• Keine Ergebnisse gefunden

WLAN - 1997 bis heute

N/A
N/A
Protected

Academic year: 2021

Aktie "WLAN - 1997 bis heute"

Copied!
25
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

www.inue.uni-stuttgart.d

WLAN - 1997 bis heute

Felix Fellhauer

ITG Workshop Sound, Vision & Games 22.9.2015, Hannover

Institute of Telecommunications Prof. Dr.-Ing. Stephan ten Brink

(2)

www.inue.uni-stuttgart.de

1 Why to talk about 802.11?

2 Process of Standardization

3 General Regulations

4 Milestones of 802.11

5 Outlook

(3)

www.inue.uni-stuttgart.de

Agenda

1 Why to talk about 802.11?

2 Process of Standardization

3 General Regulations

4 Milestones of 802.11

5 Outlook

(4)

www.inue.uni-stuttgart.de

Motivation

What is IEEE 802.11?

• IEEE: Institute of Electrical and Electronics Engineers

Conferences Journals

Standards Committees Protocols

Interfaces Methods . . .

• 802.11 Standardization Group

≈500Participants

≈300Voting Members Meetings every 2 months (alternating

Plenary/Interim“)

Standards Activities Board

Sponsor

IEEE 802 LAN/MAN

(LMSC) . . . Sponsor

802.1 Higher

Layer LAN Protocols

802.11

WLAN . . .

802.3 CSMA/CD

Ethernet

802.11a 802.11b . . . 802.11y

(5)

www.inue.uni-stuttgart.de

Agenda

1 Why to talk about 802.11?

2 Process of Standardization

3 General Regulations

4 Milestones of 802.11

5 Outlook

(6)

www.inue.uni-stuttgart.de

Actors and relations

802.11 standardization

group IEEE 802.11

Scientists

Vendors

Wi-Fi alliance sells the

standard

final standard problems

organizer

proposals

certification of products

inter- operability ideas

(7)

www.inue.uni-stuttgart.de

How Standards are Made

Idea!

Project Approval Process

Develop Draft Standard

(in WG)

Sponsor Ballot

IEEE-SA Standards

Board Approval Process

Publish Standard

Standard Valid (max. 10 Years) Revise Standard

Withdraw Standard Archive

Source: [standards.ieee.org, 2015]

(8)

www.inue.uni-stuttgart.de

Agenda

1 Why to talk about 802.11?

2 Process of Standardization

3 General Regulations

4 Milestones of 802.11

5 Outlook

(9)

www.inue.uni-stuttgart.de

What happened before?

1971 ALOHAnet [Kuo, 1981]

9600 bit/s 400 MHz

1985 Release of the ISM-Bands (433 MHz,900 MHz,2.4 GHz,5.7 GHz,61 GHz) 1988 WaveLAN by NCR (later AT&T)

alternative to Ethernet and Token Ring specified for ISM-Bands (900 MHzor2.4 GHz) DSSS/DQPSK,2 Mbit/s

Contributed its designs to IEEE 802.11 1990 first meeting of the 802.11 study group

1996 HIPERLAN by European Telecommunication Standards Institute (ETSI) 1998 Magic WAND project demonstrates OFDM modems for wireless LAN

(10)

www.inue.uni-stuttgart.de

Relevant ISM-Bands (unlicenced)

Band fmin fmax Bandwidth

900 MHz (755 MHz) (928 MHz) 5 MHzto32 MHz 2.4G 2.4 GHz 2.5 GHz 100 MHz

5G 5.15 GHz 5.725 GHz ≈600 MHz 60G 57.24 GHz 65.88 GHz ≈8640 MHz

• Channel width, EIRP, maximum Power Spectral Density, . . .

