General Linear Methods for Integrated Circuit Design

65  Download (0)

Full text

(1)

General Linear Methods for Integrated Circuit Design

Steffen Voigtmann

Oberwolfach, April 2006

(2)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Integrated circuit design

design constraints

design specifications

schematic generation

simulation and characterisation

specification met? release to

manufacturing

(3)

General linear methods for integrated circuit design – St. Voigtmann, p. 2

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Classical methods

I BDF

. artificial damping

-1 0 1

20 time 10 0

I Trapezoidal rule

. undesired oscillations

2

1 0 1 2

time π 2 π 0 2

I Runge-Kutta methods . high computational costs

0 30 60 90

problem size 30

20 10 0

computingtime

Runge Kutta BDF

(4)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Classical methods

I BDF

. artificial damping

-1 0 1

20 time 10 0

I Trapezoidal rule

. undesired oscillations

2

1 0 1 2

time π 2 π 0 2

I Runge-Kutta methods . high computational costs

0 30 60 90

problem size 30

20 10 0

computingtime

Runge Kutta BDF

(5)

General linear methods for integrated circuit design – St. Voigtmann, p. 2

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Classical methods

I BDF

. artificial damping

-1 0 1

20 time 10 0

I Trapezoidal rule

. undesired oscillations

2

1 0 1 2

time π 2 π 0 2

I Runge-Kutta methods . high computational costs

0 30 60 90

problem size 30

20 10 0

computingtime

Runge Kutta BDF

(6)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Classification of methods

I Linear multistep methods . low costs

. very successful (BDF) . not A-stable forp>2 I Runge-Kutta methods

. very good stability properties . stepsize change is easy . high costs

I General linear methods (GLM) . combine advantages

of both classes

. make new methods possible . provide unifying framework

for known methods

(7)

General linear methods for integrated circuit design – St. Voigtmann, p. 4

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Contents

Differential Algebraic Equations

General Linear Methods

Practical General Linear Methods

(8)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs of increasing complexity

A[Dx]0+Bx=q A[Dx]0+b(x,·) =0 A d0(x,·)+b(x,·) =0

Index2 Index1 Index0

ODEs

lin. DAEs

Hessenberg

nonlin. index-1DAEs circuit simulation

prop. stated index-2DAEs

(9)

General linear methods for integrated circuit design – St. Voigtmann, p. 5

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs of increasing complexity

A[Dx]0+Bx=q A[Dx]0+b(x,·) =0 A d0(x,·)+b(x,·) =0

Mx0=f(x,·)

Index2 Index1

Index0 ODEs

lin. DAEs

Hessenberg

nonlin. index-1DAEs circuit simulation

prop. stated index-2DAEs

y0 =f(y,t) ordinary differential equations

I well understood (theoretically, numerically)

I Butcher, Dahlquist, Gear, Hairer, Petzold, . . .

(10)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs of increasing complexity

A[Dx]0+Bx=q A[Dx]0+b(x,·) =0 A d0(x,·)+b(x,·) =0

Mx0=f(x,·)

Index2 Index1

Index0 ODEs

lin. DAEs

Hessenberg

nonlin. index-1DAEs circuit simulation

prop. stated index-2DAEs

E x0+Fx=q A[Dx]0+Bx=q

linear DAEs

I standard form (Hairer/Wanner, Kunkel/Mehrmann)

I prop. stated (M ¨arz, Balla, Kurina)

(11)

General linear methods for integrated circuit design – St. Voigtmann, p. 5

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs of increasing complexity

A[Dx]0+Bx=q A[Dx]0+b(x,·) =0 A d0(x,·)+b(x,·) =0

Mx0=f(x,·)

Index2 Index1

Index0 ODEs

lin. DAEs

Hessenberg

nonlin. index-1DAEs circuit simulation

prop. stated index-2DAEs

y0=f(y,z) 0=g(z)

DAEs in Hessenberg form

I Runge-Kutta (Hairer/Wanner, Kværnø)

I lin. multistep (Campbell, Gear, Petzold)

(12)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs of increasing complexity

A[Dx]0+Bx=q A[Dx]0+b(x,·) =0 A d0(x,·)+b(x,·) =0

Mx0=f(x,·)

Index2 Index1

Index0 ODEs

lin. DAEs

Hessenberg

nonlin. index-1DAEs

circuit simulation

prop. stated index-2DAEs

A d0(x,·)+b(x,·) =0 nonlinear index-1 DAEs (prop. stated)

