• Keine Ergebnisse gefunden

Axonal regeneration in hippocampal and spinal cord organotypic slice cultures

N/A
N/A
Protected

Academic year: 2022

Aktie "Axonal regeneration in hippocampal and spinal cord organotypic slice cultures"

Copied!
106
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Axonal regeneration in hippocampal and spinal cord organotypic slice cultures

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel

von

Brenda Bonnici

aus Malta

Basel, 2008

(2)

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Josef Kapfhammer Prof. Markus Ruegg Prof. Cordula Nitsch

Basel, den 16 Oktober 2008

Dekan

Prof. E. Parlow

(3)

T ABLEOF C ONTENTS :

LISTOFABBREVIATIONS v

SUMMARY 1

1. GENERALINTRODUCTION 3

1.1 AxonaldegenerationintheCNS 3

1.1.1 TheimpactoftraumaticinjurytotheCNS 3 1.1.2 Theneurobiologyofaxonalregeneration 4

1.2 Factorsinvolvedinaxonregenerationfailure 6

1.2.1 Extrinsicfactors 6

a. Glialscar 6

b. Myelinassociatedinhibitors 7

c. Signallingmechanisms 9

Promotorsignals 9

Inhibitorysignals 10

1.2.2 Intrinsicfactors 12

1.3. Experimentalapproachestoimproveaxonalregeneration 13

1.3.1 Transplantationandcellreplacement 13

a. TransplantationofSchwanncellsorOECs 13

b. Transplantationofyoungcells 14

c. Transplantationofstemcells 14

1.3.2 Inhibitionoftheglialscar 15

1.3.3 Neutralisationofinhibitorymoleculesinmyelin 15 1.3.4 Modificationofsignaltransductionpathways 17

a. PKCinhibitors 17

b. RhoandROCKinhibitors 18

c. cAMPactivators 19

1.3.5 Summarytable 19

1.4 Hippocampus 21

1.4.1 Anatomicalstructure 21

1.4.2 Thehippocampalcircuits 22

(4)

1.5 Spinalcord 23

1.5.1 Majordescendingtracts 24

1.5.2 Ascendingtracts 25

a. Dorsalcolumn 25

b. Spinothalamictract 25

c. Spinocerebellartract 26

1.5.3 Propriospinalconnectionsinthespinalcord 26

1.6 Organotypicslicecultures 27

1.6.1 (Enterohinal)hippocampalorganotypicsliceculturemodel 28 1.6.2 Studiesthatpromoteregenerationoftheperforantpathway

inorganotypicslicecultures 29

1.6.3 Spinalcordorganotypicslicecultures 30

1.6.4 OrganotypiccoͲculturesystems 31

2. AIMSOFTHEPROJECT 32

2.1. Todevelopofanovelspinalcordorganotypicsliceculturemodel towhichallowsustobetterstudyspinalcordinjury 32 2.2. Toassessspontaneousregenerationofspinalcordfibresaftera

mechanicallesion 32

2.3. Toassesstheeffectivenessofvarioustreatments(interactingwith

varioussignaltransductionmechanisms)whichpromoteaxonal 33 regenerationinentorhinoͲhippocampalslicecultures

3. HIPPOCAMPUS 34

Modulators of signal transduction pathways can promote axonal regenerationinentorhinoͲhippocampalslicecultures

3.1. Abstract 35

3.2. Introduction 35

3.3. MaterialsandMethods 36

1. Organotypicslicecultures 36

2. Lesions 37

3. Immunohistochemistry 38

4. Analysisofslices 38

5. Semiquantitativeevaluationofregeneration 38

6. Statisticalanalysis 39

(5)

3.4 Results 39 1. Evaluationofaxonalgrowththroughamechanicallesionin

entorhinoͲhippocampalslicecultureslicesinvitro 39

2. Unlesionedanduntreatedcontrols 39

3. TreatmentwithproteinkinaseCinhibitors 40

4. TreatmentwithcAMPactivators 42

5. Othertreatments 42

3.5 Discussion 44

1. Regenerationofentorhinalfibresinorganotypicslicecultures 44 2. PromotionofregenerationbyPKCinhibitorsandcAMPactivators 45 3. Promotionofregenerationbyinhibitorsofothersignallingpathways 46

3.6 Conclusions 48

4. SPINALCORD 49

Spontaneousregenerationofintrinsicspinalcordaxonsinanovelspinalcord sliceculturemodel

4.1. Abstract 50

4.2. Introduction 50

4.3. MaterialsandMethods 51

1. Organotypicslicecultures 51

2. TreatmentwithRolipram 52

3. Immunohistochemistryandmicroscopy 53

4. Semiquantitativeevaluationofregeneration 53

5. Cryosections 54

4.4. Results 55

1. SagittalspinalcordsliceculturesmaintainventroͲdorsalpolarity 55 2. Neurofilamentstainingrevealslongitudinallyextendingfibersin

spinalcordcultures 56

3. Synapticcontactsandmyleinationinspinalcordcultures 58 4. Aftermechanicallesions,spinalcordfibresregeneratespontaneously 60 5. Comparablefibregrowthinculturesderivedfrommiceatpostnatal

agesP0–P6 62

6. Promotionofaxonalgrowththroughthelesionsitecanbe

inducedbypharmacologicaltreatment 63

4.5. Discussion 63

1. Spinalcordslicecultures 64

(6)

2. Synapticcontactsandmyleinationinspinalcordcultures 65 3. Spontaneousaxonalregenerationinspinalcordslicecultures 66

5. COͲCULTURES 68

AxonalgrowthinspinalcordorganotypicslicecoͲcultures

5.1 Introduction 69

5.2 Materialsandmethods 70

1. Spinalcord–cerebellarslicecultures 70 2. Cortexspinalcordslicecultures 70

3. Immunohistochemistryandmicroscopy 71

5.3 Results 72

1. Spinalcord–cerebellarslicecultures 72

a. Untreatedcontrols 73

b. TreatmentwithproteinkinaseCinhibitors 74

c. TreatmentwithcAMPactivators 74

2. Cortex–spinalcordcultures 74

5.4 Discussion 75

6. GENERALDISCUSSION 78

6.1 Useofvariousorganotypicsliceculturemodelstostudyaxonal

growthandregeneration 78

6.2 Modificationofsignaltransductionpathwaystopromoteaxonal

regeneration 79

6.3 OrganotypicsliceculturesversusinͲvivo 80

7. CONCLUSIONS&OUTLOOK 81

8. REFERENCES 82

9. ACKNOWLEDGEMENTS 92

10. CURRICULUMVITAE 93

(7)

L ISTOF A BBREVIATIONS :

Ab antibody

BDA biotindextranamine cAMP cyclicAMP

CNS centralnervoussystem

CSPG chondrotinsulphateproteoglycan CST corticospinaltract

DG dentategyrus

DIV daysinvitro

DRG dorsalrootganglion EC enterohinalcortex GAG glycosaminoglycan

GFX GF109203X

Gö Gö6976

GPI glycosylphosphatidylinositol MAG myelinassociatedglycoprotein MBP myelinbasicprotein

MOG myelinoligodendrocyteprotein

LY LY294002

NgR NogoReceptor

NGS normalgoatserum

OMgp oligodendrocyteͲmyelinglycoprotein OEC olfactoryensheathingcells

P0,P6 postnatalday0,postnatalday6 PBS phosphatebufferedsaline

(8)

PFA paraformaldehyde PI3ͲK phosphoinositide3Ͳkinase PKA proteinkinaseA

PKC proteinkinaseC

PNS peripheralnervoussystem PP perforantpath

PTX pertussistoxin

RGC retinalganglioniccells ROCK Rhokinase

RT roomtemperature

SC spinalcord

SCI spinalcordinjury TBI traumaticbraininjury

VAChT vesicularacetylcholinetransporter XSp xestospongin

(9)

S UMMARY :

Undernormalconditions,axonalregenerationafterlesionsisnotpossibleinmatureCNSbut canoccurinembryonicandearlypostnatalnervoussystems.Inrecentyears,anumberof possiblestrategiestoenhanceaxonalregenerationandeventuallytreatspinalcordandbrain injuries have been identified, some of which have been used successfully in animal experiments,buttillnowthereisstillnosuccessfultreatmentavailableforpatients.This problemispartlyduetothecomplexityoftheanimalexperimentswhichmakesitdifficultto comparedifferenttreatmentstrategies.

Inthisproject,wehaveusedorganotypicsliceculturemodelstotesttheeffectivenessof pharmacologicalcompoundsthatinterferewithvarioussignaltransductionmechanisms,to promoteaxonalregeneration.WeusedtheentorhinoͲhippocampalsliceculturestoassess regenerationofentorhinalfibersprojectingtothedentategyrusaftermechanicallesionsand treatment.Itwaspreviouslyshown(Pranget.al.,2001)thatthereisamarkeddecreasein regeneratingfiberswhenalesionismadeat6Ͳ7daysinvitroorlaterinslicesderivedfrom postnatalday5Ͳ6mice.Wetookthisasacontrolmodelwherethereislittlespontaneous axonalregeneration,addedtreatmentsonthedayoflesionandlatertracedforentorhinal axonswithbiotinylateddextranamine(BDA).Inthisstudyitwasshownthatcompounds actingonthecAMP,PKCandGͲproteinscanpromoteregeneration.Furthermore,wehave identifiedtheinhibitionofthePI3ͲkinasepathwayandtheIPͲ3receptoraspotentialdrug targetsthatpromoteaxonalregeneration.

Inordertostudyaxonalgrowthinaspinalcordenvironmentwehavedevelopedaspinalcord longitudinalorganotypicsliceculturemodelwhichallowedustofollowaxonsalongtherostroͲ caudalextensionofthespinalcord.Slicesofcervicalspinalcordwerecutinthesagittalplane fromearlypostnatalmiceandweremaintainedincultureforvarioustimeperiodsupto4 weeks.Histologicalandimmunohistochemicalstainingsofthecultureshaveshownthatthese sliceculturesmaintaintheventroͲdorsalpolarityofthespinalcordandthatanintrinsicfibre projectiondevelopswhichrunsalongtherostroͲcaudalextensionofthespinalcordslice culture.Aftermechanicallesion,thesefibreshavetheabilitytoregeneratespontaneously demonstratingtheintrinsicabilityofthespinalcordforrepair,butthisabilityisdecreased

(10)

expressedsynapticmarkers.Theseculturescouldthusservealsoasamodelformyelin formationandsynaptogenesis.

