ vi† c4 v2† v3  − b†ξ v2† c4 vi† v3  H0 H0. b†ξ bξ  b†ξ bξ . '. ..

(141) CX , Cc. Cv. CX Cc. c†i vj† ck vl . C. c†i vj† ck vl HF. ∂ !! i ! ∂t H. c†i vj† ck vl  = −. & 123. Cv. X. V123i c†1 (c†2 c3 + v2† v3 )vj† ck vl ) + V123j c†i v1† (c†2 c3 + v2† v3 )ck vl ) ∗ − V123k c†i vj† (c†3 c2 + v3† v2 )c1 vl ) ∗ c†i vj† ck (c†3 c2 + v3† v2 )v1 ) − V123l. 8 × 6 = 48. vi† cj  8 × 9 = 72. '. .. 1δ2. 1, 2, 3 1δ2. δ2 c†i vj† ck vl HF =. δ2 † −ci ck vj† vl  11 c† c. v†v 12. (c† c + v † v). 4×2 = 8 2. 2 = δ2 + 11. c†i vj† ck vl . 111 c†i vj† ck vl  CX. CX.

(142) ! ∂! i ∂t !. X Cijkl = $  .  − 1234 V1234 c†i c4  vj† v3  δ1k − c†1 ck  δ2l − v2† vl   .  − δi4 − c†i c4  δj3 − vj† v3  c†1 ck  v2†vl   X+v  † X+c + v1† vl δ4j − vj† v4 δ1l Ci2k3 − ci c4 δ1k + c†1 ck δ4i C2j3l X X   − v2† vl δ4i − c†i c4 δl2 C1jk3 + vj† v4 δ2k − c†2 ck δ4j Ci13l X X   − c†2 ck δ4i − c†i c4 δk2 C1j3l + vj† v4 δ2l − v2† vl δ4j Ci1k3  X + v3† vl δ4k + δ3l (c†4 ck  − δk4 ) Cij12  X − c†i c3 δ4j + δ3i (v4† vj  − δj4 ) C21kl H. X X X X −δi4 c†1 c3 C2jkl − δj4 v1† v3  Ci2kl + δk1 c†2 c4 Cij3l − δl1 v2† v4  Cijk3 % X X X X (c†2 c3  + v2† v3 )[δi4 C1jkl + δj4 Ci1kl − δk1 Cij4l − δl1 Cijk4 ] . X+v X c Cijkl = Cijkl + Cijkl. i. X+c X v Cijkl = Cijkl + Cijkl. ∂ !! X C X = −(εci + εvj − εck − εvl ) Cijkl ! ∂t H 0 ijkl. $  ∗ †  ∂ !! X ∗ i ! Cijkl = i ci c1  − gi1ξ v1† vl  b†ξ vj† ck  g1ξ ∂t H 1ξ  % + b†ξ c†i vl  g1jξ c†1 ck  − gk1ξ vj† v1  . Cc. Cv. CX. c†i vj  Cc. Cv.

(143) ωξ H. gijξ gijξ = giξ δij. c†i cj . i = j. gijξ  gijξ = E˜ξ E˜ξ =. . ωξ /2. 0 V. ζic (r). d3 r ψic∗ (r)erUξ (r)ψjv (r) ,. V. ζjv (r) c,v uk≈0 (r). ψic (r) . ˜ξ d gijξ ≈ E. ψjv (r). d3 r ζic∗(r)Uξ (r)ζjv (r). d. |i. gνν  ξ ≈ E˜ξ dcv Uξ (r0 )δνν  .. |j.

(144) r0. gk k  ξ. 1 ≈ E˜ξ dcv A. z0. δνν . . d2 ρ e−i(k −k.  )ρ. ˜ ξ (k − k  , z0 ) . Uξ (ρ, z0 ) = E˜ξ dcv U ˜ ξ (q , z0 ) U. z xy q = 0.  k 1 A. . |gk k  ξ |2 f (k  ). d2 ρ |h(ρ)|2. f (k  ).  k. k ˜ 2 k |hk | =  ˜ 2 1 d2 ρ |dcv Uξ (ρ ρ , z = 0)|2 |gk k  ξ |2 f (k  ) ≈ f (k )E ξA ˜ ξ (q , z0 ) U q =0 ,. gk k  ξ ≈ δk ,k . E˜ξ. 1 A. . . ρ , z = 0)|2 . d2 ρ |dcv Uξ (ρ. Uξ (r). iqr. e (q) e. δk ,k  gk k  ξ ∝ δk ,k  +q|| q||. gk k  ξ ∝ δk ,k . gijξ = giξ δij i. j s. p. |dcv e (q)|.