I extension of decoupling procedure

I M ¨arz, Higueras

(13)

General linear methods for integrated circuit design – St. Voigtmann, p. 5

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs of increasing complexity

A[Dx]0+Bx=q A[Dx]0+b(x,·) =0 A d0(x,·)+b(x,·) =0

Mx0=f(x,·)

Index2 Index1

Index0 ODEs

lin. DAEs

Hessenberg

nonlin. index-1DAEs circuit simulation

prop. stated index-2DAEs

A d0(x,·)+b(Ux,·) +BTx=0

DAEs appearing in electrical circuit simulation

I index-2, no Hessenberg form

I Tischendorf, Est ´evez Schwarz (initialisation)

(14)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs of increasing complexity

A[Dx]0+Bx=q A[Dx]0+b(x,·) =0 A d0(x,·)+b(x,·) =0

Mx0=f(x,·)

Index2 Index1

Index0 ODEs

lin. DAEs

Hessenberg

nonlin. index-1DAEs circuit simulation

prop. stated index-2DAEs A d0(x,·)+b(x,·) =0 nonlinear DAEs with properly stated leading terms

I existence and uniqueness of solutions

I convergence results for numerical methods

(15)

General linear methods for integrated circuit design – St. Voigtmann, p. 6

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs in electrical circuit simulation

I Modified Nodal Analysis Aq(x,˙ ·)+b(x,·) =0

I analysis: tractability index . low smoothness requirements . use projectors (Pi,Qi,U,T, . . . )

and matrix sequences

I index can be determined topologically . look for CV loops and LI cutsets I index-2componentsTxare given by

. currents ofV-sources inCVloops . voltages of inductors andI-sources

inLIcutsets

I index-2componentsTxenter linearly Aq(x,˙ ·)+b(Ux,·) +BTx=0

V1

V2

VBB

VDD u4

u12 u1

u3

u2

u7

u6 u5

u11

u10

u9 u8

C

(16)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs in electrical circuit simulation

I Modified Nodal Analysis Aq(x,˙ ·)+b(x,·) =0

I analysis: tractability index . low smoothness requirements . use projectors (Pi,Qi,U,T, . . . )

and matrix sequences

I index can be determined topologically . look for CV loops and LI cutsets I index-2componentsTxare given by

. currents ofV-sources inCVloops . voltages of inductors andI-sources

inLIcutsets

I index-2componentsTxenter linearly Aq(x,˙ ·)+b(Ux,·) +BTx=0

V1

V2

VBB

VDD u4

u12 u1

u3

u2

u7

u6 u5

u11

u10

u9 u8

C

(17)

General linear methods for integrated circuit design – St. Voigtmann, p. 6

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs in electrical circuit simulation

Est ´evez Schwarz (2000) Cons. initialization for index-2 DAEs and it’s application to circuit simulation, PhD thesis

I Modified Nodal Analysis Aq(x,˙ ·)+b(x,·) =0

I analysis: tractability index . low smoothness requirements . use projectors (Pi,Qi,U,T, . . . )

and matrix sequences

I index can be determined topologically . look for CV loops and LI cutsets I index-2componentsTxare given by

. currents ofV-sources inCVloops . voltages of inductors andI-sources

inLIcutsets

I index-2componentsTxenter linearly Aq(x,˙ ·)+b(Ux,·) +BTx=0

V1

V2

VBB

VDD u4

u12 u1

u3

u2

u7

u6 u5

u11

u10

u9 u8

C

(18)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs in electrical circuit simulation (cont.)

A[Dx]0+b(Ux,·) +BTx=0 ➪ index-2 components enter linearly

I Idea: Introduce new variables

u=DP1x, w=P1D(Dx)0+ (Q0+Q1)x.

For a solutionxthis implies

x=Du+ (P0Q1+Q0P1)w+Q0Q1D(Dx)0.

I Consequences:

Ux=Du+ (P0Q1+UQ0)w, A[Dx]0+BTx= (AD+BT)w

F(u,w,·) =A[Dx]0+b(Ux,·) +BTx=0.

(19)

General linear methods for integrated circuit design – St. Voigtmann, p. 7

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs in electrical circuit simulation (cont.)

A[Dx]0+b(Ux,·) +BTx=0 ➪ index-2 components enter linearly

I Idea: Introduce new variables

u=DP1x, w=P1D(Dx)0+ (Q0+Q1)x.