Wehaveanalyzedthepotentialofaxonsfromlongitudinalspinalcordculturestogrowintoan adjacentsliceofcerebellartissue.Wecouldshowthatspinalcordaxonsdoenterthe cerebellarsliceinparticularwhenearlypostnatalspinalcordiscombinedwithpostnatal cerebellum.Pharmacologicaltreatmentswereusedtoenhanceaxonalgrowth.Similarlytoour findingsintheentorhinoͲhippocampalmodel,cAMPactivatorsandPKCinhibitorspromoted axonalgrowthfromthespinalcordtothecerebellum.Incoculturesoflongitudinalspinalcord sliceswithcorticalsliceswehaveshownthatfibersfromthecorticalslicesgrewextensively intothespinalcordsliceandextendedcaudallyforsubstantialdistances.

Ourresultsdemonstratethatorganotypicsliceculturescanbeausefultooltostudyaxonal growth andregeneration. Intrinsicspinal cordaxons havea considerablepotentialfor spontaneousregenerationintheearlypostnatalperiodandareabletogrowboththrougha mechanicallesionandintoanothertissue. Moreover,compoundsinterferingwithsignal transductionmechanisms,particularlycAMP,PKC,PI3ͲKinase,GͲproteinsandIP3receptors, wereabletopromoteaxonalgrowthandregenerationindiversesliceculturemodelsmaking theminterestingdrugcandidatesforthepromotionofaxonalregeneration.

(11)

1. G ENERAL I NTRODUCTION

1.1. AxonaldegenerationintheCNS

CNSdamagecanoccurinmanyways.Onemajorcauseisneurotraumawhichcanoccurafter headinjury,i.e.,traumaticbraininjury(TBI)orinthespinalcord,i.e.,spinalcordinjury(SCI).

OthermajorcausesarevariousneurodegenerativediseasessuchasAlzheimer’s,Parkinson’s, and Huntington’s disease; neuroinflammatory diseases such as multiple sclerosis; and neurovasculardiseasessuchasstroke.Alltheseconditionswillresultinthelossofneurons andinthedamagetoaxonsleadingtoaseveredysfunctionoftheCNS.IntheadultCNS,the lossofneuronsnormallycannotbecompensatedbythegenerationofnewcellsfrom immature precursors, and damagedaxonal projections fail to regenerate(Cajal,1928).

However,axonsintheembryonicandearlypostnatalCNSdoregenerateafterinjury,anditis intheperinatalperiodthattheregenerativepotentialofaxonsislost(MartinGF,2000).Inthis thesiswehaveusedtheinvitromodelsystemoforganotypicsliceculturesofdifferentCNS regionsinordertocharacterizethisdecreaseofregenerationandhavetriedtoinduceaxonal regenerationbyinterferingwithvarioussignaltransductionmechanisms.Becauseofthe extraordinaryimportanceofspinalcordinjuryandtheabsenceofasuitableinvitrosystemto studyaxonalgrowthandregenerationinthespinalcordwehavedevelopedanewspinalcord sliceculturemodel.

1.1.1 TheimpactoftraumaticinjurytotheCNS

Therearearound1.5millionpeopleeachyearwhosustainaTBIinUSAalone.Outofthese around230000arehospitalizedandsurvive,50000dieandaround85000sufferfromlongͲ termdisability.ThecostofTBIinUSin1985wasaroundUSD38billion(ThurmanDJ,1999).

Therearealso10000newSCinjuriesperyear,andaround250000peoplelivingwithSCIin USA.Thishasgreatimpactnotonlyonthelivesofthepatientsandtheirfamilies,butalsoon economy.ItisestimatedthattheannualcostofSCIisaroundUSD7.7billion(DeVivo,1997).

(12)

SCIisclassifiedbytheAmericanspinalcord injury association using the following ASIA impairment scale, as described in Fig. 1.1 (ThuretS,2006):ScaleA:completelesion,no motororsensoryfunctionispreservedinthe sacralsegmentsS4ͲS5;B:incompletelesion, sensorybutnotmotorfunctionispreserved belowtheneurologicallevelandincludesthe sacralsegmentsS4ͲS5;C:incompletelesion, motor function is preserved below the neurologicallevel,andmorethanhalfofkey musclesbelowtheneurologicallevelhavea musclegradelessthan3,i.e.activemovement withfullrangeofmotionagainstgravitybutno resistance; D: incomplete lesion, motor functionispreservedbelowtheneurological level,andatleasthalfofkeymusclesbelow theneurologicallevelhaveamusclegradeof3 ormore;andE:motorandsensoryfunction arenormal.

Fig.1.1ASIAImpairmentScale:Spinalcordinjury severityasclassifiedbytheAmericanSpinalCord InjuryAssociation(takenfromThuret,2006)

1.1.2 Theneurobiologyofaxonalregeneration

GroundͲbreakingworkbyRamónyCajalconfirmedthatafewdaysafterinjury,thereisaxonal sproutingatthelesionsite(Cajal,1928).Seventyyearslater,DavidandAguayoshowedthat retinalganglioniccells(RGCs)couldregeneratetheiraxonsthroughperipheralnervegrafts (DavidS,1981).CaroniandSchwabhavelatershownthatadultCNSisnonpermissivefor axonalregenerationtotakeplace,andthisisduetoaxongrowthinhibitorsassociatedwith myelin(CaroniP,1988a;CaroniP,1988b).

(13)

NowadaysweknowthatthereducedregenerationcapacityofCNSaxonsisduetoseveral factors,includingtheactivationofaxonalͲgrowthinhibitionrelatedtothelesion,thepresence ofinhibitorsintheadultCNSandothersignallingmechanismsinhibitinggrowth.Thesewillbe furtherdiscussedinthisthesis.Forregenerationtotakeplace,manyfactorsneedtobe targeted.Mostimportant,thedamagedneuronmustsurvive,andaxonkeepcontactorreͲ extenditsprocessesandmakesynapsestoitsoriginalneuronaltargets.Inaddition,these contactsshouldalsobefunctional,thustheaxonshouldberemyelinated.(seeFig.1.2;fora reviewrefertoHornerandGage,2000).

Fig.1.2 Stepsneededforaxonalregenerationtotakeplace(takenfromHornerandGage,2000)

In recent years, various ways to improve axonal regeneration have been identified.

Unfortunately,sofarwestillneedtohavebettertreatmentforSCIandTBI.Recently,there werevariouspromisingclinicalstudiesgoingonforSCI.Ofparticularinterestarethecell permeableRhoinhibitorCethrindevelopedbyBioAxoneonASIAcategoryApatients(Baptiste DC,2006;ThuretS,2006).AnotherclinicaltrialonASIAApatientsusingantiͲNogoͲAantibody, whichwasdevelopedbyM.Schwabandhiscolleagues(SchnellL,1990;FouadK,2004)is

(14)

1.2 Factorsinvolvedinaxonregenerationfailure

TherearevariousfactorsthataccountforaxonregenerationfailureinadultCNS(forareview, refertoGoldbergandBarres,2000).Thesecanbedividedintointrinsicandextrinsicfactors.

HerewewillhaveamoreinͲdepthoverviewofthesefactorsandthemechanismsbywhich theyeffectregeneration.Inalaterchapter(Chapter1.3)wewillthenhaveanoverviewofthe treatmentmethodstotargetthesemechanismsandinduceregenerativegrowth.

1.2.1 Extrinsicfactors:

a. Glialscar

Afterinjury,theglialscarisoneofthemajorobstaclesforaxonalregenerationtotakeplace (Fig.1.3,SilverJ,2004).Theglialscaractsbothasaphysicalbarrier,butalsoinhibitsaxonal growthduetoinhibitorymoleculeswithinthescaritself(DavidS,2003).

Oninjury,microglia,oligodendrocyteprecursors,meningealcellsandastrocytesareattracted tothelesionsite.Thisformsathickcellularbarrierwhichinhibitsaxonsfromcrossingthrough thescar.TheseaxonsweredescribedbyRamónyCajalashaving‘dystrophicendballs’which hethoughtareincapableofregeneration(Cajal,1928).Laterstudiesshowthattheseendings arehighlyactivestructures,whichdonotlosetheirabilitytoregenerate.Moreovertheglial scarrequiresacertaintimetomatureandblockaxonalgrowth(SilverJ,2004);inadultratsit can take around 2 weeks (Berry M, 1983). This gives a ‘window of opportunity’ for regenerationtotakeplace.Theglialscarasaphysicalbarrieralsohasabeneficialeffect,asit canisolatetheinjurysiteanddecreasethe areaofinflammationandcelldeath(YiuG, 2006).