• one of the limiting factors (from engineering point of view)

• not static

• defined by BNA (Germany), OFCOM (United Kingdom), FCC (United States)

→location specific

(11)

www.inue.uni-stuttgart.de

Scope & Purpose

Scope

• specify MAC and PHY

• wireless connectivity

• local area (residence, school, laboratory, . . . )

• fixed, portable and moving stations Compared to cellular

• simple (no handover, base station protocols, . . . )

• cheap

• no telcos→business model benefits vendors

• both systems are getting closer

(12)

www.inue.uni-stuttgart.de

Agenda

1 Why to talk about 802.11?

2 Process of Standardization

3 General Regulations

4 Milestones of 802.11

5 Outlook

(13)

www.inue.uni-stuttgart.de

1st Milestone 802.11-1997

• Physical Interface Radio at2.4 GHz

FHSSDBPSK and DQPSK DSSS2GFSK and 4GFSK Infrared

• 1 Mbit/sand2 Mbit/s

• 5 MHz-Channels

5 channel spacing (25 MHz) for non interference

11 MHzsampling and22 MHz spreading

• released in 1997 after 7 Years of standardization

• simple and cheap

802.11 2.4 GHz 2 Mbit/s

(14)

www.inue.uni-stuttgart.de

2nd Milestone 802.11b (1999)

• Physical Interface Radio at2.4 GHz (same as 802.11)

• new MCS (High Access Rate) using CCK

(complementary code keying) 5.5 Mbit/s

11 Mbit/s

• Coding scrambling

convolutional code (optional)

• 5 MHz-Channels (same as 802.11)

• OFDM not allowed in2.4 GHz-Band

→dropped during standardization

802.11 2.4 GHz 2 Mbit/s 802.11b 2.4 GHz 11 Mbit/s

(15)

www.inue.uni-stuttgart.de

3rd Milestone 802.11a - for5 GHz(1999)

• Physical Interface5 GHzonly now usingOFDM

52 Subcarriers64 FFT 20 MHzChannel Bandwidth (16.6 MHzOCBW)

• new MCS up to54 Mbit/s BPSK, QPSK, 16QAM, 64QAM

• Coding

convolutional code R=1/2,3/4

• Market

technical difficulties in 1st-wave products802.11b more reliable and cheaper later significant adoption on enterprise due to capacity and reliability

802.11 2.4 GHz 2 Mbit/s 802.11b 2.4 GHz 11 Mbit/s

802.11a 5 GHz 54 Mbit/s

(16)

www.inue.uni-stuttgart.de

4th Milestone 802.11g - OFDM for2

.4 GHz(2003)

• Physical Interface2.4 GHzonly now using OFDM

(copied from 802.11a)

• same MCS as 802.11a, up to 54 Mbit/s

BPSK, QPSK, 16QAM, 64QAM

• Coding

convolutional code R=1/2,3/4

• implements 802.11 and 802.11b as fallback

• Market

widely deployed 802.11

2.4 GHz 2 Mbit/s 802.11b 2.4 GHz 11 Mbit/s

802.11a 5 GHz 54 Mbit/s 802.11g

2.4 GHz 54 Mbit/s

(17)

www.inue.uni-stuttgart.de

5th Milestone 802.11n - dualband (2009)

• Physical Interface2.4 GHzand 5 GHz

up to4×4MIMOwith4SS 20 MHzBandwidth at2.4 GHz

→72 Mbit/s

40 MHzBandwidth at5 GHz

→150 Mbit/s

max.4×150 = 600 Mbit/s BPSK, QPSK, 16QAM, 64QAM

• multipleBeamformingmethods

• Coding

convolutional code R=1/2,3/4,2/3,5/6

• Market

implemented in all new released productsreplaces 802.11g & a

802.11 2.4 GHz 2 Mbit/s 802.11b 2.4 GHz 11 Mbit/s

802.11a 5 GHz 54 Mbit/s 802.11g

2.4 GHz 54 Mbit/s

802.11n 2.4/5 GHz 72/150 Mbit/s

(18)

www.inue.uni-stuttgart.de

6th Milestone 802.11ac -5 GHz(2013)