For a solutionxthis implies

x=Du+ (P0Q1+Q0P1)w+Q0Q1D(Dx)0.

I Consequences:

Ux=Du+ (P0Q1+UQ0)w, A[Dx]0+BTx= (AD+BT)w

F(u,w,·) =A[Dx]0+b(Ux,·) +BTx=0.

(20)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

DAEs in electrical circuit simulation (cont.)

A[Dx]0+b(Ux,·) +BTx=0 ➪ index-2 components enter linearly

I Idea: Introduce new variables

u=DP1x, w=P1D(Dx)0+ (Q0+Q1)x.

For a solutionxthis implies

x=Du+ (P0Q1+Q0P1)w+Q0Q1D(Dx)0.

I Consequences:

Ux=Du+ (P0Q1+UQ0)w, A[Dx]0+BTx= (AD+BT)w

F(u,w,·) =A[Dx]0+b(Ux,·) +BTx=0.

(21)

General linear methods for integrated circuit design – St. Voigtmann, p. 8

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Local existence and uniqueness of solutions

V. (2004) General linear methods for nonlinear DAEs in circuit simulation, SCEE

Theorem.

I The properly stated index-2DAE

F(u,w,·) =A[Dx]0+b(Ux,·) +BTx=0, F(u0,w0,t0) =0,

is locally equivalent to w(u0,t0) =w0, F u,w(u,t),t

=0.

I For everyx0∈IRm, the initial value problem

A[Dx]0+b(Ux,·) +BTx=0, DP1x(t0) =DP1x0.

is uniquely solvable. The solutionx=Du+z0+z1satisfies u0 =f u,w(u,t),t

, z1=P0Q1w(u,t), z0 =g u,(Dz1)0,t .

(22)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Local existence and uniqueness of solutions

Theorem.

I The properly stated index-2DAE

F(u,w,·) =A[Dx]0+b(Ux,·) +BTx=0, F(u0,w0,t0) =0,

is locally equivalent to w(u0,t0) =w0, F u,w(u,t),t

=0.

I For everyx0∈IRm, the initial value problem

A[Dx]0+b(Ux,·) +BTx=0, DP1x(t0) =DP1x0.

is uniquely solvable. The solutionx=Du+z0+z1satisfies u0 =f u,w(u,t),t

, z1=P0Q1w(u,t), z0 =g u,(Dz1)0,t .

(23)

General linear methods for integrated circuit design – St. Voigtmann, p. 8

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Local existence and uniqueness of solutions

V. (2004) General linear methods for nonlinear DAEs in circuit simulation, SCEE

Theorem.

I The properly stated index-2DAE

F(u,w,·) =A[Dx]0+b(Ux,·) +BTx=0, F(u0,w0,t0) =0,

is locally equivalent to w(u0,t0) =w0, F u,w(u,t),t

=0.

I For everyx0∈IRm, the initial value problem

A[Dx]0+b(Ux,·) +BTx=0, DP1x(t0) =DP1x0.

is uniquely solvable. The solutionx=Du+z0+z1satisfies u0 =f u,w(u,t),t

, z1=P0Q1w(u,t), z0 =g u,(Dz1)0,t

➩ .

inherent ordinary differential equation

(24)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Properly stated index-2 DAEs

A q(x, ˙ ·)+ b(x, ·) = 0

I split solution into characteristic parts x=Du+z+w

x

P0x z0=Q0x

DDP¯1x z1=P0Q¯1x U Q0x T Q0x Du z=z1+U z0 w=T z0

I split equations similarly u0=f(u,v0,t)

v=g(u,t)

. x =Du+z(u,·) +w(u,v0,·) z=z(u,t) w=w(u,v0,t)

F(u, w, z, η, ζ, t) = 0

Fˆ1(u, z, t) = 0 u0= (u, w, t) Fˆ2(u, w, ζ, t) = 0

z=(u, t)

v=(u, t) w=(u, ζ, t)

u0=f(u, v0, t) v=g(u, t)

¯ ZG¯−1

2 P1G¯−1

2 G−1

2

I Ifv0gu remains non-singular (locally) Implicit Index-1 System

(25)

General linear methods for integrated circuit design – St. Voigtmann, p. 9

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Properly stated index-2 DAEs