Fig.1.3 Glialscarformationthroughalargestab lesionAstrocytesalignatthelesionsiteforminga barrierwhichinhibits growth. Later,astrocytes produceCSPGswhichalsoinhibitgrowth(taken fromSilverandMiller,2004)

(15)

Reactiveastrocytesintheglialscararerichinproteoglycans,particularlyCSPGs(including aggrecan,brevican,neurocan,versican,phosphacanandNG2)whichinhibitaxonalgrowth (McKeonRJ,1991).CSPGsecretionstartswithin24hafterinjuryandcanlastforseveral months(JonesLL,2003).CSPGshaveagrowthinhibitingeffect,althoughinsomecasesthey canalsohavegrowthpromotingeffect,andduringdevelopmentplayaroleinguidingaxonsto theirappropriatedestinations(SnowDM,1990).CSPGsaremoleculescharacterizedaslarge, highlysulphatedglycosaminoglycan(GAG)chainsattachedtoaproteincore.Theinhibitory effectofproteoglycansisduetoGAGandcanbeneutralizedwithchondrotinaseABC,an enzymethatremovesGAGchainsfromtheproteincore(SilverJ,2004).Itisthoughtthatthe inhibitoryeffectofCSPGsismediatedthroughasignallingpathwayinvolvingRhoA(Dergham P,2002).InadditiontoCSPGs,othermoleculesarepresentattheglialscarwhichmediate growthinhibitionandareupregulatedatthelesionsitesuchastenascines,Semaphorin3, ephrinͲB2andslitproteins(SilverJ,2004).

b. Myelinassociatedinhibitors

Inadditiontotheeffectsoftheglialscar,myelinassociatedinhibitorsplayamajorrolein hinderingaxonalregeneration.Infact,beforethescarmatures,themainhindrancefor regenerationcomesfrominhibitormoleculesassociatedwithmyelin(Filbin,2003).These includeNogo,MAG,OMgP(Fig.1.4),andothers(suchassemaphorin4DandephrinB3which willnotbediscussedinthisthesis).Around20yearsago,Schwabandhiscolleaguesshowed thatCNSmyelincontainsmoleculeswhichinhibitaxonalgrowthandregeneration(CaroniP, 1988b).AmonoclonalantibodyagainstmyelinproteinnamedINͲ1(latercalledNogo)was thangeneratedwhichwasabletoatleastpartiallyneutralizetheinhibitoryeffectsofCNS myelin(CaroniP,1988a;SchnellL,1990).NOGOisprobablythebestknownmyelinassociated inhibitor.Itexistsin3formsNogo–A,–Band–C,whichoriginfromasinglegeneandhavea commonCͲterminaldomainof188aminoacidswhich‘anchors’theNogo;apropertyshared bythereticulonproteinfamily.Itwasindependentlystudiedby3differentlabs(ChenMS, 2000;GrandPréT,2000;PrinjhaR,2000)usingdifferentcloningapproaches;whichalso yieldeddifferentresultsrelatedtoaxonalregeneration.NogoͲAisthelargest,andishighly expressedonthesurfaceofoligodendrocytes(ChenMS,2000;GrandPréT,2000),andonthe innermostloopofmyelin(HuberAB,2002),whereitcancontactaxons.NogoͲAcontains2

(16)

receptor(NgR)aGPIanchoredprotein,hasbeenclonedbasedontheidentificationofNogoͲ66 (FournierAE,2001).NgRformsacomplexwithp75(WangKC,2002b),p75beingoneofthe coͲreceptorsforNogo,MAGandOMgp(WangKC,2002a).

MyelinͲassociatedglycoprotein(MAG)isanothermyelinassociatedneuritegrowthinhibitor (MukhopadhyayG,1994;McKerracherL,1994).Itisamemberoftheimmunoglobulin superfamily,containingfiveimmunoglobulinͲlikedomainsinitsextracellularregion.Itis expressedonbothCNSoligodendrocytesandPNSSchwanncellsandisthoughttobeinvolved intheformationandmaintenanceofmyelin.Inculture,MAGinducesaxonal(butnot dendritic)growthconecollapse(ShibataA,1998).Itsinhibitoryeffectisrestrictedtoadult neurons,whileinyoungneuronsithasagrowthͲpromotingeffect.Thistransitionoccurswith neuronalmaturationandisthoughttobecAMPdependant(CaiD,2002).

Another myelin associated inhibitor identified more recently is oligodendrocytes myelin glycoprotein OMgp(WangKC,2002b).OMgpisaGPI (glycosylphosphatidylinositol) –linked protein,andislocalizedatthesurfaceof myelin(MikolDD,1990).Itisnotonly highly expressed in oligodendrocytes, butalsoinseveralneurons(HabibAA, 1998)andinthePNS(MikolDD,1990).

Fig.1.4 MyelinAssociatedInhibitorsinhibit axonal regeneration through various receptors.(modified fromHannila et. al., 2007)

(17)

c. Signallingmechanisms

Varioussignallingmechanismscontributetoeitherthepromotionortheinhibitionofaxonal regeneration. Pharmacologicaltreatments targeting thesemechanismsshould thushelp improvegrowth.Thischapterattemptstogiveageneraloverviewofsuchmechanisms.In Chapter1.3.4aͲd,therelevantcompoundsaffectingthesemechanismswillbediscussedin furtherdetail.

Promotersignals

AwellknownpromoteriscAMP(seealsoFig.1.5).NeurotrophinsactivatecAMP(CaiD,1999) (byactivatingTrkandErkreceptors,whichinturnproducesatransientinhibitionofPDE4 activity).Inturn,cAMPactivatesPKA,whichthanactivatesCREB.Thiswillallowneuronsto overcomeinhibitorsofmyelinandinduceaxonalgrowth(HannilaSS,2008).Anincreasein cAMPalsoincreasesthelevelsofCa2+

within the neuron, which activates calcium – calmodulin – dependant protein kinase II (CaMKII) and also promotes axonal growth (Wen Z, 2004).Filbinandhercolleagueshave doneseveralstudieswhichshowthat on increasing cAMP, axonal regeneration is promoted. Of particularinterestispharmacological activity of the cAMP promoter Rolipram,whichcanbeapromising drugtoinduceaxonalregeneration.

Fig.1.5cAMPpathwayanditsagonistspromoteaxonalgrowth

Itiswellknownthatphosphoinositide3Ͳkinase(PI3ͲK)signallingpathwayaffectsgrowth, survival,andmovementofcells.Moreover,thispathwayplaysanimportantroleinaxonaland dendriticmorphogenesisduringnervoussystemdevelopment,particularlyaxonalelongation and guidance (RodgersEE, 2002).In addition, thePI3ͲK signallingisessential forthe maintenanceoftheneuronalconnectivitywithintheadultbrain(KwonCH,2006).Thereareat

(18)

totheaxonalgrowthcone;thisinhibitsdownstreamRhoactivation(discussedabove),thus promotingaxonalgrowth.PI3ͲKsignallingalsopromotesaxonalelongationbyactivatingAkt.

Inturn,AktinhibitsGSKͲ3ɴ,leadingtoincreasedmicrotubulestability.LY294002(LY)isa specificinhibitorofPI3ͲKactivity(VlahosCJ,1994).Whileitwasshownthatacutetreatmentof sensorygrowthconeswithLY294002hadacollapsingeffectongrowthcones,thesegrowth conesrecoveredrapidlyandresumedoutgrowthinthecontinuedpresenceofLY294002.

ChronicLY294002treatmentasappliedinourculturesmightdesensitizethePI3K/Aktpathway andmakeneuritesunresponsivetosignalsnormallyinducinginhibitionofaxonalgrowth throughinhibitionofthePI3K/Aktpathway.

InhibitorySignals

TheProteinKinaseC(PKC)pathway(Fig.1.6)isknowntoregulateaxonalgrowthbyactingon cytoskeletonregulatorslikeGAPͲ43(LauxT,2000).ProteinKinaseC(PKC)belongstothe familyofkinases,whichhavekeyrolesinregulatingmultiplecellularactivities.Activationof PKCmightbeinvolvedindifferentiationandinitiationofneuriteoutgrowthinPC12cells (KorshunovaI,2007);itisalsoinvolvedinthetransmissionofinhibitorysignalsleadingto growthconecollapse(ConradS,2007).MyelininhibitorsandCSPGsareshowntoinducePKC activation.Inturn,PKCactivatesRho(discussedlater)whichisinvolvedinsignaltransduction mechanismsinhibitingaxonalgrowth(SivasankaranR,2004).Blockingofthispathwayshould leadtoaxonalgrowth.Pranget.al.haveshownforthefirsttimethatpharmacological inhibitionofPKCactivitydoesindeedpromoteregenerativeaxonalgrowth.Sivasankaranet.al.

havetakenthisastepfurtherbyshowingthatdeliveryofthePKCinhibitorGö6967intothe lesionsitepromotesregenerationofdorsalcolumnaxonsinthespinalcordinͲvivo.Thismay alsoprovetobeapromisingtreatmentinthefuture.

Anotherwellknownintracellularsignallingmoleculewhichinhibitsaxonalregenerationis RhoA(Fig.1.6).TheRhofamilyofsmallGTPasesisknowntotransduceextracellularsignalsto theactincytoskeletontomodulategrowthconemotility.Whilesomeofthesemembers inducegrowth,RhoAinhibitsgrowthbyinducinggrowthconerepulsionandcollapse.Various groupshavedemonstratedthatRhoAisactivatedbymyelinassociatedinhibitors(YamashitaT, 2002,FournierAE,2003).MyelininhibitorsactivateRhoAbyrecruitingRhoͲGDI,which interactswithp75(NTR)toallowthereleaseofRhoͲGDPfromitsboundstateleadingtothe

(19)

releaseofRho(YamashitaT,2003).OneofthedownstreameffectorsofRhoisROCK(Rho kinase).TheactivationofROCKinducesgrowthconecollapsethroughitsmultipledownstream effectors.InanimalmodelsofSCI,deliveryoftheROCKantagonist,YͲ27632wasshownto promoteregenerationandfunctionalrecovery.

Fig.1.6 Signalsinhibitingaxonalgrowthandtheirantagonistdrugs

Pertussistoxin(PTX)inhibitssignaltransductionthroughthePI3K/Aktpathway(Fig.1.6).It actsbybindingtoGiͲandGoͲproteinstoinactivatethem(PostGR,1996).GͲproteinsareknown toinhibitcAMPandpromotePKCproduction;thusbyinhibitingGͲproteins,thereisan increasedcAMPlevelandimprovedaxonalregeneration.ItwaspreviouslyshownthatPTX allowsneurotrophinͲtreatedneuronstoovercomeinhibitionbymyelin(CaiD,1999;Igarashi M,1993).Inaddition,Pertussisinducedextensivegrowthinlesionedorganotypicslicecultures (PrangP,2001).Followingtheseresults,althoughinͲvivostudiesarecurrentlynotavailable, PTXandotherGͲproteininhibitorsshouldbefurtherinvestigatedasapotentialtreatmentof CNSinjury.

