• Keine Ergebnisse gefunden

technology Control a lower-limb design for paediatric therapy device using linearmotor Biomedical Signal Processing and Control

N/A
N/A
Protected

Academic year: 2022

Aktie "technology Control a lower-limb design for paediatric therapy device using linearmotor Biomedical Signal Processing and Control"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Biomedical Signal Processing and Control

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b s p c

Control design for a lower-limb paediatric therapy device using linear motor technology

Farouk Chrif

a,b

, Tobias Nef

b

, Max Lungarella

c

, Raja Dravid

c

, Kenneth J. Hunt

a,∗

aInstituteforRehabilitationandPerformanceTechnology,DivisionofMechanicalEngineering,DepartmentofEngineeringandInformationTechnology, BernUniversityofAppliedSciences,CH-3400Burgdorf,Switzerland

bGerontechnologyandRehabilitationResearchGroup,ARTORGCenterforBiomedicalEngineeringResearch,UniversityofBern,CH-3008Bern,Switzerland

cDynamicDevicesAG,Technoparkstrasse1,CH-8005Zurich,Switzerland

a r t i c l e i n f o

Articlehistory:

Received11October2016

Receivedinrevisedform17February2017 Accepted16May2017

Keywords:

Rehabilitationrobots Paediatricrehabilitation Controlsystems Impedancecontrol

a b s t r a c t

Background:Rehabilitationrobotssupportdeliveryofintensiveneuromusculartherapyandhelppatients toimprovemotorrecovery.Thispaperdescribesthedevelopmentandevaluationofcontrolstrategies foranovellower-limbpaediatricrehabilitationrobot,basedonlinear-motoractuatortechnologyand theleg-pressexercisemodality.

Methods:Afunctionalmodelwasdesignedandconstructedandanoverallcontrolstrategywasdeveloped tofacilitatevolitionalcontrolofpedalpositionbasedonthecognitivetaskpresentedtothepatient, togetherwithautomaticcontrolofpedalforcesusingforcefeedbackandimpedancecompensation.

Results:Eachindependentdrivefortheleftandrightlegscanproduceforceupto288Nattheuser’sfoot.

Duringdynamictesting,theusermaintainedavariabletargetpositionwithroot-mean-squaretracking error(RMSE)of3.8withpureforcecontroland2.8withcombinedforce/impedancecontrol,onarange ofperiodicmotionof20–80.Withimpedancecompensation,accuracyofforcetrackingwasalsoslightly better(RMSEof9.3vs.9.8N,force/impedancevs.forcecontrolonly).

Conclusions:Thecontrolstrategyfacilitatedaccuratevolitionalcontrolofpedalpositionand,simulta- neously,accurateandrobustcontrolofpedalforces.Impedancecompensationshowedperformance benefits.Controlaccuracyandforcemagnitudearedeemedappropriateforrehabilitationofchildren withneurologicalimpairments,but,duetocurrentlevelsrequired,linearmotortechnologymaynotbe suitableforapplicationswherehigherforceisneeded.Furtherworkisrequiredtovalidatethedevice withinthetargetpopulationofimpairedchildrenandtodevelopappropriatepatient-interfacesoftware.

©2017TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Therecoveryandmaintenanceofmotorfunctionisonekeyaim ofrehabilitationinterventions.Robotictechnologyisincreasingly usedinclinicalrehabilitationenvironmentstofacilitatelongtrain- ingsessions,alargenumberofmovementrepetitions,andthereby toimprovetherapeuticoutcomes[1].

The field of rehabilitation robotics is developing rapidly.

Withfaster and morepowerful computers, new computational approaches and sophisticated electromechanical components, robots have become an important tool to improve the thera- peuticoutcomesin rehabilitation[2].Robots canaidtherapists intheimplementationofrehabilitationprogrammesbyenabling

Correspondingauthor.

E-mailaddress:kenneth.hunt@bfh.ch(K.J.Hunt).

repetitive,highqualitytask-specificmovements,byincreasingthe duration andintensityof rehabilitationsessionsand byprovid- ingalargevarietyofexercisemodalities[3].Furthermore,robotic systems provide the possibility of recording information about movementparameters(force,position,velocity,etc.)duringexer- cise,whichallowsthesubsequentinterpretationandanalysisof thetherapyperformanceandprogress[4,5].

Thecurrentgenerationofrehabilitationrobotsdifferintermsof mechanicaldesign,actuationtechnologyandcontrolarchitecture [1,6,7].Theycanbecategorizedwithrespecttotheirapplication focusasassistiveortherapeuticdevices:assistiverobotsareused toassistpatientsintheirdaily-livingactivities,whereastherapeutic robotsareusedtoimprovevariousneurophysiologicalaspectsof bodyfunction,andtheyaremainlyusedinclinicalenvironments [1].

Rehabilitationrobotscanbefurtherdelineatedwithrespectto theirmechanicaldesignaseitherend-effectororexoskeletonsys-

http://dx.doi.org/10.1016/j.bspc.2017.05.011

1746-8094/©2017TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/

4.0/).

source: https://doi.org/10.24451/arbor.5549 | downloaded: 14.2.2022

(2)

Notationandabbreviations F measuredforce F* targetforce

Fsim simulated(nominal)force Fimp impedanceforce

pedalangle

* targetangle

i current

i* targetcurrent

s Laplace-transformcomplexvariable Cfb(s) forcefeedbackcontroller

Po(s) plantforforcecontroller Cimp(s) impedancecontroller Ci currentcontroller

Pi plantforcurrentcontroller IPC industrialPC

tems.End-Effectorrobotsimposeforcesonthedistalsegmentsof theupperorlowerlimbs[8],buttheycannotdirectlycontrolindi- vidualjointssincethecontactbetweenthepatientandtherobotis atlimbendpoints.Examplesofend-effectorrehabilitationrobots aretheG-EOSystem[9],MIT-Manus[10],theGait-Trainer[11], GENTELE/s[12]andBi-Manu-Track[13].Exoskeleton-basedrobots, ontheotherhand,useexternalstructuresattachedatseveralpoints acrossthepatient’slimbs.Thejointsoftheexoskeletonarealigned tothoseofthehumanbody[14],whichallowsdirectcontrolofthe joints[15].ExamplesofexoskeletonrobotsaretheLokomat[16], LOPES[17],ARMin[18],T-WREX[19],Dampace[20]andL-Exos [21].