(145) z lz liz,v vi† vi z. =. . z,(c,v). liz,c c†i ci +. li. |i. z Vijkl ∝ δliz +ljz ,lkz +llz. [c†i cj , lz ] = −(liz,c − ljz,c )c†i cj. −(liz,c − ljz,c )c†i cj  =. {ρ0 [c†i cj , lz ]} =. {c†i cj [lz , ρ0 ]} = 0 . {A[B, C]} =. ρ0 z. [l , ρ0 ] = 0. ρ0 ∝ e−βH. [lz , H] = 0. {|ψi }i {|ψi }i. c†i cj  = 0. {B[C, A]}. ρ0. liz,c = ljz,c ,. l. z.  i. pi |ψi ψi |.

(146) |i. c†i cj . |j. liz. s c†i cj . p. i=j c†i c†j ck cl . c†i c†j ck cl  = δliz +ljz ,lkz +llz c†i c†j ck cl  e Cijkl. a†i aj . a†i aj  = fia δij. i = j. b†ξ vi† cj  = δij b†ξ vi† ci   z,c † lz = li ci ci + liz,v vi† vi. bξ. i. ∂ † c ci  = − 2i ∂t i + 2i. $ ξ. $. ∗ giξ b†ξ vi† ci . %.  e % X Vi234 C2i43 − Ci243 ,. 234. i. ∂ † b bξ  = +2i ∂t ξ. $ 1. ∗ g1ξ b†ξ v1† c1 . %.

(147) i. ∂ † † εci − ε˜vi − ωξ − iΓ)b†ξ vi† ci  bξ vi ci  = (˜ ∂t  X + igiiξ fic (1 − fiv ) + i g1ξ C1ii1 + i(fic − fiv ). . 1. g1ξ  b†ξ bξ . ξ. + (fic − fiv ). . Vi1i1 b†ξ v1† c1  .. 1. ε˜ci = εci −. . Vi1i1 f1c +. 1. ε˜vi. =. εvi. −. . . V1ii1 (f1c + f1v − 1). 1. Vi1i1 (f1v. 1. − 1) −. . V1ii1 (f1c + f1v − 1). 1. ωξ ξ. Γ −1. f1v − 1. ε˜v,c = εv,c i i b†ξ vi† ci . (fic − fiv ) = −(1 − fie − fih ).

(148)  1234. . X V1234 δi4 c†1 c3  C2jkl =. . 1234. X V323i f3c C2jkl =. . 23. X V1234 δi4 c†1 c3  C2jkl. V3i3i f3c. X . Cijkl. 3. c†1 c3  = δ13 f3c V323i ∝ V3i3i δi2. Vijij. i. 1. 4. |i. ∂ X X εci + ε˜vj − ε˜ck − ε˜vl ) Cijkl C = − (˜ ∂t ijkl   − Vklji fkc fjv (1 − fic )(1 − flv ) − (1 − fkc )(1 − fjv )fic flv   X c X v V1lj2 (Ci1k2 + Ci1k2 ) + (fic − fkc ) Vk12i (C1j2l + C1j2l ) + (fjv − flv ) 12. + (1 −. flv. −. fkc ). . 12. X Vkl12 Cij21. − (1 −. fic. −. fjv ). 12. +. (fic + flv ). +. (fkc. . −. . X V12ji C12kl. 12. X V1l2i C1jk2 −. (fkc + fjv ). X Vk1i2 C1j2l. (flv. 12. fic ).  . X Vk1j2 Ci12l. 12. +. −. fjv ). . X V1l2j Ci1k2. 12 12 $    ∗ % † † ∗ ∗ + i δil δjk (fic − fiv ) giξ bξ vj cj  + (fjc − fjv ) gjξ b†ξ vi† ci  . ξ. ξ. CX.