V. (2004) Accessible criteria for the local existence and uniqueness of DAE solutions, MATHEON

A q(x, ˙ ·)+ b(x, ·) = 0

I split solution into characteristic parts x=Du+z+w

x

P0x z0=Q0x

DDP¯1x z1=P0Q¯1x U Q0x T Q0x

Du z=z1+U z0 w=T z0

I split equations similarly u0=f(u,v0,t)

v=g(u,t)

. x =Du+z(u,·) +w(u,v0,·) z=z(u,t) w=w(u,v0,t)

F(u, w, z, η, ζ, t) = 0

Fˆ1(u, z, t) = 0 u0= (u, w, t) Fˆ2(u, w, ζ, t) = 0

z=(u, t)

v=(u, t) w=(u, ζ, t)

u0=f(u, v0, t) v=g(u, t)

¯ ZG¯−1

2 P1G¯−1

2 G−1

2

I Ifv0gu remains non-singular (locally) Implicit Index-1 System

(26)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Properly stated index-2 DAEs

A q(x, ˙ ·)+ b(x, ·) = 0

I split solution into characteristic parts x=Du+z+w

x

P0x z0=Q0x

DDP¯1x z1=P0Q¯1x U Q0x T Q0x

Du z=z1+U z0 w=T z0

I split equations similarly u0=f(u,v0,t)

v=g(u,t)

. x =Du+z(u,·) +w(u,v0,·) z=z(u,t) w=w(u,v0,t)

F(u, w, z, η, ζ, t) = 0

Fˆ1(u, z, t) = 0 u0= (u, w, t) Fˆ2(u, w, ζ, t) = 0

z=(u, t)

v=(u, t) w=(u, ζ, t)

u0=f(u, v0, t) v=g(u, t)

¯ ZG¯−1

2 P1G¯−1

2 G−1

2

I Ifv0gu remains non-singular (locally) Implicit Index-1 System

(27)

General linear methods for integrated circuit design – St. Voigtmann, p. 10

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Properly stated index-2 DAEs (cont.)

V. (2006) General linear methods for integrated circuit design, PhD thesis

A q(x, ˙ ·)+ b(x, ·) = 0

u0=f(u,v0,t) v=g(u,t)

x=Du+z(u,·) +w(u,v0,·) z=z(u,t) w=w(u,v0,t)

I new decoupling procedure

I existence and uniqueness results

I only mild smoothness assumptions

I covers/extends results on

. linear DAEs (Balla, M ¨arz, Kurina) . nonlinear index-1 DAEs (Higueras, M ¨arz)

. DAEsA[Dx]0+b(Ux,·) +BTx=0 (Tischendorf, Est ´evez Schwarz) . Hessenberg DAEs (Hairer, Lubich, Roche, Wanner)

(28)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Properly stated index-2 DAEs (cont.)

A q(x, ˙ ·)+ b(x, ·) = 0

u0=f(u,v0,t) v=g(u,t)

x=Du+z(u,·) +w(u,v0,·) z=z(u,t) w=w(u,v0,t)

I new decoupling procedure

I existence and uniqueness results

I only mild smoothness assumptions

I covers/extends results on

. linear DAEs (Balla, M ¨arz, Kurina) . nonlinear index-1 DAEs (Higueras, M ¨arz)

. DAEsA[Dx]0+b(Ux,·) +BTx=0 (Tischendorf, Est ´evez Schwarz) . Hessenberg DAEs (Hairer, Lubich, Roche, Wanner)

(29)

General linear methods for integrated circuit design – St. Voigtmann, p. 11

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Decoupling and discretisation

Aq(x,˙ t) +b(x,t) =0 index-2 DAE

decoupling u0=f(u,v0,t) v=g(u,t) +constraints

discretisation discretisation

discretised index-2 DAE

decoupling discretised index-1 DAE +discretised constraints

I If two subspaces associated with the DAE,DN1andDS1are constant, then this diagram commutes.

I It is always assumed thatN0S0does not depend onx.

(30)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Decoupling and discretisation

Aq(x,˙ t) +b(x,t) =0 index-2 DAE

decoupling u0=f(u,v0,t) v=g(u,t) +constraints

discretisation discretisation

discretised index-2 DAE

decoupling discretised index-1 DAE +discretised constraints

I If two subspaces associated with the DAE,DN1andDS1are constant, then this diagram commutes.

I It is always assumed thatN0S0does not depend onx.