Thedynamicleg-pressformofexercise,hithertoappliedmainly inthesportscontextformusculoskeletalconditioning[22,23],has potentialasanewmodalityforneuromuscularrehabilitationappli- cations.Duetothepossibilityofacompactdesign,andprovisionof asafe,semi-orfully-recumbentseatedposture,leg-pressdevices havepotentialforapplicationparticularlyinpaediatricrehabilita- tion.Examplesofleg-pressrehabilitationrobotsaretheLambda [24],LegoPress[25]andAllegro[26].

Themainaimofcontrolstrategiesforleg-pressdevicesisto provideoptimalexercisestopromoteneuroplasticityandthere- foreimprovemotorrecovery.Forrehabilitationroboticsingeneral, a variety of control strategies have been developed, and sev- eral research reviews have been done [27–30]. Rehabilitation controlstrategiescanbecategorizedintwomaingroups:(i)tra- jectorytracking controllersand (ii)assist-as-neededcontrollers (AAN)[29].Trajectorytrackingcontrollersarepositioncontrollers adaptedfromthoseappliedinindustrialrobots.Theyprovidepas- siverepetitiveexercise,wherethepatient’slimbismadetofollow apredefined trajectory. Inadvanced versions,knownas “adap- tivepositioncontrollers”,thecontrollerallowsfordeviationfrom thepredefinedtrajectorybasedonthemotionofthepatient[1].

Trajectorytrackingcontrollersareimportantintheearlyrehabili- tationstages,wherepassiveexerciseisneeded,butlacktheability tomotivatesincetheactiveparticipationofthepatientisnotof concernatthisstage[30].Ontheotherhand,assist-as-neededcon- trollersadjusttheamountofassistancegivenbytherobotbasedon thepatient’sreal-timecontributionandability.Comparedtotra- jectorytrackingcontrollers,AANcontrollersallowmorefreedom andvariabilityofmovement[31]andincreasetheparticipationand motivationofthepatient[32].OneofthemostappropriateAAN approacheswhichencouragesactiveparticipationofthepatient isimpedancecontrol[33,34].Impedancecontrolstrategiesallow deviationfromthepredefinedtrajectoryanddonotimposerigid movement.Thiscanregulatethedynamicrelationshipbetweenthe

motionofthepatient’slimbandtheforceappliedbytheactuator [35].Furthermore,impedancecontrolparameterscanbeadjusted dependingonthepatient’sabilitiesandneeds.Anothercommon AANapproachisa“tunnelcontroller”.Thiscreatesavirtualtunnel alongthereferencetrajectorywherethepatienttriestomaintain hislimbposition.Aslongasthelimbiswithinthevirtualtunnel, therobotwillapplynocorrectiveforces.Ifthelimbdivergesfrom thetunnel,therobotwillincreasetheappliedforcetopushthe limbbacktothedesiredtrajectory[36,37].Thesystemdescribed inthispaperappliesimpedancecontrol.

Theaimofthisworkwastodesign,constructandtestanovel lower-limb end-effector rehabilitation robot, based onthe leg- press exercisingapproach, witha target populationof children withneuromuscularimpairments.Thesystemwhichwasdevel- oped,asdescribedinthispaper,islegpresstrainingdevicewhich allowsactiveexerciseofthelowerlimbs.Thefeetareconnectedthe footplatesoftwoseparatepedalmechanisms.Thedeviceallows movement of the lower limbs in the sagittal plane,with flex- ion/extensionofthekneejoints.Thefocusinthepresentreportis onthedevelopmentandevaluationofforceandimpedancecontrol strategiesbasedonlinear-motoractuatortechnology.

2. Methods

2.1. Devicespecificationsanddesign

Themechanicaldesignandconstructionoftheprototypedevice isdepictedinFig.1.Since thefocusinthepresentworkis on controlstrategydevelopment,themechanicaldesigndetailsand specificationsareonlysummarisedinbriefhere.

Theprototypedevicecomprises aseatwithadjustable back- restandposition,footplatesattachedviaalevermechanismtotwo independentlinearelectricmotors,andavisualfeedbackscreen positionedatthefront.Thepatientsitsonthechairwiththeback- restadjustedasdesiredbetweenanalmostuprightpositionandan almostfullyrecumbentposition.Thefeetareplacedonfootplates attachedtoseparatepedalmechanisms.Themaximumrangeof motionof the footplates is defined by the strokeof thelinear motors.Toadapttherobotforpatientswithdifferentbodysizes andleglengths,andtogiveappropriatejointrangesofmotion,the distancebetweentheseatandthefootplatesissetbymovingthe chairbackorforward.Thevisualfeedbackscreenatthefrontpro- videsthepatientwithmotiontargetsandreal-timefeedbackofkey performancevariables(e.g.anglesandforces)forimplementation ofspecificneuromusculartrainingandassessmenttherapies.

Thetargetpopulationforthedeviceischildrenaged4–14years withbodymassofupto50kg.Thedevicewasrequiredtobecapable ofgeneratingatotalcontinuousforceonthefootplatescorrespond- ingto1.2×bodymass,i.e.acombinedleft+rightequivalentmassof

∼60kg.Thepedalsareactuatedbytwoindependentdrives(leftand rightlegs)eachofwhichiscapableofproducingacontinuousforce of354Nandapeakforceof1024N.Becauseofthepedalgeometry andavailableleverarms,thearrangementcangenerateacontin- uousforceof288Nateachfootplate.Thisgivesatotalcontinuous forcemagnitudeof288×2=576N,correspondingtoanequivalent bodymassof59kg,which,accordingtotheabovespecifications andgiventheabilityofthemotorstogenerateshort-termforces ofnearlythreetimesthecontinuouslevels,isdeemedappropriate fortherapyofchildrenwithimpairments.