(149) X Cijkl. i. ∂ c c C = − (˜ εci + ε˜cj − ε˜ck − ε˜cl ) Cijkl ∂t ijkl    ∗ ∗ − Vijkl − Vijlk (1 − fic ) (1 − fjc ) fkc flc − fic fjc (1 − fkc ) (1 − flc )   c X c X + (fkc − fjc ) Vk12j (Ci1l2 + Ci1l2 ) − (fic − flc ) Vl12i (Cj1k2 + Cj1k2 ) 12. −. (fkc. −. fic ).  12. + (1 −. flc. −. fkc ). −. (fic. −. flc ). +. (fkc. −. fjc ). 12. c Vk12i (Cj1l2. . +. X Cj1l2 ). +. (fjc. −. − (1 −. fic. −. fjc ). −. fic ). −. flc ). 12. . c V12ji C12kl. 12. c Vl1i2 C1jk2. +. (fkc. c V1k2j Ci12l. −. (fjc. 12. . c X Vl12j (Ci1k2 + Ci1k2 ). 12. c Vkl21 Cij12. 12. . . flc ). . c V1k2i C1j2l. 12.  12. Cv CX. c Vl1j2 Ci1k2.

(150)

(151) I(ω) . I(ω) dω =. ξ ωξ ∈[ω,(ω+dω)]. ∂ † b bξ  . ∂t ξ. [ω, (ω + dω)] ξ. q. =±. e (q). 1 V.  q. →. 1 (2π)3. . 3. dq. q.

(152)  I. =. ω I(ω) =.  ∂ † 2 bξ bξ  = ∂t  ξ ξ. . ∗ giξ b†ξ vi† ci . i. =. . 2 . i. † † |giξ |2 b ξ vi ci  .. ξ. † † † † giξ b ξ vi ci  = bξ vi ci . ω = c|q|. . ξ. ξ.  † † † † b ξ vi ci  = bω vi ci  q. ω = cq. f . |giξ |2 f (q) →. ξ. 1 1 2 0 r (2π)3. q . |dcv |2 = 2 6π 0 r c3. . q. 3. q cq. . |dcv ep (q )|2 f (q). p=± 3. ωω f. giξ |d e (q )|2 = |dcv |2 sin2 θ cv p p=± dcv. . |q |. ω. .. c. θ q. ω 2 . f (q) I(ω) = |˜ giω |2 =. 2 . . † † |˜ giω |2 b ω vi ci  .. i. |dcv |2 ω 3 6π 2 0 r c3. q. ∂ ∂t. . |giξ |2. † =± bq. bq . sin2 θ.   † † i bξ vi ci .

(153) b†ξ vi† ci . I(ω) = = δΓ (E) =. =−. i giξ fic (1 − fiv ) . εci − εvi − ωξ − iΓ.  −i |˜ giω |2 f c (1 − f v ). 2 . i. 2π  . εci. −. i. εvi. i. − ω − iΓ. |˜ giω |2 fic (1 − fiv ) δΓ (εci − εvi − ω). i. 1 Γ π E 2 +Γ2. δ εci − εvi fic (1 − fiv ) s p. eh. $ 1. (˜ εci. −. ε˜vi. − ω − iΓ)δ1i +. (fic. −. fiv )Vi1i1. %. p. b†ξ v1† c1  = −igiξ fic (1 − fiv ) ,. fie fih.

(154) M(ω) ψ = −iF . † † b ξ vi ci . ψ M(ω) F. fic (1 − fiv ) M(ω) ω M(ω). ˜ M. 1. ˜ M (fic − fiv ) fic = 0 D=. ˜ M. fiv = 1 S. −1. ˜S=D S M F˜ = S−1 F. (λ1 , λ2 , . . . , λn ). I(ω) =. 2 . . v˜it. i. ˜ M F˜i = fic (1−fiv ). b† v † c. v˜ = St 1. 1. −i|˜ giω |2 ˜ Fi . λi − ω − iΓ. S S = 1 ⇒ v˜i = 1. ˜ − (ω + iΓ)1 M. b† v † c. λi. λi ˜ M λi = εci − εvi λi. X Cijkl. λi.