(20)

InadditiontoProteinkinaseC,theIP3signallingpathway(Fig.1.6)isalsoactivatedbymyelin inhibitorsthroughactivationofphospholipaseC(HasegawaY,2004)whichactsonbothPKC andIP3(seeFig1.6).PhospholipaseCactivationleadstothehydrolysisofPIP2toproduce diacylglycerol(DAG)andIP3(Berridge,1998).IP3thenbindstotheIP3receptortoinduce releaseofCa2+fromtheintracellularstore.DAGtogetherwithanelevationofCa2+directly activatesPKCtoinhibitgrowth.ActivationoftheIP3receptorthusalsomightbebeneficialfor inducingaxonalregenerationinaninhibitoryenvironment,althoughontheotherhandIP3 receptoractivationhasalsobeenimplicatedinthestimulationofneuriteoutgrowth(reviewed inHasegawaY,2004).AlthoughthegrowthpromotingeffectsofXestosponginhavenotyet beenstudied,itmightpromoteaxonalregenerationinaninhibitoryenvironment.

1.2.2 Intrinsicgrowthpotentialoflesionedaxons

Intrinsic factors are thought to influence axonal growth capability. The growth cone cytoskeleton modulators GAP43 and CAP23 (Skene JH, 1981; Aigner L, 1995), are downregulatedintheCNSduringdevelopment(LauxT,2000).Theseproteinscaninduceaxon elongationinadultDRGneuronsinvitro,andtriggeranincreaseinregenerationofDRGaxons inadultmiceafterspinalcordinjuryinvivo(BomzeHM,2001).ThedownregulationofGAP43 isinverselyrelatedtomyelination.Inadultratsmanipulatedtolackmyelinationinthespinal cord,GAP43expressionisstronglyincreased(KapfhammerJP,1994a;KapfhammerJP,1994b).

AnotherpotentialintrinsicstimulatorofaxonalgrowthistheantiͲapoptoticgene,BclͲ2.Itwas shown that BclͲ2 promotes regeneration of retinal axons in vivo (Chen DF, 1997).

Unfortunately,theseresultscouldnotbereproduced,andotherstudiesshowthatBclͲ2 overexpressionincreasescellsurvivalbutthereisnoregenerationbothinvivo(LodovichiC, 2001;InoueT,2002),andinvitro(SoléM,2004).

cAMPisalsoessentialinregulatingaxonalgrowth.ThereishighexpressionofcAMPlevels duringdevelopment.AxonalgrowthispromotedbyinhibitingPKA,adownstreameffectorof cAMP;thuspreventinginhibitionbyMAG.IntheadultCNS,cAMPlevelsarelowandare inhibitedby MAG(CaiD,2002).After experimental elevation of cAMPlevels (e.g.by conditioninglesionNeumannS,1999),thereisasignificantincreaseinregenerationinadult CNSafterlesion(SpencerT,2004).

(21)

1.3

Experimentalapproachestoimproveaxonregeneration

Variousapproachestopromoteaxonalregenerationandfunctionalrecoveryhavebeen studiedinmanylabs.Someofthesestudieshaveevenbeenextendedtouseinpatientsin clinicaltrialsandmightonedaybeusedtotreatTBIandSCI.Inthissectionwewillgeta generaloverviewofthevarioustreatmentmethodsandmechanismsusedtopromoteaxonal growth.

1.3.1 TransplantationandCellReplacement a.TransplantationofSchwanncellsandOECs

Aswehavediscussedearlier,axonalregenerationcanoccurinthePNSbutnotinthe CNS.Inthe1980s,Aguayoandhiscolleaguesusedthisideatograftpermissive SchwanncellsinCNStissue(Fig.1.7)(DavidS,1981;Bray,1987).Thisresultedinaxons growingwellintothegraftedPNS,butveryfewmanagedtoleavethegraftbacktothe CNS.Thustherewaslimitedfunctionalrecovery.

Fig.1.7 Grafting of PNS tissue in CNS done in the 1980s by Aguayo and colleagues(adaptedfromBray,1987)

Anewerapproachisthetransplantationofolfactoryensheathingcells(OECs).OECsare producedfromstemcellsintheolfactorymucosaandcanbeculturedfromtheadultolfactory bulbormucosa(RaismanG,2007).UnlikeSchwanncells,OECsaresupposedto‘crossback’

fromthegraftedtissuetotheCNS(LiY,1997)andmigrateoverlongdistanceswithinthehost tissue(RamónͲCuetoA,1998).Moreover,OECgraftspromotemyleination,growthfactor secretionandenhancementofsprouting,leadingtofunctionalrecoveryevenincompletely transactedSC(RamónͲCuetoetal.,2000).TheseoptimalresultsusingOECtransplantsledto theideathattheycouldprovidethebasisofanewtherapyinhumans.Aclinicalstudyinspinal

(22)

cordinjuredpatientswasrecentlydoneinChina.Unfortunately,therewerevariousmedical complicationsandnoclinicallysignificantfunctionalrecoverywasobserved(DobkinBH,2006).

b. Transplantationofyoungcells

Transplantationofyoungpermissivetissuecanalsopromoteaxonalgrowth.InastudybyLiet.

al.,‘old’hippocampalcultureswerecoͲculturedwith‘young’ECfromearlypostnatalrats.In theseculturestherewasarobustaxonalprojectionfromtheECtothehippocampus(LiD, 1995).ThesamegroupalsotransplantedembryonicECinadulthippocampusinͲvivo,and showedthattheamountofprojectionmadebythistissuedependsonthetimingofthe transplant(ZhouCF,1989).Inanotherstudy,humanembryonicneuraltissuetransplantedin ratsyieldedlongaxonalprojectionsalongthenigrostriatalandthecorticospinaltract(Wictorin K,1990).Inanadultratmodeloftemporallobeepilepsy,CA3wasgraftedfromyoungratsasa waytorestrainmossyfibersprouting.Intheserats,astrongaxonalprojectionformed, reducingtheamountofsproutingandseizures(ShettyAK,2005).

c. TransplantationofStemCells

Stemcelltransplantationisanotheralternativetohelpimproveaxonalrepair.Stemcellscan comefrombothfetalandadulttissue;butusingautologousadultprogenitorcellshasthe advantagesthatthecelltransplantsarenotrejectedandalsoreducesvariousethicalconcerns.

Adultstemcellscanbeobtainedfromvarioustissues,includingbrain,spinalcord,olfactory system,bonemarrowandblood.Moreover,nowadaysstemcellscanbeobtainedfromthe umbilicalcordandstoreduntilneedforuse.Varioussuccessfulstemcellstudieshavebeen performedinrodents(Schultz,2005).TransplantationofHSC(hematopoieticstemcells)and BMSC(bonemarrowstromalcells)fromadultbonemarrow(KodaM,2005);andNPC(neural progenitorcells)frombrain(KarimiͲAbdolrezaeeS,2006),promotedvariousdegreesof functionalrecoveryinmice.Someyearsago,BMSCwerealsotransplantedinSCIpatientsina smallclinicaltrial(Reier,2004).Althoughimprovementswereobserved,insuchatrialitwas difficulttohavecontrolsandthusassessproperlytheoutcomeofthetherapy.

(23)

1.3.2 Inhibitionoftheglialscar

Asdiscussedearlier,CSPGsarethemaininhibitorsofaxonalregenerationintheglialscar(Fig.

1.3).TheinhibitoryeffectofproteoglycansisduetoGAG(glycosaminoglycan)chains(SilverJ, 2004).SeveralstudieshaveshownthattheseGAGchainscanbedegradedbychondrotinase ABC,thusenhancingregeneration.Inratspinalcord,thistreatmentwasshowntoimprove regenerationofthenigrostriatalpathway(MoonLD,2001),andthedorsalcolumnsandthe CST,withimprovedfunctionalrecoveryinvivo(BradburyEJ,2002).Inadifferentstudy,this treatmentwascombinedwithSchwanncellgraftsinaspinalcordinjurymodel,andwas showntoimproveregeneration(ChauCH,2004).Itwasalsoshowninvitrothatanotherway ofovercominginhibitionbyCSPGsisbyinactivatingRho(DerghamP,2002).

Otherstudiestargetedotherpotentialgrowthinhibitorsintheglialscar,includingGFAPand EphA4. SpinalcordinjuredGFAP(MenetV,2003)andEphA4(GoldshmitY,2004)knockout miceshowimprovedregenerationandfunctionalrecovery.

1.3.3 Neutralisationofinhibitorymoleculesinmyelin

Inafirstattempttoneutralisemyelinassociatedinhibitors,INͲ1monoclonalantibodywas produced(CaroniP,1988a).INͲ1Abwasfoundtopromotelongdistanceaxonalregeneration andfunctionalrecovery(SchnellL,1990;BregmanBS,1995;ThallmairM,1998). Thiseffect wasobservedinvariousCNSlesionmodels.Moreover,itwasnotedtheINͲ1Ableadsto sproutingofbothlesionedandunlesionedaxons(SchweglerG,1995;ThallmairM,1998;

Z'GraggenWJ,1998).RecentlyanantiͲNogoͲAspecificantibodywasalsousedsuccessfullyto treatSCIinmonkey;whichyieldedpromisingresults,ie,axonalsproutingandfunctional recovery(FreundP,2006). ThisbringsusastepclosertothispromisingtherapyforCNS, particularlySCinjuredhumans.

TostudyNogofurther(Fig.1.8),independentstudiesfrom3differentlabsmadedifferent micedeficientinNogoͲA–onelackingNogoͲAand ͲB(KimJE,2004),onelackingNogoͲA (SimonenM,2003),whileinanotherstudybothknockoutmodelswerestudied(ZhengB, 2003). Although all these mice were phenotypically normal, myelin growth inhibitory propertiesduetoNogowereexpectedtobereduced.Surprisinglyconflictingresultswere

(24)

obtained.WhereastheStrittmattergroupreportedastrongimprovementinregenerationand functionalrecoveryinyoungmice(KimJE,2004);inthemodelfromtheSchwabgroupthe regenerationwasmoremodest,whichcouldpartlybeexplainedbytheupregulationofNogoͲ B(SimonenM,2003);ontheotherhandthemodelsfromtheTessierͲLavignegroupfoundno significantregenerationofcorticospinaltractfibers(ZhengB,2003).Itwasrecentlyshownthat thesevariationsinregenerationareinpartduetodifferencesinthegeneticbackgroundofthe usedmousestrains(DimouL,2006).