Thetherapydevicewasrequiredtofacilitaterehabilitationexer- cises forchildren withneuromuscular impairments.Thedevice canbeflexiblyprogrammedforimplementationofspecifictrain- ingexercises,andwasalsodesignedtomeetthefollowinggeneral criteriaforneuromuscularandskeletalrehabilitation[38]:

(3)

Fig.1.Prototypeofthelower-limbend-effectorrehabilitationdevice:(a)principalcomponentsoftheoverallfunctionalmodel;(b)detailofthelinear-motoractuators.Legs atmaximumextension;(c)legsatmaximumflexion.

1.Flexibility and range of motion: the robot is based on bi- directionalelectricactuators,which allowstheapplicationof bothpassiveandactiveexercisestogiveflexibilityandarbitrary movementpatterns.

2.Strengthandmuscleendurance:therobotiscapableofproviding sufficientforcetoimproveandreinforcethepatient’smuscu- loskeletalcondition,basedonamultipleofmaximumbodymass.

3.Coordinationandagility:thevisualfeedbackmoduleprovides cognitivechallenges,requires engagementof thepatientand thus has potential to improve coordination using real-time, interactive sensor-controlled exercises and task-orientated training.

2.2. Overallcontrolstrategyandoutcomemeasures

Theprincipaltaskofthefeedbackcontrolsystemistomaintain atargetforceF*ateachfootplate,i.e.atthepointofinteraction betweenthehumanfootandtherobot’spedalmechanism.This isimplementedusinga closed-loopforcecontrolsystem(Fig.2 ),wheretargetforceF*(t)isacompletelyarbitrarilypre-specified profile.Theleftandrightsidesareseparatelycontrolledbyinde- pendentfeedbacksystemssuchthattargetforcesforthetwosides canbedifferent:forsimplicity,thecontrolstrategyispresented hereasiffora singleside,butin practiceitis implementedin duplicate.

Fig.2. Closed-loopforcecontrolsystem.

ThefeedbackcontrollerCfbcomparestarget(F*)andmeasured (F)forcesandcontinuouslycomputesatargetcurrenti*whichis transmittedtotheproprietarymotorcontrolunit;thisunit,inturn, hasaninternalfeedbackcontrollerwhichdynamicallymaintains thecurrentactuallysenttotheactuator(i)closetothetargeti*.The resultingmotoractuationgeneratestheforceFasmeasuredatthe footplate.Theoverallplanttobecontrolled,asviewedfromthe controllertransferfunctionCfb,isthereforethenominaltransfer functionPolinkingthecontrolsignali*andthecontrolledvariable F(seeEq.(3),andFig.2).

Thebasicforcecontrollerisembeddedwithinanoverallcon- trolarchitectureforthedevice,comprisingalsothevisualfeedback module(seeFig.3).The“controllermodule”inthefigureexplicitly showstheforcefeedbackcontrollerandalsothecurrentcontroller Ci which is internal to the motor control unit (the function Pi denotesthenotionalplantforthecurrentcontroller).

Asdescribedinthesequel(Section2.5),thetargetforceF*can beaugmentedusinganimpedancecontrollerblockCimp(Fig.4);

(4)

Fig.3.Overallcontrolarchitecture.Thecontrollermoduleregulatestheforcesatthefootplates:itcomprisesaforcefeedbackcontrollerCfb(and,optionally,animpedance controlelementCimp,Fig.4andEq.(12)),implementedwithinanindustrialPC(IPC);thecurrentcontrollerCiisembeddedinaseparatemotorcontrolunit.Theindicated functionsoftheuserinterfacemoduleareimplementedintheIPC.ThenominalplantfordesignofCfbisthetransferfunctionfromtargetcurrenti*tomeasuredforceF, i*F:Po(s)=k/(s+1),Eq.(3)andFig.2.

Fig.4.Force-impedancecontrolstrategy.

thismodifiesthetargetforceF* basedonposition,velocity and accelerationofthepedalrotation(Eq.(12));inthiscase,thevari- ablelabelled“forceoffset”inFig.4correspondstothetargetforce profileF*generatedbythe“userinterfacemodule”inFig.3.Thus, theimpedancecontrollerCimpcontinuouslygeneratesvariationsin targetforceinrealtimearoundthebaselineprofile(forceoffset) whichispre-specifiedintheuserinterfacemodule.Bythismeans, theindividualcomponentsofmechanicalimpedanceactuallyfelt bythepatientatthehuman-machineinteractionpoints,i.e.stiff- ness,dampingandinertia,canbepurposelymodifiedbysetting theparametersoftheCimptransferfunctioninEq.(12),incommon withgenericimpedancecontrolstrategies[39].

AswellasgeneratingthetargetforceprofileF*,theuserinterface moduleprovidesamovementtaskbymeansofanarbitrarytarget angleprofile*,anditmanagesthevisualfeedbackscreen.Inits simplestform,thevisualfeedbackdisplaysthepositiontarget* togetherwiththeactualanglemeasuredbyasensormountedat theaxisofthepedalmechanism.Forsimplicity,intheexperiments reportedhereforevaluationoffeedbackcontrollerperformance,

thetargetangleprofilewaschosenasasinusoid,whilethetarget forcewaseitherkeptconstantorchangedinastepwisefashion tointroducetaskperturbations.Forclinicalapplications,alterna- tivepositionandforceprofilesshouldbeinvestigated.Thepatient isrequiredtokeepthepedalpositionascloseaspossibletothe targetbymeansofvolitionalcontrol,whiletheforcesappliedon the footplates are automaticallycontrolled as described above.