(31)

General linear methods for integrated circuit design – St. Voigtmann, p. 11

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Decoupling and discretisation

Aq(x,˙ t) +b(x,t) =0 index-2 DAE

decoupling u0=f(u,v0,t) v=g(u,t) +constraints

discretisation discretisation

discretised index-2 DAE

decoupling discretised index-1 DAE +discretised constraints

I If two subspaces associated with the DAE,DN1andDS1are constant, then this diagram commutes.

I It is always assumed thatN0S0does not depend onx.

(32)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Contents

Differential Algebraic Equations

General Linear Methods

Practical General Linear Methods

(33)

General linear methods for integrated circuit design – St. Voigtmann, p. 13

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for ODEs y

0

= f (y)

I Linear multistep: yn = hβ0f(yn) + Pk

i=1αiyn−i

I Runge-Kutta: Yi = hPs

j=1aijf(Yj) + y[n−1], y[n] = hPs

i=1 bif(Yi) + y[n−1]

I General linear: Yi = hPs

j=1aijf(Yj) + Pr

j=1uijy[n−1]j , y[n]i = hPs

j=1 bijf(Yj) + Pr

j=1vijy[n−1]j

(34)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for ODEs y

0

= f (y)

I Linear multistep: yn = hβ0f(yn) + Pk

i=1αiyn−i

I Runge-Kutta: Yi = hPs

j=1aijf(Yj) + y[n−1], y[n] = hPs

i=1 bif(Yi) + y[n−1]

I General linear: Yi = hPs

j=1aijf(Yj) + Pr

j=1uijy[n−1]j , y[n]i = hPs

j=1 bijf(Yj) + Pr

j=1vijy[n−1]j

(35)

General linear methods for integrated circuit design – St. Voigtmann, p. 13

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for ODEs y

0

= f (y)

I Linear multistep: yn = hβ0f(yn) + Pk

i=1αiyn−i I Runge-Kutta: Yi = hPs

j=1aijf(Yj) + y[n−1], y[n] = hPs

i=1 bif(Yi) + y[n−1]

I General linear: Yi = hPs

j=1aijf(Yj) + Pr

j=1uijy[n−1]j , y[n]i = hPs

j=1 bijf(Yj) + Pr

j=1vijy[n−1]j

(36)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for ODEs y

0

= f (y)

I Linear multistep: yn = hβ0f(yn) + Pk

i=1αiyn−i I Runge-Kutta: Yi = hPs

j=1aijf(Yj) + y[n−1], y[n] = hPs

i=1 bif(Yi) + y[n−1]

I General linear: Yi = hPs

j=1aijf(Yj) + Pr

j=1uijy[n−1]j , y[n]i = hPs

j=1 bijf(Yj) + Pr

j=1vijy[n−1]j

(37)

General linear methods for integrated circuit design – St. Voigtmann, p. 13

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for ODEs y

0

= f (y)

I Linear multistep: yn = hβ0f(yn) + Pk

i=1αiyn−i I Runge-Kutta: Yi = hPs

j=1aijf(Yj) + y[n−1], y[n] = hPs

i=1 bif(Yi) + y[n−1]

I General linear: Yi = hPs

j=1aijf(Yj) + Pr

j=1uijy[n−1]j , y[n]i = hPs

j=1 bijf(Yj) + Pr

j=1vijy[n−1]j

(38)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

An example method

"

A U B V

#

=

1

4 0 0 0 1 0 −3211921

49 25

1

4 0 0 1−1711001004960043

123

1225225392 14 0 1 13631400 1394139200 784005379

95845984 367 14 1 4318 3142 33637

95845984 367 14 1 4318 3142 33637

0 0 0 1 0 0 0 0

26821 8621289 4 0 709 1021215

3221 88212249 16 0 569 20211021

(Butcher, 2004) I diagonally implicit

I orderp=3and stage orderq=3

I stiffly accurate, A-stable, L-stable

I Nordsieck form, y[n]i+1hiy(i)(tn)

(39)

General linear methods for integrated circuit design – St. Voigtmann, p. 14

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

An example method

"

A U B V

#

=

1

4 0 0 0 1 0 −3211921

49 25

1

4 0 0 1−1711001004960043

123

1225225392 14 0 1 13631400 1394139200 784005379

95845984 367 14 1 4318 3142 33637

95845984 367 14 1 4318 3142 33637

0 0 0 1 0 0 0 0

26821 8621289 4 0 709 1021215

3221 88212249 16 0 569 20211021

(Butcher, 2004) I diagonally implicit

I orderp=3and stage orderq=3

I stiffly accurate, A-stable, L-stable

I Nordsieck form, y[n]i+1hiy(i)(tn)

Diagonally implicit methods with high stage order

are possible!