Fig.1.8 3 isoforms of NOGO. NOGOͲA is foundpredominantlyinCNSandcontains2 inhibitorydomains:a 66ͲaminoͲacid domain extracellularily (green), and aminoͲ NOGO intracellularily (taken from Goldberg and Barres,2000)

Inanattempttoaddressproblemsrelatedtoantibodydelivery,vaccinationagainstmyelin inhibitorswasperformedandrobustregenerationandfunctionalrecoverywereobserved afterlesioninthevaccinatedanimals(HuangDW,1999).LaterexperimentstargetingNogoͲA werealsoperformedsuccessfully,and,moreimportantly,regenerationwasalsoobtained whenusingthevaccineafterinjury(HaubenE,2001).

AnotherwaytopromoteaxonalregenerationistotargettheNgR.SomeyearsagoNogoͲ66 wasidentified(FournierAE,2001)asthereceptortowhichNogo,MAGandOMgparebinding toinhibitaxonalgrowth(WangKC,2002a).ItwassubsequentlyshownthattheNogoͲ66 receptorantagonistpeptideNEP1Ͳ40(blocksNogoonly)(GrandPreT,2002;LiS,2004)and NgR(310)(blocksNogo,MAGandOMgp)promoteregenerationandfunctionalrecovery(LiS, 2004).Inasimilarstudyp75,whichisacoͲreceptorofNgRwastargeted,buttherewasno regenerationpresentinthiscase(SongXY,2004).

SimilartotheNogomolecules,alsothemyelinproteinMAGhasbeenimplicatedinthe inhibitionofaxonalregeneration.UsinganantibodyagainstMAGithasbeensuggestedthat inhibitionofMAGpromotesaxonaloutgrowthandregeneration(MukhopadhyayG,1994).To verifytheinhibitoryeffectofMAGonregeneration,atransgenicmouse(MAGͲ/Ͳ)mousewas used.Afterinjuryinvivo,noincreaseinregenerationwasfound(BartschU,1995).Inanin vitrostudyusingmyelinfromMAGͲdeficientmiceanincreaseinnumberandlengthof

(25)

regeneratedfibreswasfoundwhencomparedtowildtypemicebutthepresenceoffurther importantinhibitorsinCNSmyelinofMAGͲdeficientmicewasacknowledgedinthisstudy(Li M,1996).AlthoughinhibitionofMAGalonedoesnotappeartobesufficienttoinduce regeneration,itmightcontributesignificantlytotheinhibitoryactionofCNSmyelin.

1.3.4 Modificationofsignaltransductionpathways

Inthischapterwewilldiscussfurthertheuseofsomeofthecompoundsinvolvedinsignal transductionandtheireffectonaxonalregeneration.Themechanismofactionforthese treatmentsisfoundinChapter1.2.1c.Inthisprojectmanyofthesecompoundswillbeusedin anattempttoimproveaxonalregenerationinorganotypicslicecultures.

a. PKCinhibitors

PKCisactivatedbyinhibitorspresentinmyelinandtheglialscar,andinhibitsaxonalgrowth.

Moreover, PKC activates its downstream effector Rho, which in turn inhibits growth (SivasankaranR,2004)(formechanismandantagonistdrugactionrefertoFig.1.6). Thus blocking PKC activity pharmacologically or genetically, should help improve axonal regeneration.Variousexperimentshavebeenpreformed,mostlyshowingthatblockingPKC inducesaxonalgrowth.ItwasshownthatmyelinassociatedinhibitorsandCSPGscouldinhibit neuriteextensionbyinhibitingPKC(SivasankaranR,2004),(HasegawaY,2004).Intheearly 1990s,thePKCinhibitorsGö6076(MartinyͲBaronG,1993)andGF109203X(ToullecD,1991), (MartinyͲBaronG,1993)wereshowntobeselectiveinhibitorsofPKC.WhileGö6076acts specificallyontheCa2+ͲdependentclassicalisoformsofPKC,GF109203Xwasshowntoinhibit mostisoformsofPKC(MartinyͲBaronG,1993).GF109203Xwasshowntostimulateaxonal growthinhippocampalorganotypicslicecultures(PrangP,2001).Inanotherattempttostudy otherPKCinhibitors(chelerythrineandstaurosporine)inorganotypicsliceculturesitwas foundthatregenerationofSchaffercollateralsisinhibitedbystaurosporine(byamechanism thoughtobeindependentfromPKC),butnotbythemorespecificPKCinhibitorchelerythrine (ToniN,1997).

(26)

Ontheotherhand,aninͲvivostudyinratsshowsthatintrathecaldeliveryofthePKCinhibitor Gö6976stimulatesdorsalcolumnaxonalregeneration(SivasankaranR,2004). Although furtherinvestigationsarerequiredtoshowhowPKCactivatesRho,PKCinhibitorshaveshown toplayanimportantroleinthetreatmentofaxonregenerationfailure. Inthefuture, combinationtherapiesusingdrugsactingonthesepathwaysmayshowtohavesynergistic effects.

b. Rho&ROCKinhibitors

RhoA, together with its downstream effector ROCK, are also known to inhibit axonal regeneration by inducing growth cone collapse (Yamashita T, 2003). Pharmacological strategies to block Rho could thus promote axonal regeneration (for mechanism and antagonistdrugactionrefertoFig.1.6).TheenzymeC3transferasecaninactivateRho,and treatmentwiththisenzymecanstimulateneuritegrowthbothinͲvitroandinͲvivo.Instudies withspinalcordlesionedanimals,deliveryofC3transferasepromotedCSTregenerationand improvedfunctionalrecoveryinmouse(DerghamP,2002),butnotinrat(FournierAE,2003).

InanotherstudyC3transferasetreatmentpromotedregenerationinadultratopticnerve afterinjury(LehmannM,1999).ThemainproblemofC3transferasetreatmentisthatitisnot membranepermeable,thusmakingitdifficulttodelivertothelesionsite.Anothercell permeableRhoinhibitor,Cethriniscurrentlybeinginvestigatedinaclinicaltrialonspinalcord injuredpatients(BaptisteDC,2006).

AnotherwayofinhibitingtheeffectsofRhoistotargetitsdownstreameffector,ROCK.Y– 27632,anATPcompetitiveantagonistthatblocksRhoactivationwasshowntopromote axonalregenerationandfunctionalrecoveryinspinalcordinjuredmice(DerghamP,2002)and rats(FournierAE,2003).

(27)

c. cAMPactivators

VariousstudieshavepreviouslyshownthatanincreaseincAMPlevelsimprovesurvivalofCNS neuronsinresponsetoneurotrophicfactors(GoldbergJL,2000).Asdiscussedpreviously,on elevatingcAMPlevels,thereisasignificantincreaseintheregenerativepotentialofaxonsin adultCNS(SpencerT,2004)(formechanismandantagonistdrugactionrefertoFig.1.5).cAMP regulatesseveralprocessesincludingaxonalresponsetoguidancecues,neurotrophicfactors andmyelinassociatedinhibitors(SongH,2001).Neurotrophintreatment(BDNFandGDNF), can overcomethe inhibitory effectofMAGand myelin(Song HJ, 1997; CaiD,1999).

Moreover,itisthoughtthatneurotrophinsareabletoelevateneuronalcAMPlevelsby inhibitingphosphodiesterase4(PDE4),theenzymewhichdegradescAMP(GaoY,2003;QiuJ, 2002;NeumannS,2002).cAMPinturnleadstoPKAactivationwhichconsecutivelyleadsto activationofCREB,whichinturnactivatesArginaseIexpression,anenzymerequiredfor polyaminesynthesis(CaiD,2002).BothPKAelevationandpolyaminesarethoughttoblockthe inhibitoryeffectofmyelin(Filbin,2003).

TherearesomepharmacologicaltreatmentswhichelevatecAMPlevels,whichincludethe cAMP analogues, spͲcAMP and dbͲcAMP; neurotrophins (BDNF, GDNF); Forskolin and Rolipram.ThePDE4inhibitor,Rolipramisoneofthetreatmentsusedinthisproject.Itreadily crossesthebloodbrainbarrieranditsdosehasanestablished‘optimal’therapeuticwindow.

Rolipramwasshowntopromoteregenerationandimprovefunctionalrecoveryonlesioned adultratSC(NikulinaE,2004).SofarRolipramwastestedinpatientsasanantidepressantina clinicaltrial,whichwasstoppedduetothedrug’ssideeffects(nausea)(WachtelH,1986).

Sincefortreatingspinalcordinjury,Rolipramneedsonlytobedeliveredforashorterperiodof time,thebenefitsmayoutweighthesideeffectsandthusitmightstillbeapromisingdrugfor thetreatmentofCNSinjury.

1.3.5 Summary

Table1.1isasummaryofthevariousapproachesusedtoimproveaxonalregenerationand functionalrecoverydiscussedabove.