Thiscombinationofpatientinvolvementviathecognitiveposition controltaskand theautomaticforce/impedancecontrol system representsachallengingenvironmentforneuromusculartraining andrehabilitation.

Comparisonoftheperformanceofthedifferentcontrolstrate- gieswasbasedonroot-mean-squaretrackingerror(RMSE)forforce andangle:

RMSEF=

1

N

N

i=1

(Fsim(i)−F(i))2 (1),

RMSE=

1

N

N

i=1

((i)−(i))2 (2),

whereiarethediscretetimeindicesoftheNevaluationdatapoints andFsimisthesimulatednominalforce.Eq.(1)givesaquantitative measureoftheaccuracyofautomaticforcetracking,whileEq.(2) measurestheaccuracyofhumanvolitionalcontrolofposition.Eval- uationoftheoutcomemeasureswasperformedoff-line,following real-timecontrollertests,usingMatlabsoftware(MathworksInc., USA).

(5)

Table1

Linearmotorcharacteristics.

LinMotP01-48x360/180x330

Stroke 330mm

Peakforce 1024N

Max.continuousforce 354N

Forceconstant 32N/A

Max.current(@72VDC) 32A

Max.velocity 2.1m/s

2.3. Actuators,sensorsandcontrollerhardware

The two actuators are linear electric motors (P01- 48x360/180x330, NTI AG LinMot, Switzerland). These are electromagneticdirectdrivesconsistingoftwoparts:theslider, whichdirectlyprovidestranslationalmotion;andthestator.The sliderisastainlesssteeltubefilledwithneodymiummagnets.The statorcontainsthemotorwindings,bearingsfortheslider,position capturesensorsandamicroprocessorcircuitformonitoringthe motor.Thelinear motorsarebi-directionaland thuscapableof generatingforcesinbothdirections.Peakforceis1024Nandthe maximum continuous forceis 354N (key motor specifications:

Table1).Themotors arecommanded byseparatecontrolunits (E1250-UC, NTIAG LinMot, Switzerland) which implement the currentcontrolfunctionCiindicatedinthecontrollermodule(Fig.

3).

Therobothastwoforcesensorsandtwoanglesensors,mounted asindicatedinthefigure(Fig.1(a)).Theforcesensors(KD140,1kN, TransmetraGmbH,Switzerland)aremountedbehindthefootplates todirectlymeasuretheforcesappliedbythepatient.Theanglesen- sors(GL60,ContelecAG,Switzerland)aremountedattherotational axisofthepedals.

Theforce/impedancecontrolstrategyinthecontrollermodule, togetherwiththeuserinterfacemodulefunctions(Fig.3),were implementedinareal-timeindustrialPC(IPC,CX5010,Beckhoff AutomationAG,Germany).Thefoursensorsignalswereinterfaced directlytotheIPC’sanalogueinputchannels.TheIPCsendsthe targetcurrentcommands(thecontrolsignali*)viaEthernettothe individualmotorcontrolunits.

During real-time feedback control tests, all relevant signals (force,position)aremonitoredandstoredusingdataacquisition andsignalprocessingsoftware(ScopeView,Beckhoff)runningin theIPC.Thesesignalsarethenprocessedoff-lineusingMatlabas notedabove.Positionsignalsarefedbacktotheuserinreal-time asshowninFig.3.

2.4. Feedbackcontrollerdesign

ThenominalplantPo(s)linkingtargetcurrentand measured forcewasmodelledasalinearfirst-ordertransferfunctionwith steady-stategainkandtimeconstant,expressedas

i→F: Po(s)= Bo(s) Ao(s)= k

s+1 = k/

s+1/ (3)

wherethepolynomialsAo(s)andBo(s)aredefinedasAo(s)=s+1/

andBo(s)=k/.

Modelparameterskandwereobtainedempiricallyusingstep responsesandsystemidentification.Duringopen-loopidentifica- tiontests,thepedalwasmechanicallyfixedusingarigidbarto preventmovementandstepinputswereappliedusingthetarget currenti*.Elevenmeasurementsweredonewithstepchangesin currentofmagnitude2Aand4A,distributedacrosstherangefrom 2to18A.Modelparameterswereestimatedforeachmeasurement usinglinearleast-squares.Thegainkwasfoundtovarybetween 16.1N/Aand 17.5N/A,andthe time-constant varied between 0.019sand0.026s.Sincetheseparameterrangesarequitenarrow,

thenominalmodelparametersweretakenastheaveragevalues fromtheelevenmeasurements,giving

Po(s)= 16.9

0.0226s+1 (4).

TheparametersofthelinearcompensatorCfb(s)wereobtained byfollowinganalgebraicpole-assignmentapproachtoobtaina closed-formanalyticalsolution,e.g.[40].Cfb(s)waschosentobea linear,timeinvariant,strictly-propertransferfunction,

Cfb(s)= G(s)

H(s)= g1s+g0

s(s+h0) (5)

whereg0,g1,andh0 arerealcoefficientstobedetermined.The polynomialsG(s)andH(s),usedinthefurthercontrollerderiva- tionbelow,canbeidentifiedasG(s)=g1s+g0andH(s)=s(s+h0).By virtueofthefactor1/sinCfb,thecompensatorcontainsintegral action.

Withthefeedback loopofFig.2,theresultingcharacteristic polynomialofthesystem,denoted(s),is

(s)=Ao(s)H(s)+Bo(s)G(s)=

s+1

(s+h0)s+k

(g1s+g0) (6) whichbyexpansiongives

(s)=s3+(h0+1 )s2+1

(kg1+h0)s+k

g0 (7).

Theclosed-looppolesaretherootsofthecharacteristicpolynomial ,which,fromEq.(7),hasdegree3.Thus,musttakethestructure (s)=s3+2s2+1s+0 (8).