(155) 3 · 1010 −2 9.13 · 10−29. CX , Ce C. v. 0.03. X {Cijkl }. 0.025 0.02 0.015 0.01 0.005 0. 0. 2. 4. 6. t[. 8. 10. ] 34. X Cijkl. ne =. 1.5 · 1010. 5. −2. T = 30K.

(156) 34 = 81. i, j, k, l ∈ {0, +1, −1}. X Cijkl. 1.  1. t. 10. s 8. 6. 4. p 2. 0 -150. -100. (ω − E. ne = 3.0 · 1010. −2. T = 200K. -50. )[. ].

(157) 3.0 · 1010. T = 200. −2. s −137 −111 p. −80. p. εcp + εvp = s. εcs + εvs = −55.5 s s. p. 10. 8 8 6 4. 6. 2 0. 4. 2 -138. -136 1. s. p. 2 0. 0. -140. -120. (ω − E. ne = 3.0 · 1010. k=0. -80. -100. )[. −2. -80. ]. T = 200K.

(158) 1.5 · 1010. −2. T = 30 s. p. 8. s 8 6. 6. 4 2. 4. 0 -134 -132. 2. p 0. -2. -140. -120. (ω − E. -100. )[. -80. ]. ne = 1.5 · 1010. T = 30K. v˜i. C X , C e, C v. F˜i. −2.

(159) -60. -80. -100. -120. -140 0. 0.2. 0.4. 0.8. 0.6. 1. T = 30, 70. s p. p s. p. M −133.75, −73.62. s s. p. p. −67.60.

(160)  1. g1ξ c†1 v1 vi† ci . giξ fic (1 − fiv ) +.  1. X g1ξ C1ii1. fic (1 − fiv ). ∂ c 2 fi = − ∂t  =−.  i |giξ |2 f c (1 − f v ) i i c v εi − εi − ωξ − iΓ ξ. fic (1 − fiv ) . τi ξ 1/τi Γ → 0. fic. 1/τi fiv.

(161) c† vv † c. fc. ∂ c fc f =− . ∂t τ. n ˆen ˆh = n ˆe. c† vv † c = c† c n ˆe n ˆh. n ˆen ˆh. ˆ ne n ˆ h  = ˆ ne ˆ nh . n ˆe.

(162) nE. nH. nE nH. p. nE. nE  = 1/2 nE  = 1/2 nH  = 1/2 nE nH  = 1/4. ⎫ ⎪ ⎬ ⎪ ⎭. nH  = 1/2 ⇒ nE nH  = nE nH . nE nH  = 1/2. nE nH  nE nH  = nE nH  nE nH  = ne . ne nh  = ne nh  ne nh  = ne . fc. nH. ⎫ ⎪ ⎬ ⎪ ⎭. nE nH. p. ⇒ nE nH  = nE .

(163) s ∂ Ce ∂t. i. ∂ X C = 2i ∂t. ∝ Ce. C e (t) = 0. % $  gξ∗ b†ξ v † c . (f c − f v ) ξ ∂ c f ∂t. CX † †. b v c i. ∂ CX ∂t. ∂ c f = −2i ∂t. $. gξ∗b†ξ v † c. % .. ξ. ∂ v = − ∂t f ∂ = ∂t (f c f v ) C X = f cf v + f c = 0, f v = 1, C X = 0 C X = f cf v c v X gξ {f (1 − f ) + C } gξ f c ∂ c f ∂t. 1.5 · 1010. X −iγCijkl. −2.

(164) I 0. 1000. 500. 1500. 2000. t [ps] γ = 0.001. ∂ c,v !! f ! ∂t i Fic,v (T ). =−. τ. = 1ps. fic,v − Fic,v (T ) , τ c,v T 1. γ = 0.001.

(165)

(166)

(167) gνξ ≈ E˜ξ dcv Uξ (r0 ) . Uξ dcv.

(168) κ. ω ¯ ξ = ωξ − i 2ξ ξ ω ¯ξ. ω ¯ ξ∗. bξ. b†ξ. b†ξ bξ (t) = b†ξ bξ (0)e−κξ t. Δωξ = κξ. Q = ω0 /Δω. Q F ξ F = λξ. V |Uξ |2. |gνξ |2 = τ. 3 Qξ λ3ξ , 4π 2 V ,ξ ,ξ.  |U (r)|2 = d3 r |Uξ |2 ξ. |Uξ (r)|2. 2 ωξ 1 F |UQ (r0 )|2 cos(φ ) , τ (ωξ ) 4 Q |UQ |2. (ωξ ) ωξ. n. φ.