(28)

Target Treatment Results&References TransplantandCellReplacement

SC

GraftsinCNS Robustregenerationinto,butnotoutofthe graftDavid,1981;Bray,1987

OEC GraftsinCNS RobustregenerationintoandoutofthegrafttothehosttissueLi,1997;

RamonͲCueto,1998;RamonͲCueto,2000

‘Young’

cells

1.YoungEC

2.YoungCA3 3.Neuroblasts

1.RobustaxonalprojectionfromtheECtothehippocampusinͲvitro

Li,1995

andinͲvivoZhou,1989

2.StrongaxonalprojectionpreventingsproutinginͲvivoShetty,2005

3.RobustaxonalprojectionsalongnigroͲstratalandcorticospinaltract

Wictorin,1990

Stem

cells

Variouse.g.HSC, BMSC,NPC

Various degrees of functional recovery Schultz,2005; Koda,2005; KarimiͲ Abdolrezaee,2006

GlialScar

CSPGs Intrathecal deliveryof chondrotinase ABC

ImprovedregenerationofthenigrostriatalpathwayMoon,2001,dorsal columnandCST,withimprovedfunctionalrecoveryBradbury,2002

inrat SCI

GFAP&

EphA4

Geneticdeletion Improved regeneration and functional recovery after SCI in GFAPMenet,2003andEphA4Goldshmit,2004

knockoutmice MyleinͲAssociatedInhibitors

MAG Geneticdeletion NoimprovementinregenerationinMAGͲ/ͲmiceBratsch,1995

NOGO 1.Genetic

manipulation

1. Results vary from regeneration & functional recoveryKim,2004;

Simonen,2003tonoregenerationZheng,2003

2.Antibody 2. Regeneration with both INͲ1 Ab in miceThallmir,1998; Bregman,1995;

Z’Graggen,1998

andantiͲnogoͲAspecificAbinmonkeysFreund,2006

3.Vaccination 3.RobustregenerationinexperimentstargetingmyelinHuang,1999and NogoͲAHauben,2001

NgR Intrathecal delivery

Robust regeneration and functional recovery with bothNEP1Ͳ 40GrandPre,2002

&NgR(310)Li,2004 p75 Geneticdeletion NoregenerationSong,2004 ModificationofSignalTransductionPathways

PKC inhibitor

1.GF109203X 2.Gö6976

1.Strongregenerationinhippocampalorganotypicslicecultureswith GFXPrang,2001

2.DorsalcolumnregenerationbutnoCSTregenerationwithGöͲ treatedSCIratsSivasankaran,2004

RhoA&

ROCK

1.C3transferase 2.YͲ27632

1. CST regeneration and improved functionalrecoveryin SCI in mouseDergham,2002

butnotinratFournier,2003

2. CST regeneration and improved functional recovers in SCI in mouseDergham,2002

andratFournier,2003

cAMP activator

cAMP,Rolipram

&Foskolin

AxonalregenerationandfunctionalrecoverywithRolipramNikulina,2004

GͲprot.

inhibitor

Pertussistoxin RegenerationinhippocampalorganotypicsliceculturesPrang,2001;

Igarashi,1993

Table1.1. Summaryofaxonalapproachestoimproveaxonalregeneration

(29)

1.4 Hippocampus

Thehippocampusislocatedinthetemporallobeofthebrainandisimportantforthe formationoflearningandmemory.

1.4.1 Anatomicalstructure

TheentorhinalͲhippocampalformation(heresometimesreferredtoashippocampus)hasa laminarorganisationandconsistsoftheentorhinalcortex(EC),dentategyrus(DG)and hippocampusproper(i.e.theCA1–CA3,cornusammonisregions).TheECisamajorrelay providingawiderangeofcorticalinputstothehippocampusandtransferringtheinformation processedinthehippocampusbacktothecortex.TheECisdividedinclearlydistinguished layers(layersItolayerVI).Thecellsthatgiverisetotheperforantpathwayaremainlypresent inlayersIIandIII.IntheDGthereiscontinuousneurogenesisgoingonevenintheadult;it alsoplaysaroleintheformationofnewmemories.TheDGisalsosubdividedinlayers,mainly thestratummoleculareandthestratumgranulare.TheaxonsofDGgranulecells,calledmossy fibres,extendtheiraxonstotheCA3pyramidalcells.Thesubiculumislocatedinthetransition areabetweentheentorhinalcortexandthehippocampus;andistheregionwhereaxonsare exitingthehippocampustotheentorhinalcortex.

ThehippocampusproperissubdividedintoCA1–CA3regionsandhasalaminarorganisation whichispreservedinthevariousregions.Theprincipalcellsarepyramidalcells(formingthe pyramidalcelllayer),whichareinterconnectedbyinterneurons.Theinnermostlayeristhe stratumorienswhichcontainsthebasaldendritesofthepyramidalneurons,whosecellbodies arefoundinthestratumpyramidale.NextintheCA1isthestratumradiatumandamore superficialstratumlacunosumͲmoleculare.Themossyfiberprojectionfromthedentategyrus whichcanbefoundinthestratumradiatum,andsynapseinthestratumlucidumendinthe CA3(AmaralDG,1989).

(30)

1.4.2 ‘Thehippocampalcircuits’

ThehippocampusformsauniͲdirectionalnetwork,andtraditionallyitisdescribedasa

`trisynapticcircuit`(AndersonP,1971;Fig.1.9).Basically,inputstartingfromtheECformsa projectiontotheDG(“perforantpath”,synapse1),whichisfollowedbyaprojectiontothe CA3pyramidalcells(“mossyfiberprojection”,synapse2),withthethirdprojectionfromthe CA3totheCA1pyramidalcells(“Schaffercollaterals”,synapse3).

Fig.1.9 Thehippocampaltrisynapticcircuit:inputfromtheECconnectswith DGinthePP,DGtoCA3asthemossyfiberprojectionandCA3toCA1asthe Shaffercollaterals(modifiedfromNeveset.al.,2008)

Amaincharacteristicofthehippocampusisitslaminatedorganization,inwhichdifferent afferentsinnervatedifferentlayersinahighlyorganizedfashion.Theperforantpathway originatesfromlayersIIandIIIoftheentorhinalcortex(Amaral,1993);withpyramidaland stellatecells(fromlayerII)projectingaxonsmainlytotheDG,whilesmallpyramidalneurons (fromlayerIII)projecttheiraxonstotheCA1ofthehippocampus.Theperforantpathfibers terminateintheoutermolecularlayerofthehippocampus,whiletheinnermolecularlayeris occupiedbyterminalsfromcommissuralaxons.ThemossyfiberpathwayextendsfromtheDG totheCA3pyramidalcells.MultiplegranulecellscansynapseontoasingleCA3pyramidalcell.

TheSchaffercollateralpathwayisderivedfromaxonsthatprojectfromtheCA3totheCA1 region.IpsilateralaxonscomefromCA3neuronsinthesamehippocampus,whilecontralateral axons(betterknownascommissuralfibres)comefromtheCA3oftheoppositehemisphere.

AxonsleavethehippocampusfromtheCA1throughthesubiculumandbacktotheentorhinal cortex.

(31)

1.5 Spinalcord

Thespinalcordprovidesa‘relay’forneuronsfrombraintotheperipheryandback.

Thespinalcordislocatedinsidethevertebralcanal,andrunsfromtheforamenmagnumto thefirstandsecondlumbarvertebrae.Itiscoveredbythespinalmeninges,whichfurther supportsandprotectstheSCwithin.TheSCismadeof31segments:8cervical(C1–C8),12 thoracic(T1–T12),5lumbar(L1–L5),5sacral(S1–S5),and1coccygeal.Inthecervicalpart:

C1participatesintheinnervationofneckmuscles,C2carriessensationfromthebackofthe headandscalpandmotorinnervationtomusclesintheneck,C3ͲC5innervatethediaphragm, andC5ͲT1providemotorcontrolfortheupperextremitiesandrelatedmuscles.Thespinal nervesenterandexitateachsegment.Sensorynerveswhichcontaintheircellbodiesinthe dorsalrootgangliacarryinformationtotheSCviathedorsalroots.Eachdorsalrootcontains theinputfromallthestructureswithinthedistributionofitscorrespondingbodysegment.

Dermatomalmapsportraysensorydistributionsforeachlevel.Thesemapsdiffersomewhat accordingtothemethodsusedintheirconstruction.Motorinformationiscarriedawayfrom theSCviatheventralroots.Thecellbodiesoriginatefromthegreymatteroftheventralspinal cord.

InacrossͲsectionofthespinalcordtheareaisdividedinthesoͲcalledwhitematterandgrey matter(Fig1.10).Thegreymatterandiscalledsobecauseitcontainscellbodies(thusmaking itlookdarker).Itcanbefurthersubdividedinto10layersofRexed(RexedI–X);layersI–VI constitutethedorsalhorn(sensorypart),layerVIIistheintermediatezone,VIIIandIX constitutetheventralhorn,andlayerXsurroundsthecentralcanal.Thewhitematterisonthe externalpartoftheSCandissubdividedinto3columns:thedorsalcolumnthatrelay somatosensoryinformationtothemedullaandinthemousecontainingthecorticospinaltract;

thelateralcolumncontainingaxonsfromsensory,motorandautonomiccontrol;theventral columncontainingmostlyaxonsdescendingfromthebrain.Thewhitemattercontainsthe descendingandascendingtracts.

Fig.1.10Transversesectionofthespinal cord showing grey and white matter (modifiedfromThuret,2006)

(32)

AscendingandDescendingtracts

Fig.1.11Spinalcord:Neuronsinvolvedinascendinganddescendingpathways (takenfromThuretet.al.,2006)

1.5.1 MajorDescendingtracts

Themaindescendingtractisthecorticospinaltract(CST),whichmainlyoriginatesinthe primarymotorcortex.CSTaxonscollecttoformalumpinthemedulla(calledpyramid).Inthe medullamostaxonscross(decussate)andcollectinthelateralcolumnofthespinalcord(in thehuman)andinthedorsalcolumns(intherodent).AxonsfromthelateralCSTsynapsewith alphamotorneuronsandinterneuronsmainlyfromRexedlaminaeIV,V,VI,andVII.TheCST decreasesinsizeatthemorecaudalspinalcordlevels,wherethefibersreachthedorsal surfaceofthespinalcord.CSTisrequiredforthecontrolofmovements.