• Physical Interface5 GHzonly

[Perahia and Stacey, 2013]

up to8×8MIMO with8SS 20/40/80 MHzBandwidth

→96.3/200/433 Mbit/s 80+80/160 MHzBandwidth

→867 Mbit/s

max.8×867=6936 Mbit/s MU-MIMOin downlink (AP to STA)

simplified Beamforming (sounding and feedback) adds256-QAM

• Market

first products in 2012

802.11 2.4 GHz 2 Mbit/s 802.11b 2.4 GHz 11 Mbit/s

802.11a 5 GHz 54 Mbit/s 802.11g

2.4 GHz 54 Mbit/s

802.11n 2.4/5 GHz 72/150 Mbit/s

802.11ac 5 GHz 6936 Mbit/s

(19)

www.inue.uni-stuttgart.de

7th 802.11ad -60 GHz(2012)

• Physical Interface61 GHzonly 4 Channels `a2.61 GHzBW Single Carrier up to 16-QAM, R=3/4

→4620 Mbit/s

OFDM up to 64-QAM,R=13/16

→6756.75 Mbit/s Beamforming

lesscrowded“ spectrum Drawbacks

huge path-loss (O2absorption) only LOS

• Usecases

Wireless Display / TV Content Wireless filetransfer

File sync (digital stores)

802.11 2.4 GHz 2 Mbit/s 802.11b 2.4 GHz 11 Mbit/s

802.11a 5 GHz 54 Mbit/s 802.11g

2.4 GHz 54 Mbit/s

802.11n 2.4/5 GHz 72/150 Mbit/s

802.11ac 5 GHz 6936 Mbit/s

802.11ad 61 GHz

7 Gbit/s

(20)

www.inue.uni-stuttgart.de

Agenda

1 Why to talk about 802.11?

2 Process of Standardization

3 General Regulations

4 Milestones of 802.11

5 Outlook

(21)

www.inue.uni-stuttgart.de

The Standardization Pipeline

Discussion Topics

Study Groups

Task Group without approved Draft

Working Group Letter Ballot

Sponsor Ballot

Published Amendment

Published Standard 802.11

-2012 802.11aa

Video Transport

802.11ae QoS Mgt Frames

802.11ad VHT60 GHz

802.11ac VHT5 GHz

802.11af TVWS 802.11

-2016

802.11ai FILS 802.11 AK

GLK 802.11 AQ

PAD

802.11ah

<1 GHz 802.11az

(NGP)

802.11aj CMMW 802.11ay

NG60 802.11ax

HEW LRLP

WNG

MACPHY

(22)

www.inue.uni-stuttgart.de

Outlook

• Current topics

Next Generation Positioning [Yang and Shao, 2015]

NG60 WiFi at60 GHz

WiFi LTE integration [Ling et al., 2015]

Internet of Things802.11ah sub1 GHz

• Overall trend

until now: more datarate future: more functionality

(23)

www.inue.uni-stuttgart.de

NG60 (2019) - Overview

• Reasons for60 GHzBand new spectrum just available huge bandwidth

RF technology is getting cheaper

• Upcoming problems huge pathloss

directionality

(two angular dimensions) blockage

MIMO and Beamtraining channel models

• Approaches

usage of raytracing for channel modeling

hybrid MIMO and phased array antennas

[Xin et al., 2015]

BB RF1

RF2 ...

...

d1

d2

l

(24)

www.inue.uni-stuttgart.de

Next generation Positioning - Overview

• Usecases

Navigation in public buildings Indoor geotagging

[Handte et al., 2015]

Home Audio

(follow me, positioning) . . .

• Requirements[Segev et al., 2015]

highly scalable (home to stadium) Non-AP Positioning

MAC & PHY modifications

• Research topics

Modification of Channel Model [Nahata et al., 2015]

Synchronization of APs measurement & estimation of TOA/AOA

(Fine Time Measurement, FTM)

RTT based:

AP1

AP2

AP3

r2 r1

r3

STA

×

RTT/AOA based:

STA r1

[Yang and Shao, 2015, Segev et al., 2014]

(25)

www.inue.uni-stuttgart.de

References

[Handte et al., 2015] Handte, T., Schneider, D., and Agardh, K. (2015).