(169) 2 & ∗ † † ' d f =− g b v c , dt  d † 2 & ∗ † † ' b b = −κb† b + g b v c , dt  d † † κ b v c = −i(εc − εv − hωc − i )b† v † c + gf . dt 2. b† v † c = −igf /(εc −εv −hω −iκ/2) b† b =. 12 κ. & ∗ † † ' g b v c . 12 b† b(t) = f (t) κ. |g|2 εc − εv − hω − i κ 2. .. b† b(t) = Cf (t). C. (1 + C). d f = −κCf . dt. C  1. τ. 1/κC C  1 ω0 τ 104. C1. C 106. C ≈. κτ. 1. F Q. ≤. F κτ. =. F Q ω0 τ.

(170) 1 τ. =. F τ. ( κ )2 |UQ (r0 )|2 2 cos(φ ) . (εc − εv − hω)2 + ( κ )2 |UQ |2 2. τ F <1. UQ (r0 ) κ. φ ωc. (εc − εv ). d.

(171) I 0. 500. 1000. 1500. 2000. t [ps]. γ = 0.001. τ. = 1ps.

(172) I. 1. 0.1. 0. 1000. 500. t [ps] ne = nh = 2 · 109 0.52. −2. ne = nh = 3 · 109 −2 −2 nQD = 3 · 109. 1500.

(173) 1010. 1011. −2. μ. 3 · 109. −2. 1.5.

(174) ωξ |Uξ (r)|. ρ. Qξ. ξ ωξ = ωξ (1 − b†ξ bξ  ≈ δξξ  b†ξ bξ  Q. k||. i ) 2Q.

(175) 1. Norm. Intensity. 0.1. 0.01. 0.001. 0.0001 0. 300. 900 600 Time [ps]. 1200. 1500 μ. 1× 109. fie fih. −2. 5× 109. −2.

(176) Intensity (arb. units). 0.1. 0.01. 6μm 4μm 2μm. 0.001. 1μm 0.0001. 0. 300. 900 600 Time [ps] 2 × 109. F ∝ Q/V. −2. 1200. 1500.

(177) r/R0. 0.5 0 −0.5. −131. −130. −129. −128. −127. ω − E. Qξ. ρ = 0. μ.

(178) Exc. Density 5.56 Wm-2. 0.56 Wm -2. 1.6 7W m -2 5.5 6W m -2. 16.67 Wm-2. Norm. Intensity [log. scale]. Norm. Intensity [log. scale]. d=5 μm. 6 μm. 4 μm. 3 μm 2 μm. -2. 25 Wm. 1 μm. -2. 30 Wm. 0 300 600 900 120015001800. 0. 300 600 900 1200 1500. Delay [ps]. Decay [ps]. 5μ −2.

(179) t=0.

(180)

(181)

(182)

(183) p. C3v p.

(184) g 2(τ ).

(185)

(186)

(187) φα |H|φβ  |φi . |φ = P i. . (e†i )ni. e. i nei =Ne. P j. (h†j )nj |0 . h. j nh j =Nh. .. |φ. H0e H0e =. . εi e†i ei .. i. φα |H0e |φβ  =. . εi nei (α)φα |φβ  = δα,β. i. nei (α) = 1 |φα  nei (α) = 0 H0h.  i. |i. εi ni (α).

(188) Hee =. 1 V e† e† ek el . 2 ijkl ij,kl i j. Hee φα |Hee |φβ  = φhα |φhβ φeα |Hee |φeβ  , |φλ . λ ∈ {e, h}. . |φλ  = P i. Hee. (a†i,λ )ni |0 . λ. i nλ i =Nλ. |i |φeα . |j. |φeβ . |k. |l. φeα |Hee |φeβ . Ne Ne = 0. |φeα  = |φeβ  φeα |Hee |φeα  =.  1 e ni (φα )nej (φα ) Vij,ji − Vij,ij . 2 i,j. Ne = 1 |φeα . |φ¯e . |φeβ  α ¯ |φeα  = (−1)Pα eα+¯ |φ¯e  , ¯ β. |φeβ  = (−1)Pβ e+ |φ¯e  . β¯ |φ¯e . α ¯. β¯. |φeβ . |φeα. 1 Vij,kl φ¯e |eα¯ e†i e†j ek el e+ |φ¯e  β¯ 2 ijkl  . = (−1)Pα +Pβ nei (φα ) Vαi,i . ¯ β¯ − Viα,i ¯ β¯. φeα |Hee |φeβ  = (−1)Pα +Pβ. i. |φ¯e .