Usingapole-assignmentapproach,thecoefficients0,1and2 arederivedbyarbitrarypositioningofthethreeclosed-looppoles inthes-plane.Here,theapproachtakenistosetonerealpoleat position−a,andtoplacetheothertwopolescorrespondingtothe standardsecond-ordertransferfunctionwithdampingratioand naturalfrequencyωn.Thus,

(s) =(s+a)(s2+2ωns+ω2n)

=s3+(2ωn+a)s2+(ω2n+2aωn)s+aω2n

(9) In thefollowing, critical damping =1 was employed and the parameterawassettotheopen-looppolevalueof1/,i.e.a=1/, suchthattheopen-looppolewasnotshiftedbythefeedback.Fur- ther,notingthat,aroundthecriticaldampingvalueof=1,ωnis relatedtothe10–90%closed-looprisetimetrbytheapproximation ωn=3.35/tr[41,p.196],asinglefeedbackdesignparameter,viz.tr, wasthenusedtoobtainadesirableperformance(ωn,asrequired inEq.(9),wascomputedasnotedaboveasωn=3.35/tr).

Theunknowncontrollerparametersg0,g1andh0areobtained bymatchingcoefficientsoflikepowerinEqs.(7)and(9),resulting in

h0 =2ωn+a−1 g0 =

kaω2n g1 =

k(ω2n+2aωn)−1

k(2ωn+a)+ 1 k

(10)

The experimental results described in the sequel (Section 3) were obtained using the controller tuning parameter value tr=0.55s(desiredclosed-looprisetime).Withthenominalplant parameters k=16.9and =0.0226, andwiththedesign choices a=1/=44.2and=1,thecontrollertransferfunction(5)canbe calculatedusingthesolution(10)as

Cfb(s)= g1s+g0

s(s+h0)=0.0543s+2.404

s(s+12.73) (11).

(6)

Fig.5.Statictestwithpedalmechanicallyfixedinoneposition;notestpersononthedevice.

Controllers wereimplemented in discrete time using a sample periodTs=0.05s.

Withthedesignchoicea=1/,thecharacteristicEq.(6)reveals thattheplantpolepolynomialAo(s)=s+1/mustalsoappearasa zeroofthecompensator,i.e.asafactorofG(s):sinceAoappearsin thefirsttermontheleftof(6)andalsointherighthandside(see Eq.(9),withs+a=s+1/),then,forasolutiontoexist,itmustalso beafactorofGinthesecondtermofthelefthandsideof(6).To seethatthisholdsinthesolutionofEq.(11),Gcanbewrittenas G(s)=0.0543(s+44.2):theterms+44.2isseentobeequaltos+1/.

Thisisaclassicalplant-polecancellationstrategy,applicablewhen thecancelledpolesarestableandwelldamped[42].

2.5. Impedancecontroller

The impedance control strategy (Fig.4)augments the force controller bymodifying target forceF* based onangle dynam- ics,i.e.basedonthepatient’svolitionalmovementofthepedals.

Thepurposeistomodifytheindividualcomponentsofmechanical impedanceperceivedbythepatientthroughthepedals.

Thebasicequationofthesecond-order dynamicrelationship betweenthepedalangleandtheforceFimpisgiveninthetime domainby:

Fimp(t)=ka¨+kv˙+kp (12) whereka,kv andkp aretheimpedanceparametersrepresenting thedesiredmodificationsofinertia,dampingandstiffnessofthe rotationalsystem,respectively.

ByLaplacetransformation,thefrequency-domainrepresenta- tionofFimpis

Fimp(s)=kas2(s)+kvs(s)+kp(s) (13)

andthetransferfunctionCimpisseentobe Cimp(s)= Fimp(s)

(s) =kas2+kvs+kp (14) TheactualmechanicalimpedancegivenbyCimp,definedasthe ratioofforceandangularvelocity,istherefore

Fimp(s)

s(s) =kas+kv+kp

s (15).

Intheresultsreportedbelow,theimpedancecontrollerparam- eterswereselectedaskp=0,kv=30andka=300,whichshould servetoincreasetheeffectivedampingandinertiaofthesystem.

3. Results

Closed-loop control results are reported herefor two types oftest:“static”and “dynamic”tests.Duringthestatictests,the pedalwasmechanicallyfixedinoneposition(constant),andthe responseoftheforcefeedbacksystemtoasquare-wavetargetforce F*from80to120Nwasstudied.Thisfixed-pedalconfigurationis thesameasthatusedfortheopen-loopidentificationexperiments (Section2.4),andwascarriedoutwithoutanytestpersonsitting onthedevice.

Indynamictests,ahealthytestperson,usingthevisualfeedback, wasrequiredtofollowasinusoidaltargetangle*offrequency0.16 Hzandamplitudeof30.Withoutimpedancecontrolcompensa- tion,thetargetforcewasconstantatF*=90N.Withimpedance control,theforceoffsetvariablewasconstantat90Nanddynamic modifications to F* were implemented as F*=forceoffset+Fimp usingtheimpedancecontrollerparametersnotedabove.

The static test gave accurate force control tracking with RMSEF=3.38Nandadynamicresponseclosetothenominalclosed- loopresponsewithrisetimeoftr=0.55s(Fig.5,middlegraph).The

(7)

Fig.6.Dynamictestwithforcecontroller,noimpedancecontrol.Testpersonvolitionallyfollowstheposition/angletargetprofile.

controlsignal(targetcurrenti*)wassmoothandwellbehaved(Fig.

5,lowergraph).

Thefirstdynamictestreportedherewascarriedoutwithout impedancecompensation.Thetestpersonwasabletofollowthe targetanglecloselywithRMSE=3.79(Fig.6,uppergraph).The forcecontrollerwasable,onaverage,tomaintaintheconstanttar- getforcewithRMSEF=9.77N(Fig.6,middlegraph).Themeasured forcevariedontherangeofapproximately65–120N.Thesevalues correspond,respectively,totheminimumandmaximumvalues oftheanglesignal,wheretheuserchangesthedirectionofthe movementandthemagnitudeofangularaccelerationpeaks.The target-currentcontrolsignalwasagainsmoothandwellbehaved (Fig.6,lowergraph).

