• Keine Ergebnisse gefunden

Concentration of H2

N/A
N/A
Protected

Academic year: 2022

Aktie "Concentration of H2"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Photos placed in horizontal position with even amount of white space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Presented by Jesse Phillips SAND2017‐3373 C

Example of Modeling 

Methodologies Applied in SOARCA

(2)

Hydrogen Deflagration

 Overview of the MELCOR Deflagration Modeling

 Shapiro implementation of default limits

 Overview of the SOARCA Deflagration Modeling

 Ignition source requirement

 Application of a Kumar inspired methodology

Applies a directional component to ignition criteria

Temperature correction to combustion H2 limit 

(3)

MELCOR BurnPackage Methodology

 Burns in MELCOR involve the following determinations

 Ignition Criteria – Mole fraction criteria permitting a burn to occur

Two limits may be defined (burns may also be disallowed in user specifies  volumes)

– Spontaneous deflagrations / Igniter initiated deflagrations

» Control function (CF) may be used to actuate an igniter

» Recent SOARCA modeling use the igniter CFs to incorporate all of the  ignition criteria

 Burn Rate – Moles of gases reacted during a time step (HECTR 1.5)

Burn Completeness – Mole fraction of combustible left at end of burn (solved  at start of burn)

Burn Duration – Duration of a given burn (solved at the start of burn)

– = Characteristic volume length / Flame Speed (HECTR Correlation)

Rate = (X(t) – BurnComplete)/(BurnDuration – TimeSpentBurning) 

 Propagation Criteria – Mole fraction criteria permitting a burn to transfer  to another control volume

Propagation directional ignition criteria (4%/6%/9%)

Ignition criteria check after Const(def=0.0)*BurnDuration

(4)

MELCOR BurnPackage Ignition Criteria

Shapiro Model – Spontaneous  Combustion

Constant limits 

Lower Flammabiltiy Limit (LFL)

10% H2(+CO adjusted)

Upper Flammabiilty Limit (UFL)

5% O2

Inerting Limit

55% CO2+ H2O

Control volume mole fractions are  evaluated against these limits

Note the use of “Air” implies set  N2/O2 concentrations

Ignition Zone

(5)

Shapiro Model

Shapiro Model –

Depicted on an XY plot

LFL – 10% Hydrogen

UFL –5% Oxygen (for  80/20 N2/O2 – 5% 

Oxygen corresponds to  25% “Air”)

Inerting Limit 55%

(6)

Kumar‐Inspired Model

 Integrating directionality (up/down/horizontal) with ignition criteria

Performed for Uncertainty Analysis sampling in recent SOARCA studies

Uniform distribution for the three possible directions

Lower flammability limits vary with regard to relevant flame direction

Data from Kumar* was employed

– Tabular functions using the diluent mole fractions to determine lower flammability limits

Upward directional flame front requires less hydrogen then downward traveling flame  fronts

Horizontal is taken as the average between upward and downward propagation

Lower flammability limits vary with atmospheric temperature

 Known ignition sources employed

Disable spontaneous ignition criteria

Adjust igniter ignition criteria to reduced ignition criteria (maintain CO/H2O ratio)

Create control function logic which combines ignition criteria and ignition source

H2+ CO limit; O2limit

Hot jet temperature at break site

Debris in cavity

(7)

Imposing Data

 Kumar investigated various  systems to determine 

up/downward limits

H2 – N2 – O2

H2 – CO2 – O2

H2 – H2O – O2

H2 – H2O – Air

 Kumar purports N2 may be  treated as a diluent in 

context of paper

0 2 4 6 8 10 12 14 16 18 20

0 20 40 60 80 100

Concentration of H2

Concetnration of Diluent XXX (in XXX/O2orAir)

Kumar Upward Flammability Limits

LFL N2/O2 LFL CO2/O2 LFL H2O/O2 LFL H2O/Air UFL O2 UFL Air

0 2 4 6 8 10 12 14 16 18 20

0 20 40 60 80 100

Concentration of H2

Concetnration of Diluent XXX (in XXX/O2orAir)

Kumar Downward Flammability Limits

LFLD N2/O2 LFLD CO2/O2 LFLD H2O/O2 LFLD H2O/Air UFL O2 UFL Air

(8)

SOARCA Compared to Default  MELCOR Model

 Applies the Air data set  for upward/downward  and computes horizontal  limit as the average from  the up and downward  ignition criteria limits

 Increases overall  envelope supporting  deflagrations

 Fidelity near inerting limit

0 5 10 15 20 25

0 20 40 60 80 100

Concentration of Combustible (H2)

Concentration of Diluents (CO2/H2O) in Air

Kumar/Shapiro Flammability Limits

LFLD H2O/Air LFL H2O/Air LFL H2 Shap.

UFL O2

Inerting Limit Shap.