(33)

1.5.2 Ascendingtracts

a. Dorsalcolumn

Thedorsalcolumnconsistsofsensoryaxonsascendingtothebrain.Thedorsalcolumnfibers haveafastervelocityandaccuracythanthoseofthespinothalamictractsandareresponsible forproprioceptionandsensationoflighttouch.Thedorsalcolumnfibersoriginatefromcell bodieswhichareagglomeratedinthedorsalrootganglionandhaveaperipheralbranch innervatingreceptorslocatedintheskinandacentralbranchenteringthespinalcord.The dorsalcolumnscanbefurthersubdivided:thefasciculusgraciliscontainsfibersfromsacral, lumbar,andthelowersixthoracicsegmentsandisresponsibleforlegsensation;whilethe fasciculuscuneatuscontainsfibersfromthecervicaltoT6oftheSCandisresponsibleforarm sensation.Theaxonsfromthedorsalcolumnterminateinthedorsalcolumnnucleiinthe medullaoblongata.Fromthemedulla,neuronsformanascendingbundlewhichsynapsesin thethalamus,andfromtheretheprojectioncontinuestoendintheprimarysomatosensory cortexlocatedinthepostcentralgyrus.

b. Spinothalamictract

Theconductionvelocityinthespinothalamictractisslowerandtheprojectionlessaccurate comparedtothedorsalcolumns,thistracttransmitscrudetypesofsensationstothebrain.

Thespinothalamictractconsistsoftwoparts:thelateralpartconcernedwithpainand temperaturesensationsandtheventralpartconcernedwithpressureandstrongtouch.The lateralspinothalamictractcarriesinformationfrompainandtemperaturereceptorsinthe skin,theventralspinothalamictractfromreceptorsofpressureandstrongtouch.Thesensory axonsenterthespinalcordthroughthedorsalrootandendinthedorsalhornofthegray matter.Eachaxonbifurcatesintoascendinganddescendingbranches,whichextendfor1–2 segmentsandthenenterthegreymatterofthedorsalhorntoterminateinRexedlaminaeI–

VI.TheaxonsfromthesecellscrossthemidlineandascendonthecontrolateralsideoftheSC toprojectviatheventralposteriornucleusofthethalamus,tothesomatosensorycerebral

(34)

c. Spinocerebellartract

Thespinocerebellartractprovidesinformationaboutthepositionofthebodyrelatedtoits surroundings;i.e.proprioception.Itcarriesinformationfromperipheralsensoryreceptors(in musclesandjoints)whichsendfastconductingmyelinatedaxonstotheClarke’scolumn,acell columninthelowerthoracicspinalcordgreymatter.Fromtherefiberscrossthemidlineand runtothecerebellumasthedorsalspinocerebellartract.Additionalspinocerebellartractsare the ventral spinocerebellar tract, the rostral spinocerebellar tract and the spinocuneocerebellartract.

1.5.3 PropriospinalconnectionsintheSC

PropriospinalneuronsoriginateandterminateintheSC andparticipate ininformation exchangeamongthespinalsegments.Propriospinalneuronsarepresentinconsiderable numbersintheSC,andaremostlymyelinated,thushavingslightlylargeraxonsthanother neuronspresentintheSC(ChungK,1983).TheirconnectionsascendanddescendtheSCand projecttovarioussitesincludinginterneuronsandmotorneurons.Theseneuronsarerequired forseveralbehaviouralandphysiologicalresponses,includingthecontrolofmovement.The axonlengthofpropriospinalneuronscanvary:someareshortascendanddescendonlyoneor two segments andsome long extending over several spinal cord segments. The long propriospinalneuronshaveaxonsthatascendanddescendintheanteriorfasciculusproprius toalllevelsoftheSC.Theseneuronshaveabilateralinfluenceonthemoremedialmotor neuronsandcoordinatemovementoftheneckandpelvis.Theaxonsoftheintermediate propriospinalneuronsextendforshorterdistancesintheventralpartofthelateralfasciculus propriusandinfluencethemotorneuronsthatinnervatethemoreproximalmusclesofthe limbs.Axonsfromthe shortpropriospinal neuronsareonlyfoundin thecervical and lumbosacralsegmentsandtravelinthelateralfasciculusproprius.Theseneuronsinfluence motorneuronsthatinnervatethemoredistalmusclesofthelimbs.

(35)

1.6 Organotypicslicecultures

Slicecultureshavebeenextensivelyusedinneurobiologyresearchparticularlyforstudies involvinggrowthandregeneration,butalsoforelectrophysiologystudies,synapseformation, and studies on several receptors.Variousmodels are available, including hippocampal, cerebellarandspinalcordmodels.

Therearedifferentwaysofpreparingorganotypicslicecultures(asexplainedbelowandinFig.

1.12).Thechoiceoftechniquedependsonthefinalthicknessoftheslicesandthesurvivaltime inculture(asreviewedbyGahwileretal.,1997).BasicallyCNStissueisdissectedandsliced into100–400ʅmsections.Theslicesarewashedtoremoveanydebris,andthenincubatedin anappropriategrowthmediumat37°Cwithsufficientoxygenation.Sterileconditionsneedto bekeptthroughouttheprocess.

Fig.1.12 Differenttechniquesusedforthepreparationoforganotypicslicecultures A.Rollertubemethod,B.MembranemethodandC.CultureDishMethod

(takenfromGähwiler,1987)

Inrollertubecultures,thetissueisembeddedinafibrinclotonacoverslipandthenplacedin aflatͲsidedplasticculturetubecontainingasmallamountofmedium.Thetubeisrotated slowly(10revs/h)toensurecontinuousalterationoffeeingandaeration.Theseculturescan surviveforseveralweeksandaresupposedtobecomethinnerthanthecorrespondingstatic membranecultures(Fig.1.12A;Gähwiler,1987).Inmembranecultures,slicesareplacedona

(36)

semiͲporousmembrane(millicellorTranswell),withmediumaddedatthebottomofthe membrane,whileoxygenisaccessedfromthesurfaceoftheculture,i.e.,theculturesare stationaryatanairͲmediuminterface(StoppiniL,1991).Theseculturescanalsosurvivefor severalweeks.Thiswastheculturemethodofchoiceforthisproject(Fig.1.12B;Gähwiler, 1987).Slicesculturedinpetridishesareplacedeitherdirectlyoncollagencoatedorembedded incollagengelsandaretotallycoveredbymedium.Theseculturesonlysurviveafewdaysand aremainlyusedforelectrophysiology(Fig.1.12C;Gähwiler,1987).

1.6.1 EntorhinoͲhippocampalorganotypicslicecultures

Hippocampalorganotypicslicecultureshavebeenusedextensivelynotonlytostudyaxonal growthandregeneration,butalsoforelectrophysiologystudies,andotherexperimentson various receptors. The entorhinoͲhippocampal perforant pathway develops normally in organotypicslicecultures(FrotscherM,1993),witharobustaxonalprojectionfromtheECto thehippocampus(LiD,1993).Thisprojectioncanbelesionedinvitrobycuttingthroughthe culturewithascalpelblade,andregenerationoftheentorhinalfiberscanbeassessed.

TovisualizefibersfromtheECtothehippocampusafterlesion,onecanuseeitherentorhinal cortexfromanimalswithdifferentgeneticbackgrounds,e.g.CB6micewithM6ratortauͲGFP mice;oraxonaltracingmethods.HippocampalsliceshavebeencoͲculturedwithECfromM6 (LiD,1993)andtauͲGFP(RadojevicV,2004)mice.Inbothcases,axonsfromtheEConlycould befollowedgrowingintothehippocampalpart.Fortracingthefibers,tracersinvarious coloursareavailable(e.g.biotin,BDA,DiI).Dependingonthetracerused,tracingcanbedone bothinͲvitroandinͲvivo(herewewillfocusonitsuseinͲvitro),andcanbeusedtotracefrom thecellbodytotheaxonterminal(anterograde)orviceversa(retrograde).Atracercanbe usedbothinthecrystalform,i.e.,byplacingthecrystalontopofthepartoftheculturetobe traced;andintheliquidform,i.e.,byusingamicrosyringetoinjectitintothetargetneuronal region.Tracers(withdifferentcolours)canbecombinedtovisualizefibersfromdifferent regionsofthebrain.OnecommontracerwhichisalsousedinthisprojectisBDA.BDAcanbe usedbothasananterogradeandasaretrogradetracer.Afterfixingthetissue,BDAcanbe developedwithavidincoupledeithertoDABortoafluorescentlabeltobeviewedeitherwith

(37)

lightorfluorescencemicroscopy(ReinerA,2000).InthisprojectwewillbeusingBDAinthe crystalformasananterogradetracer.

Itwaspreviouslyshownthatthereisamarkeddecreaseinfibersgrowingintoahippocampal slicewithincreasingtimeinculture(WoodhamsPL,1993).Whenalesionismadeat6–7days invitroorlaterinpostnatalday5Ͳ6mice,thereareveryfewregeneratingfibers(Fig.1.13;

PrangP,2001).Inthesecondpartofthisproject(Chapter3),wetakethisasacontrolmodel wherethereislittlespontaneousaxonalregeneration,andcheckwhethervarioustreatments (described previously and in Chapter 1.3.4) applied on the day of lesion can induce regeneration. A main advantage of

hippocampalsliceculturesisthatthey canbeeasilyculturedandmaintained for long periods of time, thus giving enoughtimeforaxonalregenerationto takeplace.Inaddition,biochemicaland pharmacologicaltreatmentsareeasyto performandcontrol.

Fig.1.13 Histogram of regenerating fibers. At DIV6, there is a sharp decrease in number of regeneratingfibers.(takenfromPrang,2001)

1.6.2 StudiesassessingaxonalregenerationofthePPinorganotypicslicecultures Inthisproject,westudytheeffectofcompoundsinterferingwithvarioussignaltransduction mechanismsonaxonalregenerationoftheperforantpathwayinorganotypiccultures.Similar studiesusingvariousapproacheshavebeendonebefore.GF109203X,aPKCinhibitor,and Pertussis,aGiproteininhibitor,treatmentshavebeenpreviouslystudied(PrangP,2001).

Thereisastrongregenerationinthesecultures(aswasalsoobservedinthisstudy).Inthis projectweextendthistreatmentstudy(ascanbeseeninTable3.1).