(189) α = β Ne = 2. α ¯ 1 ,α ¯2. |φeα  = (−1)Pα. ¯ ,β ¯ β 1 2. |φeβ  = (−1)Pβ. eα+¯1 eα+¯2 |φ¯e  , e+ e+ |φ¯e  . β¯1 β¯2. . φeα |Hee |φeβ  = (−1)Pα +Pβ Vα¯1 α¯2 ,β¯2 ,β¯2 − Vα¯1 α¯2 ,β¯1 ,β¯2 . Ne > 2 φeα |Hee |φeα = 0 .. Heh =. . Vij,kl h†i e†j ek hl .. ijkl. φα |Heh |φβ  =. . Vij,kl φeα |e†j ek |φeβ φhα|h†i hl |φhβ  .. ijkl. φeα |e†j ek |φeβ . Ne = 0 φeα |e†j ek |φeβ  = δj,k nej (φα ) . Ne = 1. |φeα . |φ¯e . |φeβ . φeα |e†j ek |φeβ  = (−1)Pα +Pβ δj,α¯ δk,β¯ . Ne > 1. e†j ek φeα |e†j ek |φeβ  = 0 ..

(190) z 1 † (a ai↑ − a†i↓ ai↓ ) , 2 i i↑  † ai↑ ai↓ , S+ = Sz =. i. S− =. . a†i↓ ai↑ .. i. . a†iσ ajσ ,. σ. . 1 Vijkl a†iσ a†jσ akσ alσ 2 ijkl iσ σσ      †    †.  †  = εi aiσ aiσ + Vijkl a†iσ alσ ajσ akσ − δlj aiσ akσ. H=. εi a†iσ aiσ +. σ. i. σ. ijkl. σ. σ. Vijkl. i. j  σ. a†iσ akσ cv. H cv. =. 1 Viσλ,jσ λ ,kσ λ ,lσλ a†iλσ a†jλ σ akλ σ alλσ 2 ijkl σσ  λλ. λ λ. σ σ.

(191) Viσλ,jσ λ ,kσ λ ,lσλ = Viσ,jσ ,kσ ,lσ. c. ↑. v. ↓. 1 † S˜z = (a ai,c − a†i,v ai,v ) =: Pz , 2 i i,c  † S˜+ = ai,c ai,v = P † , i. S˜− =. . a†i,v ai,c = P. i. P [H cv , P] = 0 P. H0cv =. H0cv. Viσλ,jσ λ ,kσ λ ,lσλ = Viσ,jσ ,kσ ,lσ cv  c †  v † = i εi ai,c ai,c + i εi ai,v ai,v εci = εvi.  εc − εv  †  εc + εv  †. i i i i ai,c ai,c + a†i,v ai,v + ai,c ai,c − a†i,v ai,v . 2 2 i i εci. −. εvi. Pz , P † ,. P. (εci − εvi )Pz. [H cv , P] = [H cv + H0cv , P] = [H0cv , P] = (εci − εvi )[Pz , P] = −(εci − εvi )P .. P.

(192) . λλ Vijkl = Vijkl. λ ∈ c, v. εh. εe. s p {εhi }i. {εei }i. → {εci }i. {εvi }i. → p p. s. K. Tn = 1. T. n. z λ A A(α|ψ + β|φ) = αA|ψ + βA|φ α∗ A|ψ + β ∗ A|φ. n. A(α|ψ + β|φ) =.