The addition of the impedance control element resulted in improvedtrackingofthetargetanglesignalwithRMSE=2.82 (Fig. 7, upper graph; cf. no impedance, where RMSE=3.79).

Force-trackingaccuracy,withRMSEF=9.31N(Fig.7,middlegraph), wasslightlybetterthanthenon-impedancecase(RMSEF=9.77N).

Withimpedancecompensation,themeasuredforcewasonasub- stantiallysmallerrangeofapproximately71–108N(cf.65–120N withoutimpedancecontrol);peakcurrentswerecorrespondingly lower.Thecontrolsignali*wasagainwellbehaved,albeit with asomewhatgreaterdegreeofvariabilitywhencomparedtothe non-impedancecase(Fig.7,lowergraph),duetothecontinuous dynamiccompensationdrivenbychangesinangularvelocityand acceleration.

4. Discussion

Theaimofthisworkwastodesign,constructandtestanovel lower-limb end-effector rehabilitation robot, based onthe leg- pressexercisingapproach,usinglinear-motoractuatortechnology, andwithasmallandcompactdesigntargetedatpaediatricappli-

cations.Thefocusherewasonthedevelopmentandevaluationof forceandimpedancecontrolstrategies.

Forcecontrollerdesignwasbaseduponasimpleplantmodel obtainedasanaveragefrommultiplesteptestsacrosstheoper- atingrangeofthemotors;thesetestswereperformedwiththe pedalsfixedinonepositionandwithoutatestpersononthedevice.

Despitethissimpleandapproximateapproach,thefeedbackcon- trolperformanceprovedtobeaccurateandrobustacrosstherange ofconditionstested,withandwithoutinvolvementofatestper- son.

Theintegrationofimpedancecompensationgaveimprovedtar- getangletrackingbasedonvolitionalcontrolbythetestperson,and reducedthedifferencebetweentheminimumandpeakforces.The mechanicaldesignofthedevicehadcharacteristicsoflowiner- tiaanddampingatthepedals;increasingtheeffectiveinertiaand dampingviatheimpedancecompensation,resultinginturnina lowerforcerange,presumablymodifiedthemechanicalproperties inawaythatfacilitatedbetterandmoreaccuratepositioncontrol onthepartofthetestperson.

Employmentoflinearmotortechnologycontributedtothecom- pactdesigncharacteristicsandsimpleactuator/pedalarrangement.

Thesefeaturesareattributable,inpart,totheabsenceofanyneed for agearingmechanism betweenthemotorsand theactuated devicejoints.Theresults,furthermore,demonstratedahighdegree ofmotorcontrollability,givingaccurateforcecontrolinarange suitedtopaediatricrehabilitationapplications.

Alimitationofthelinearmotors,andanegativeconsequence ofthelackofgearing,isthatarelativelyhighcurrentisrequired.

Inthetestsreportedhere,motorcurrentwasjustover8Aeven thoughthemeasuredforceswerelessthanhalfofthemaximum continuousforcewhichisavailable.Thelevelofforcegenerated, andthecorrespondingcurrent,isappropriateinconsiderationof performancespecificationsfortherapyofchildrenwithneurologi-

(8)

Fig.7.Dynamictestwithforcecontrollerandimpedancecompensation.Testpersonvolitionallyfollowstheposition/angletargetprofile.

calimpairments,butscalinguptoable-bodiedchildrenortoadults wouldbeasignificantlimitationtotheemploymentoflinearmotor technology.

5. Conclusions

Theoverall controlstrategywasfoundtofacilitatevolitional controlofpedalpositionbasedonthecognitivetaskpresented tothetestperson.Simultaneously,accurateandrobustcontrolof pedalforceswasobservedbasedonforcefeedbackandimpedance compensation.

Theaccuracyofcontrolandthelevelofforcesgeneratedare deemedappropriateforrehabilitationofchildrenwithneurological impairments,butlinearmotortechnologyisunlikelytobesuitable forapplicationswherehigherforcelevelsareneeded.

Thenextstepinthisworkistocarryoutpilotclinicalevaluations tovalidatetheprototypedevicewithinthetargetpopulationof impairedchildren.Initialworkwillfocusonchildrenwithimpaired neuromuscularstrengthand coordinationsecondary tocerebral palsy.Performancewillbeevaluatedusingformalfeasibilitycrite- riaincludingtechnicalimplementation,patientacceptability,and responsiveness;samplesizewillbedeterminedbasedonapriori statisticalpoweranalysis.Furtherworkisalsonecessarytodevelop implementationsoftherapyprogrammesandmodesofoperation thataretask-orientated,attention-demandingandhighlymotivat- ingforchildren,e.g.usingconceptsfromseriousgamessoftware technology[43,44].Priortoclinicalevaluation,thedevicedesign shouldbeaugmentedtoembodyriskanalysisandcorresponding precautionstoensurepatientsafety.

Authors’contributions

All authors contributed to the study design and technical developments.FC,KJHandTNcontributedtotheanalysisandinter- pretationoftheexperimentaldata.FCwrotethemanuscript;KJH,

TN,MLandRDreviseditcriticallyforimportantintellectualcon- tent.Allauthorsreadandapprovedthefinalmanuscript.

Conflictofinterest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgements

ThisworkwassupportedinpartbytheSwissCommissionfor TechnologyandInnovation(CTI,GrantRef.16081.2PFLS-LS).

References

[1]R.Riener,Rehabilitationrobotics,Found.TrendsRobot.3(1–2)(2012)1–137.

[2]A.Esquenazi,A.Packel,Robotic-assistedgaittrainingandrestoration,Am.J.

Phys.Med.Rehab.91(1)(2012)217–231.

[3]J.Robertson,N.Jarrassé,A.Roby-Brami,Rehabilitationrobots:acompliment tovirtualreality,in:Schedaevol.1,CaenUniversityPress,Caen,France,2010, pp.77–94.