(9)

Temperature Enhancement

 From Kumar

 Up/downward augmentation to ignition criteria LFLdir,aug = LFLdir,Kumar + Cdir *Tatm,Kumar

Cdir =  ‐1%/100C for downward and ‐0.5%/100C for upward

Tatm,Kumar = Delta between the present atmosphere temperature and the  temperature at which the limit was determined

Tatm,Kumar = (Tatm – 295.15 )

(10)

Fission Product Distribution with UA

 Discuss sources for modeling in SOARCA and SOARCA UA

 Show probability density function for gaseous iodine

 Discuss input generation and deck management used to 

perform UA 

(11)

SOARCA Fission Product Classes  Definition

 Modeling methodology draws from the following resources

Phebus experiments

Cs2MoO4used across all of SOARCA

Gaseous iodine (I2, methyl iodine neglected) only applied in SOARCA UA

– Prior best‐estimate SOARCA studies assume chemical form CsI only for iodine NUREG/CR‐7155, “SOARCA Project – Uncertainty Analysis of the Unmitigated  LTSBO of the Peach Bottom Atomic Power Station, Draft Report”

VERCORS, ORNL VI&HI, Phebus, and the CORSOR/ORNL‐Booth release models

Modification of the Booth‐ORNL model parameters

NUREG/CR‐7008, “MELCOR Best Practices as Applied in the SOARCA Project”

Modification of CORSOR/Booth Parameters in MELCOR

NUREG‐1465

Assumed gap fractions

(12)

Modeling Fission Products

 Pre‐defined mass for all classes

 No application of the class combination model

Prescriptive containment concentrations are being directly specified  within the fuel

 User must combines decay heat tables appropriately

 Specify radioactive mass for Cs (CsOH), CsI, Mo, Cs2MoO4

 SOARCA practice

 Class 2 – 5% of available Cs (all placed into the fuel gap)

 Class 4 – 0%

 Class 16 – All Iodine combined (5% placed into the fuel gap)

 Class 17 – Remaining Cs combined to form Cs2MoO4

Specifying radioactive mass in the fuel 

 Class 7 – Mo decremented by formation of Cs2MoO4

(13)

SOARCA UA Fission Product Class  Definition

 Pre‐defined approximate  compositions definition

Phebus test results provided  evidence of the chemical form  Cs2MoO4and persistence of 

gaseous iodine which are  used in  the SOARCA UA

Combination n for iodine  speciation 

Average peak percentage of  iodine observed as gaseous FTP0‐

3

5thaverage over experiment

3% 0.2% ~0.3% ~7.6%

~2.8%

Figure 4.1-20 - PDF

(14)

SOARCA UA Total Decay Heat

 Sampled – Time at Cycle

 Baseline decay heat power  curves for scenario initiating  at different times

 Time of shutdown 

correspond to 7, 200, and  505 days for BOC, MOC, and  EOC, respectively

(15)

Deck Organization Generation

Program MELCOR Include /deck/Main.inp CVH_INPUT

CVH_SC 3 1 COR_INPUT COR_SC 1

1 1020 <rep-Cor-X1> 1 2 1020 <rep-Cor-X2> 2 DCH_INPUT

Include /deck/DCH-RN/<REP-FileName> DCH_BLOCK RN1_INPUT

Include /deck/DCH-RN/<Rep-FileName> RN1_Block

Input Files

EXEC_INPUT

….

CVH_INPUT

Include /deck/Containment.inp CVH_BLOCK Include /deck/RCS-Loop-Z.inp CVH_Block Include /deck/SG-Z.inp CVH_BLOCK

….

FL_INPUT

MAIN.INP

Base Model Definition deck

(folder) RlzN.INP

UA Set (folder)

(unique files generated) DCH-RN-RlzN.INP DCH-RN

(folder)

(16)

DCH‐RN File Set

 Specifies total decay heat

 Class specific decay heat

 Class radioactive mass

DCH_EL ‘I2’ 100.0 10  ! Sampled value for mass 1 0.0e0 10.E5  ! Time of Cycle 2 2.0e0 9.5E5

3 ..

(17)

Conclusions

 Discussed the following:

 Implementation of a Kumar‐inspired deflagration model

Overview of the default Burn Package treatment

Modification of the LFL using Kumar’s data

 Iodine class speciation

General SOARCA distribution of classes

SOARCA UA inclusion of Phebus results

 Decay heat for different time of cycle

BOC, EOC, MOC

 Possible deck configuration for UAs

Referenzen

ÄHNLICHE DOKUMENTE

Physically sequential WRITES use Datapoint's record compressed file struct ure, where logical records span physical record boundaries, as in the following

Based on DIGITAL's field-proven PDP-ll/34 central processor and the Commercial Transaction System -500 (CTS-500) operating software, the D530 is one of several compatible

A single instruction, In-Out Transfer (see Central Processor), performs all in-out operations through the 36 bit In-Out Register. The address portion of this

If the RKWC has not overflowed at the end of a given sector, the function is continued at the next contiguous sector; however, if the last sector of the disk cartridge is

After decades of work in the area of visual recognition (in the multiple guises of object recognition, texture classification, and image retrieval, among others) there are still

If this is an output operation, a word is accessed from core memory before the transmission is started, by means of the address contained in the Block Control

When another cycle is desired, all that is needed is to pull the cycle clutch latch free of the sleeve. This will allow the right end of the cycle clutch spring to wind up,

Specific examples of recent products include a cellular phone LSI combining a low power consumption CMOS process and a 32-bit RISC processor core, a low power consumption display