Studiesoftreatmentwithneurotrophicfactorsandgrowthfactorshavebeenperformed (PrangP,2001),(WoodhamsPL,1996).Withsomeofthesetreatmentsthereisnosignificant regeneration,whileGDNFandNT4(Prang),andaFGFandSchwanncellconditionedmedium

(38)

TheeffectofChABC(blockstheeffectofCSPG)andNEP1Ͳ40(blocksNogoͲ66bindingtoNgR) wasalsostudied(MingoranceA,2006).Withtreatmentsmadeimmediatelyafterlesion,both treatmentspromotedaxonalregeneration,althoughthecombinedtreatmentdidnothavea synergisticeffect.Interestingly,whenNEP1Ͳ40treatmentwasdelayed(atleast5daysafter lesion), axonal regeneration still occurred with a similar efficiency as with immediate treatment,thusshowingapromisingtimewindowwhenefficienttreatmentcouldstilloccur.

InastudybydelRioet.al.(delRioJA,2002),robust,layerspecificregenerationwasobserved wheninmatureenterohinohippocampalcultures,thehippocampalpartwasreplacedwith youngpermissivehippocampusenrichedinCajalͲRetziuscells,whilethematureECstayedin culture.Similartowhatisobservedinthedevelopinghippocampus,CajalͲRetziuscellsguide enterohinalaxonstotheirtargetlayers,i.e.,thereisformationofsynapticcontactswiththe correcttargetneurons.ThusCRderivedsignalscouldbeusedforrepair.

Inanotherapproach,BclͲ2transgenicmicewereusedtopreventapoptosisandpromote axonal outgrowth (Solé M, 2004). In these cultures, there was no improvement in regeneration,althoughcellsurvivalisimproved.

Muchmoreworkcouldbedonewiththismodele.g.combinationsoftreatments/grafting/

transplantations.

1.6.3 Spinalcordorganotypicslicecultures

Transverse spinal cord organotypic slice cultures have been very much studied both morphologically(DelfsJ,1989)andelectrophysiologically(RosatoͲSiriMD,2004).Inthese cultures the intersegmental connections of the spinal cordare lost. Developmentand distributionofvariousspinalcordneurons,includingsomaticandautonomicmotoneurons (BarberRP,1993)andinterneurons(PhelpsPE,1996)hasbeenextensivelystudied.

AtransverseorganotypicslicecultureofspinalcordcoͲculturedwithDRGandskeletalmuscle wasdevelopedtobeusedforelectrophysiologicalrecordings(BraschlerUF,1989).Later,the samelabusedthismodeltostudythestructureandfunctionofcentralsynapses(SpengerC, 1991),andtheelectricalpropertiesofmotoneurons,musclefibresanddorsalrootganglion

(39)

neurons(StreitJ,1991).Inanotherstudy,electrophysiologicalmeasurementsontransverse sectionsoforganotypicslicesweremadetomeasureexcitabilityofthespinaldorsalhorn, whichshouldreflectchronicpain(LuVB,2006).Themolecularmechanismforpathfindingand synapseformationofcorticospinalfiberswasfollowedusingtransverseSCcoͲculturedwith cortex(TakumaH,2002).LongitudinalspinalcordcultureswereusedbeforeinaspinalͲcord corticalcoͲculturesystem(KameiN,2004),butthemorphologicalpropertiesofthesecultures andtheregenerativeabilityoftheaxonswithinwerenotknown.

1.6.4 OrganotypiccoͲculturesystems

Inalaterpartofthisproject,differentcoͲculturemodelstostudyaxonalgrowthinspinalcord environmentwillbeintroduced.VariousorganotypiccoͲculturemodelshavebeenusedto assessaxonalgrowthandrepairinneuroscienceresearch.InentorhinoͲhippocampalcoͲ culturesECfromyoungrathasbeenshowntogrowintohippocampusfromoldmouse(LiD, 1995).Wehaveusedthisculturemodelfortheevaluationofpharmacologicalmodulationof signaltransductionpathwaysinordertostimulateaxonalregrowth(Chapter3). InacoͲ culturemodeloftheauditorysystem,themedialnucleusofthetrapezoidbodywasshownto projecttothelateralsuperiorolive(LohmannC,1999).CoͲculturesofcorticalandthalamic sliceshavebeenimportantforstudyingmechanismsofthalamocorticalprojections(BolzJ, 1992).Theconnectionsrelatedtothereflexarcwerealsostudiedusingaspinalcord–dorsal rootganglion–skeletalmusclecoͲculturesystem(SpengerC,1991);whiletheinnervations fromthedorsalrootgangliontothedorsalhornwasfollowedusingfoetalDRGscoͲcultures withspinalcordexplants(SmalheiserNR,1981).Asageneralfindingitisremarkablethatinall oftheseverydifferentpreparationsaxonalprojectionsmaintainahighdegreeoforderand specificity which makes such coͲculture models very suitable for the study of axonal projections.

(40)

2. A IMSOFTHE P ROJECT

Themain aimsofthis projectwere toestablish newandimprove currentlyavailable organotypic slice culture models to facilitate the testing of various pharmacological compoundswhicharethoughttoimproveaxonalregeneration.

2.1 Developmentofanovelspinalcordorganotypicsliceculturemodeltostudy spinalcordinjury

Invitromodelstostudyaxonalprocessesandregenerationhavesignificantadvantages:they couldbeusedtotestvariousapproachesforrepairofspinalcordinjury,withoutinitially needingtouseanimalstudies.

Organotypic slicecultures have previously beenused to assess axonal regeneration in entorhinoͲhippocampalandcerebellarcultures.Transversesliceculturesofspinalcordwere notsuitedforthistypeofstudy.Whilethecytoarchitectonicorganizationofthespinalcordis bestpreservedinthesecultures,thefiberprojectionsextendinginthelongitudinaldirection arelost.Inthefirstpartoftheproject,anovelspinalcordlongitudinalorganotypicslice culturemodelwasdevelopedallowingtofollowaxonsalongtherostroͲcaudalextensionofthe spinalcord.Slicesofcervicalspinalcordwerecutinthesagittalplanefromearlypostnatal miceandthepropertiesofsuchcultureswerethoroughlystudied.

ThemorphologicalpropertiesofthesecultureswerestudiedandcomparedwiththeinͲvivo situation.AnimportantaspectwaswhetherthesecultureswouldreallymaintaintheventroͲ dorsalpolarityofthespinalcord.

2.2 Evaluation of spontaneous regeneration of spinal cord fibres after a

mechanicallesion

Inthispartoftheproject,weinvestigatedtheabilityofintrinsicspinalcordaxonsto regenerateacrossalesion.Wetooktheculturedescribedabove(2.1)andintroduceda mechanicallesionbyatransversecutthroughtheculturewithascalpelblade.

Inaddition,weaskedwhethertherewouldbeadifferenceingrowthacrossalesionwith increasing age and increasing days in vitro. It was previously observed that in the hippocampus,withincreasingtimeincultureorwiththeuseofslicesfromolderpostnatal

(41)

animalstheregenerativepotentialoftheaxonsdecreased(Prangetal.).Eventuallywedida proofofprinciplestudyinvestigatingwhetherregenerationofintrinsicspinalcordfiberscould bestimulatedbyapharmacologicaltreatment.

2.3 Evaluation of the effectiveness of treatments which promote axonal

regenerationinhippocampalorganotypicsliceculturemodel

Axonalregenerationafterlesionisusuallynotpossibleintheadultcentralnervoussystembut canoccurintheembryonicandearlypostnatalnervoussystem.Hereweusedconditions wherethereisverylittleregenerationinthecultures,andtestedcompoundsfortheir effectivenesstoincreasefibregrowthacrossalesion.

InthisstudyweusedthemodelsystemofmouseentorhinoͲhippocampalsliceculturesto assessregenerationofentorhinalfibersprojectingtothedentategyrusaftermechanical lesionsandtreatmentwithpharmacologicalcompoundsinvitro.Thismodelhasbeenusedby others to study both axonal regeneration (using various methods discussed in the introduction)andfunctionalrecovery(usingelectrophysiology).Previousresultsfromourlab (Prangetal.2001)showthatinentorhinoͲhippocampalculturesthereisamarkeddecreasein regeneratingfiberswhenalesionismadeat6Ͳ7daysinvitroorlaterinpostnatalday5Ͳ6mice.

This DIV will be taken as a control model where there is little spontaneous axonal regeneration,inordertobeabletoassessthepotentialofvarioustreatmentstopromote regeneration.Byusingascoresystem,theamountofaxonalregenerationbothinthetreated culturesandtheuntreatedcontrolswasquantified.Wehaveusedcompoundsactingas modulatorsofsignaltransductionpathways,mainlycAMPactivatorsandPKCinhibitors,but alsoothercompoundsactingontheIP3andRhopathways.Wehaveonlyused1compound perculture,ie,nocombinationtreatments.

Referenzen

ÄHNLICHE DOKUMENTE

Taken together, this study shows that dendritic spines of hippocampal CA1 pyramidal neurons in organotypic slice cultures exhibit not only bidirectional functional

The aim of the present study was to investigate morphological plasticity in hippocampal organotypic slice cultures (Gähwiler cultures) and analyze the effect of NMDAR- and

Time-lapse imaging reveals highly dynamic structural maturation of postnatally born dentate granule cells in organotypic entorhino-hippocampal slice cultures.

cognitive appraisals, coping and the adjustment outcomes quality of life, participation and symptoms of depression. More specifically, I studied the hypothesis

Finally our study demonstrates that once collaterals from all CST components are formed they by and large persist long-term - in our experiments at least up to the end of

Sema7A is a molecule that regulates many functions in health and development that are important in recovery from SCI: Vascularization, immune response, astrocyte scaring and

animals at 17-22 months of age. GSK3ß and its role in neurogenesis... Decreased Wnt5a levels in the anti-aggregant Tau RDΔ-PP slices. Expression of the anti-aggregant Tau RDΔ-PP

MK-801, indomethacin or minocycline prevented the OGD-induced neuronal damage, cell proliferation and caused a decrease of OX-42+ microglia in the damaged area. Under