Further Use Cases for Next Generation Positioning.

Technical Report IEEE 802.11-15/0834r0.

[Kuo, 1981] Kuo, F. F. (1981).

Computer Networks - The ALOHA System.

Journal of Research of the National Bureau of Standards, 86(6).

[Ling et al., 2015] Ling, J., Kanugovi, S., Vasudevan, S., and Pramod, A. (2015).

Enhanced capacity and coverage by Wi-Fi LTE integration.

Communications Magazine, IEEE, 53(3):165–171.

[Nahata et al., 2015] Nahata, S., Banerjea, R., and Kakani, N. (2015).

Preliminary Simulation Results for AoA Accuracy in 2.4 GHz using IEEE 802.11n channel models.

Technical Report IEEE 802.11-15/0784r0.

[Perahia and Stacey, 2013] Perahia, E. and Stacey, R.

(2013).

Next Generation Wireless LANs.

Second Edition. Cambridge University Press.

[Segev et al., 2014] Segev, J., Aldana, C., Kakani, N., de Vegt, R., Basson, G., Venkatesan, G., and Prechner, G. (2014).

Next Generation Positioning Beyond Indoor Navigation.

Technical Report IEEE 802.11-14/1193r0.

[Segev et al., 2015] Segev, J., Thornycroft, P., Stanley, D., Wang, Q., Hart, B., Pandey, S., Kakani, N., Roshdahl, J., Venkatesan, G., Chu, L., Au, E., Bajko, G., Wang, C., Rison, M., Tang, F., Aldana, C., Dua, P., and Wang, M. (2015).

802.11 NGP SG Proposed PAR.

Technical Report IEEE 802.11-15/0030r9.

[standards.ieee.org, 2015] standards.ieee.org (Sept.

2015).

How are Standards made?

www.standards.ieee.org/develop/process.html. [Xin et al., 2015] Xin, Y., Aboul-Magd, O., Sun, R., and

Calcev, G. (2015).

802.11ay Timeline.

Technical Report IEEE 802.11-15/0609r2.

[Yang and Shao, 2015] Yang, C. and Shao, H.-r.

(2015).

WiFi-based indoor positioning.

Communications Magazine, IEEE, 53(3):150–157.

Referenzen

ÄHNLICHE DOKUMENTE

ETSI Normen sind freiwillig. ETSI Normen sind öffentlich. ETSI Normen basieren auf einem Konsens. ETSI Normen sind im Interesse der Gesellschaft. ETSI Normen sollen die Basis für

Ein sinnvoller Kompromiss im Sinne mehrsei- tiger Sicherheit ist unserer Meinung nach die Entwicklung eines auf elektronischen Mün- zen basierenden Abrechnungssystems, bei dem

Die Last eines Wireless LANs nach IEEE 802.11 ist jedoch nicht nur von der Anzahl aktiver Clients pro Zelle, wie in Netzwerken mit fester Kanalzuweisung [FZ02], abh¨angig, son-...

In dieser Konfiguration wird das NPS als RADIUS-Server zur Authentifizierung von Wireless- Clients mit PEAP-Authentifizierung verwendet. Führen Sie die folgenden Schritte aus, um

Stellen Sie eine Verbindung über WLAN zwischen Ihrem Endgerät/PC und dem Kabel- Modem her, indem Sie den Netzwerknamen (SSID) des Kabel- Modems in der Auswahl

Mit der Cisco Unified Wireless Network Software Version 4.0 für Cisco Wireless Controller muss eine Shun-Anfrage an einen WLC gesendet werden, um das auf einem Controller

In diesem Dokument wird beschrieben, wie Sie eine Obergrenze für die Anzahl der Clients festlegen, die in einem Cisco Unified Wireless Network (CUWN) eine Verbindung zum WLAN

Manche Accesspoints können auch mehrere SSIDs gleichzeitig verwalten (z.B. eine für Gäste mit einfachem Passwort, welches oft gewechselt wird, und eine andere für die