[4]B.Rohrer,S.Fasoli,H.I.Krebs,R.Hughes,B.Volpe,W.R.Frontera,J.Stein,N.

Hogan,Movementsmoothnesschangesduringstrokerecovery,J.Neurosci.

22(18)(2002)8297–8304.

[5]J.Fang,S.Galen,A.Vuckovic,B.A.Conway,K.J.Hunt,Kineticanalysisofsupine steppingforearlyrehabilitationofwalking,J.Eng.Med.228(5)(2014) 456–464.

[6]M.Hillman,Rehabilitationroboticsfrompasttopresent:ahistorical perspective,in:Z.Z.Bien,D.Stefanov(Eds.),AdvancesinRehabilitation Robotics,Springer,Heidelberg,Germany,2004,pp.25–44.

[7]NeurorehabilitationTechnology,in:V.Dietz,T.Nef,W.Z.Rymer(Eds.), Springer,London,UK,2012.

[8]W.H.Chang,Y.-H.Kim,Robot-assistedtherapyinstrokerehabilitation,J.

Stroke15(3)(2013)174–181.

[9]S.Hesse,A.Waldner,C.Tomelleri,Innovativegaitrobotfortherepetitive practiceoffloorwalkingandstairclimbingupanddowninstrokepatients,J.

Neuroeng.Rehabil.7(30)(2010).

[10]H.I.Krebs,J.J.Palazzolo,L.Dipietro,M.Ferraro,J.Krol,K.Rannekleiv,B.T.

Volpe,N.Hogan,Rehabilitationrobotics:performance-basedprogressive robot-assistedtherapy,Auton.Robot.15(1)(2003)7–20.

[11]S.Hesse,D.Uhlenbrock,Amechanizedgaittrainerforrestorationofgait,J.

Rehabil.Res.Dev.37(6)(2000)701–708.

(9)

[12]S.Coote,B.Murphy,W.Harwin,E.Stokes,TheeffectoftheGENTLE/s robot-mediatedtherapysystemonarmfunctionafterstroke,Clin.Rehabil.22 (5)(2008)395–405.

[13]S.Hesse,C.Werner,M.Pohl,J.Mehrholz,U.Puzich,H.I.Krebs,Mechanical armtrainerforthetreatmentoftheseverelyaffectedarmafterastroke,Am.J.

Phys.Med.Rehabil.87(10)(2008)779–788.

[14]J.L.Pons,E.Rocon,A.F.Ruiz,J.C.Moreno,Upper-limbroboticrehabilitation exoskeleton:tremorsuppression,in:S.S.Kommu(Ed.),Rehabilitation Robotics,ItechEducationandPublishing,Vienna,Austria,2007,pp.453–470.

[15]H.Herr,Exoskeletonsandorthoses:classification,designchallengesand futuredirections,J.Neuroeng.Rehabil.6(1)(2009)21–30.

[16]G.Colombo,M.Joerg,R.Schreier,V.Dietz,Treadmilltrainingofparaplegic patientsusingaroboticorthosis,J.Rehabil.Res.Dev.37(6)(2000)693–700.

[17]J.Veneman,R.Kruidhof,E.Hekman,R.Ekkelenkamp,E.VanAsseldonk,H.van derKooij,DesignandevaluationoftheLOPESexoskeletonrobotfor interactivegaitrehabilitation,IEEETrans.NeuralSyst.Rehabil.Eng.15(3) (2007)379–386.

[18]T.Nef,M.Mihelj,G.Colombo,R.Riener,ARMinrobotforrehabilitationof theupperextremities,in:IEEEInternationalConferenceonRoboticsand Automation,(Orlando,USA),2006,pp.3152–3157.

[19]R.J.Sanchez,J.Liu,S.Rao,P.Shah,R.Smith,T.Rahman,S.C.Cramer,J.E.

Bobrow,D.J.Reinkensmeyer,Automatingarmmovementtrainingfollowing severestroke:functionalexerciseswithquantitativefeedbackina gravity-reducedenvironment,IEEETrans.NeuralSyst.Rehabil.Eng.14(3) (2006)378–389.

[20]A.H.Stienen,E.E.Hekman,F.C.VanderHelm,G.B.Prange,M.J.Jannink,A.M.

Aalsma,H.VanderKooij,Dampace:dynamicforce-coordinationtrainerfor theupperextremities,in:IEEEInternationalConferenceonRehabilitation Robotics,Noordwijk,Netherlands,2007,pp.820–826.

[21]A.Frisoli,L.Borelli,A.Montagner,S.Marcheschi,C.Procopio,F.Salsedo,M.

Bergamasco,M.C.Carboncini,M.Tolaini,B.Rossi,Armrehabilitationwitha roboticexoskeleletoninVirtualReality,in:IEEEInternationalConferenceon RehabilitationRobotics,Noordwijk,Netherlands,2007,pp.631–642.

[22]R.F.Escamilla,G.S.Fleisig,N.Zheng,J.E.Lander,S.W.Barrentine,J.R.Andrews, B.W.Bergemann,C.T.Moorman,Effectsoftechniquevariationsonknee biomechanicsduringthesquatandlegpress,Med.Sci.SportsExerc.33(9) (2001)1552–1566.

[23]V.J.Harandi,H.Ehsani,Investigatingtheroleoffootplacementonthe muscularforcesofkneeextensorsinhorizontallegpress:astatic optimizationapproach,in:The20thIranianConferenceonBiomedical Engineering,Tehran,Iran,2013,pp.59–64.

[24]M.Bouri,B.LeGall,R.Clavel,Anewconceptofparallelrobotforrehabilitation andfitness:thelambda,in:IEEEInternationalConferenceonRoboticsand Biomimetics,Guilin,China,2009,pp.2503–2508.

[25]J.Olivier,M.Jeanneret,M.Bouri,H.Bleuler,TheLegoPress:arehabilitation, performanceassessmentandtrainingdevicemechanicaldesignandcontrol, in:M.Auvray,C.Duriez(Eds.),Haptics:Neuroscience,Devices,Modeling,and Applications,Springer,Berlin,Germany,2014,pp.198–205.