(40)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Why general linear methods?

"

Y y[n]

#

=

"

A U B V

#

·

"

hf(Y) y[n−1]

#

I improve stability . damping properties

similar to RK methods -1

0 1

20 time 10

0 2

1 0 1 2

time π 2 π 0 2

I improve efficiency

. diagonally implicit schemes . solve stages sequentially

A=

λ 0

... . .. aij · · · λ

I benefit from high stage order . no order reduction

. cheap and reliable error estimates

1.0·10−2 1.5·10−2

2.0·10−2

0 5 10 15 time

p= 3 p= 2 p= 1

(41)

General linear methods for integrated circuit design – St. Voigtmann, p. 15

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Why general linear methods?

"

Y y[n]

#

=

"

A U B V

#

·

"

hf(Y) y[n−1]

#

I improve stability . damping properties

similar to RK methods -1

0 1

20 time 10

0 2

1 0 1 2

time π 2 π 0 2

I improve efficiency

. diagonally implicit schemes . solve stages sequentially

A=

λ 0

... . ..

aij · · · λ

I benefit from high stage order . no order reduction

. cheap and reliable error estimates

1.0·10−2 1.5·10−2

2.0·10−2

0 5 10 15 time

p= 3 p= 2 p= 1

(42)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

Why general linear methods?

"

Y y[n]

#

=

"

A U B V

#

·

"

hf(Y) y[n−1]

#

I improve stability . damping properties

similar to RK methods -1

0 1

20 time 10

0 2

1 0 1 2

time π 2 π 0 2

I improve efficiency

. diagonally implicit schemes . solve stages sequentially

A=

λ 0

... . ..

aij · · · λ

I benefit from high stage order . no order reduction

. cheap and reliable error estimates

1.0·10−2 1.5·10−2

2.0·10−2

0 5 10 15 time

p= 3 p= 2 p= 1

(43)

General linear methods for integrated circuit design – St. Voigtmann, p. 16

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for index-2 DAEs

A q x(t),t 0+b x(t),t

=0

| {z }

singular charges/ voltages/

fluxes currents

I input quantities

q[n−1]k+1hk dd tkkq x(t),t

I

"

q(Xn,tc) q[n]

#

= A U

B V

·

" hQ0n q[n−1]

#

such that

AQ0n+b(Xn,tc) =0

I solve for the stagesXn Remark

I use implicit methods (Anon-singular)

I charge conservation is guaranteed

I only charges / fluxes are passed on from step to step

I analysis usesimplicit index-1 systemy0=f(y,z0), z=g(y)

(44)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for index-2 DAEs

A q x(t),t 0+b x(t),t

=0

| {z }

singular charges/ voltages/

fluxes currents

I input quantities

q[n−1]k+1hk dd tkkq x(t),t

I

"

q(Xn,tc) q[n]

#

= A U

B V

·

"

hQ0n q[n−1]

#

such that

AQ0n+b(Xn,tc) =0

I solve for the stagesXn

Remark

I use implicit methods (Anon-singular)

I charge conservation is guaranteed

I only charges / fluxes are passed on from step to step

I analysis usesimplicit index-1 systemy0=f(y,z0), z=g(y)

(45)

General linear methods for integrated circuit design – St. Voigtmann, p. 16

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for index-2 DAEs

A q x(t),t 0+b x(t),t

=0

| {z }

singular charges/ voltages/

fluxes currents

I input quantities

q[n−1]k+1hk dd tkkq x(t),t

I

"

q(Xn,tc) q[n]

#

= A U

B V

·

"

hQ0n q[n−1]

#

such that

AQ0n+b(Xn,tc) =0

I solve for the stagesXn Remark

I use implicit methods (Anon-singular)

I charge conservation is guaranteed

I only charges / fluxes are passed on from step to step

I analysis usesimplicit index-1 systemy0=f(y,z0), z=g(y)

(46)

Motivation DAEs General Linear Methods Practical General Linear Methods Summary

GLMs for index-1 DAEs

Apply M=

A U

B V

to implicit index-1 DAEs y0=f(y,z0), z=g(y) Y=hAf(Y,Z0) + Uy[n] g(Y) =hAZ0+Uz[n]

y[n+1]=hBf(Y,Z0) +Vy[n] z[n+1]=hBZ0+ Vz[n]

Figure

Updating...

References

Related subjects :