(193) 2π. m = 0, 1, . . . , n − 1. λ = ei n m. n>2. K. Kψ(r) = ψ ∗ (r). [H, K] = 0. T ψ(r) = ψ(T −1 r). T. KT ψ(r) = Kψ(T −1 r) = ψ ∗ (T −1 r) = T ψ ∗ (r) = T Kψ(r) , K. K. H T. T. φ(r). H. T. E. λ n > 2 H(Kφ(r)) = K(Hφ(r)) = E(Kφ(r)) T (Kφ(r)) = K(T φ(r)) = λ∗ (Kφ(r)) ∗ λ = λ φ(r) Kφ(r) T Tn = 1 n>2 K T. 2π 3. R. z. n=3. IC4z C2z C2z IC4z. n = 2 n=4. Q. αi.

(194) k|| ω αs1 (ω) αs2 (ω) [αs1 , αs2]. α |k|||. k0 + Δk/2. / 2 k⊥ + k||2 = ω/c. k0 k0 − Δk/2. αs2. αs1 αi |k⊥ | |k⊥ | |k|| |. αi. |k⊥ | |k|| |. |k|| | αs1. αs2. ω0. αs1. αs2. ω 2 k⊥ + k||2 = ω02/c2. ω0 = ck0 (0, k0 ) αs1 = arcsin k0 −Δk/2 k0. αs2. π 2. αs1 > αi αi 0. αs1.

(195) π 2. − αs1. π 2. |˜ gωi |2. |˜ gωi |2 = ζ |˜ gωi |2 , ζ 1 − 34 Δk k Δk. 3 4. sin(αs1 ) + 14 sin3 (αs1 ). k0  Δk/2. Δλ λ0. ≈. ζ. 2 2 1 n1 −n2 π n1 n2. 90% κ. Lz → 0 Lz.

(196) b a. f (x)dx ≈. . f (xi )Δx. i.  {wi }. i. {xi }. wi f (xi ). f (x)  2π 1  2π i − sin( i) (b − a) + a , 2π N + 1 N +1  b−a 2π 1 wi = 1 − cos( i) . 2π N +1 N +1 xi =. i. 1 a. I(k) =  I(k) =. . . b. dk  V (k, k  )f (k  ) . {xi }. N. . V (k, k  ). k = k . . dk V (k, k )[f (k ) − f (k)α(k, k )] + f (k) α(k, k  ). dk  V (k, k  )α(k, k ) ,. α(k, k) = 1. f (k) α(k, k  ). QR. (NX − 1).

(197) d. d y(t) = f [y(t), t] dt. y(t = 0) = y0 ,. y(t) t Δy/Δt   y(t + Δt) = y(t) + f y(t), t Δt + O[(Δt)2 ], Δt Δt. Δt = 1 106.

(198)

(199)

(200)

(201)

(202) 1−x. x. 1−x. x.

(203) x. 1−x.

(204)

(205)

(206) 2. In0.2 Ga0.8 N.

(207) x. 1−x.

(208)

(209)

(210)

(211) • •. •. •. •. •. •. • • •. •.

(212) •.

(213) •. •. •. •. •. •. •. •. •. •. •.

(214) •. •. •. •. •. •. •. •. •. •.

(215)

(216)

Referenzen

ÄHNLICHE DOKUMENTE

In this work, eight-band k·p theory including strain and piezoelectricity has been applied to the calculation of the electronic and optical properties of strained quan- tum dots

Since the two holes in the ground state have to have zero total spin due to the Pauli principle, the energetic structure is governed by the exchange interaction between one electron

Dohler, Valence- band structure of self-assembled InAs quantum dots studied by capacitance spec- troscopy, Appl.. Maan, Coulomb-Interaction-Induced Incomplete Shell Filling in the

Observation of normal-mode splitting for an atom in an optical cavity. Ex- traction of the betta-factor for single quantum dots coupled to a photonic crystal waveguide.

In this work, the carrier dynamics and electronic properties of self-organized semicon- ductor quantum dots are studied by depletion-layer capacitance transient spectroscopy (or

Violations of equation 2.19 were predicted to arise in the resonance fluorescence emitted by TLSs and constituted indeed the first direct evidence for the quantisation of

Once the nanoholes are created after annealing the substrate surface, the nanoholes have to be filled with a certain type of compound semiconductor material in order to make

The model of the planar cavity features a membrane of thickness h GaAs = 0.551 µm, which is much thinner than the one used in reality. This allowed to save computational resources