[26]R.Pfeifer,F.Iida,M.Lungarella,Cognitionfromthebottomup:onbiological inspiration,bodymorphology,andsoftmaterials,TrendsCogn.Sci.18(8) (2014)404–413.

[27]L.Marchal-Crespo,D.J.Reinkensmeyer,Reviewofcontrolstrategiesfor roboticmovementtrainingafterneurologicinjury,J.Neuroeng.Rehabil.6(1) (2009)20.

[28]S.Hussain,S.Q.Xie,G.Liu,Robotassistedtreadmilltraining:mechanismsand trainingstrategies,Med.Eng.Phys.33(5)(2011)527–533.

[29]J.Cao,S.Quan,R.Das,G.L.Zhu,Controlstrategiesforeffectiverobotassisted gaitrehabilitation:thestateofartandfutureprospects,Med.Eng.Phys.36 (12)(2014)1555–1566.

[30]W.Meng,Q.Liu,Z.Zhou,Q.Ai,B.Sheng,S.Shane,Recentdevelopmentof mechanismsandcontrolstrategiesforrobot-assistedlowerlimb rehabilitation,Mechatronics31(2015)132–145.

[31]S.Srivastava,P.-C.Kao,S.H.Kim,P.Stegall,D.Zanotto,J.S.Higginson,S.K.

Agrawal,J.P.Scholz,Assist-as-neededrobot-aidedgaittrainingimproves walkingfunctioninindividualsfollowingstroke,IEEETrans.NeuralSyst.

Rehabil.Eng.23(6)(2015)956–963.

[32]A.Duschau-wicke,A.Caprez,R.Riener,Patient-cooperativecontrolincreases activeparticipationofindividualswithSCIduringrobot-aidedgaittraining,J.

Neuroeng.Rehabil.7(43)(2010)1–13.

[33]H.Mehdi,O.Boubaker,Stiffnessandimpedancecontrolusinglyapunov theoryforrobot-aidedrehabilitation,Int.J.Soc.Robot.4(1)(2012)107–119.

[34]A.A.G.Siqueira,Impedancecontrolofrehabilitationrobotsforlowerlimbs.

Review,in:JointConferenceonRobotics:SBR-LARSRoboticsSymposiumand Robocontrol,SaoPaulo,Brazil,2014,pp.235–240.

[35]W.M.Santos,A.A.G.Siqueira,Optimalimpedancecontrolforrobot-aided rehabilitationofwalkingbasedonestimationofpatientbehavior,in:IEEE InternationalConferenceonBiomedicalRoboticsandBiomechatronics, UTown,Singapore,2016,pp.1023–1028.

[36]A.Duschau-wicke,G.S.Member,J.V.Zitzewitz,G.S.Member,A.Caprez,L.

Lünenburger,R.Riener,Pathcontrol:amethodforpatient-cooperative robot-aidedgaitrehabilitation,IEEETrans.NeuralSyst.Rehabil.Eng.18(1) (2010)38–48.

[37]B.Ding,Q.Ai,Q.Liu,W.Meng,Pathcontrolofarehabilitationrobotusing virtualtunnelandadaptiveimpedancecontroller,in:The7thInternational SymposiumonComputationalIntelligenceandDesign,Hangzhou,China, 2014,pp.158–161.

[38]P.A.Houglum,TherapeuticExercisesforMusculoskeletalInjuries,3rded., HumanKinetics,Champaign,USA,2010.

[39]N.Hogan,Impedancecontrol:anapproachtomanipulation,J.Dyn.Syst.

Meas.Control107(1)(1985)1–24.

[40]K.J.Hunt,S.E.Fankhauser,Heartratecontrolduringtreadmillexerciseusing input-sensitivityshapingfordisturbancerejectionofvery-low-frequency heartratevariability,Biomed.SignalProcess.Control30(2016)31–42.

[41]N.S.Nise,ControlSystemsEngineering,3rded.,Wiley,NewYork,USA,2000.

[42]K.J. ˚Aström,R.M.Murray,FeedbackSystems,PrincetonUniversityPress, Princeton(USA)/Oxford(UK),2008.

[43]M.Pirovano,R.Mainetti,G.Baud-Bovy,P.L.Lanzi,N.A.Borghese,Intelligent gameengineforrehabilitation(IGER),in:IEEETransactionsonComputational IntelligenceandAIinGames,vol.8(1),2016,pp.43–55.

[44]P.Abellard,A.Abellard,Virtualrealityandseriousgamesforrehabilitation, in:InternationalConferenceonVirtualRehabilitation,Valencia,Spain,2015, pp.117–118.

Referenzen

ÄHNLICHE DOKUMENTE

The model- based controller is `familiar' with the behaviour of the process that it is adjusting; a priori information about the natural process not available to

Elena Cooper (who is also a contributor to the present volume), covers the United Kingdom from the mid-nineteenth century through the early twentieth century. 30 Scott’s study

ABSTRACT The aim of the paper is to develop a uniform semantic-pragmatic theory of Controller choice for a numbei of German and English subject control verbs like

The low volume method cannot be used for control measures which demand a relatively high minimal amount of liquid on the leaves, such as those against red spider and aphids..

©2009 Springer-Verlag Berlin Heidelberg / ©2010 Joachim Biskup TU Dortmund / Jan Jürjens : Security in Computing Systems. Fundamentals of Control and Monitoring

Costs and cost- savings per unit of methane reduced are measured assuming the alternative would be disposal at a no control landfill with a methane generation rate of 0.082 t CH 4

Conclusion and significance: The lower values for RMS tracking error and control signal power for the TM point to decreasing HRV intensity with increasing HR, because, in order to

• Trainees should only work with the circuits under the supervision of a trainer. power supply units, compressors and hydraulic power units) may only be operated in training