• Keine Ergebnisse gefunden

PAA by Douglas Heggie 2011 Notes of Paul Boeck

N/A
N/A
Protected

Academic year: 2023

Aktie "PAA by Douglas Heggie 2011 Notes of Paul Boeck"

Copied!
23
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

PAA by Douglas Heggie

2011

Notes of Paul Boeck

Last changes: May 16, 2011

Contents

1 The Generalized Riemann Integral 2

2 Fourier transforms 3

2.1 Definition and basic properties . . . 3

2.2 Gaussians . . . 5

2.3 Inversion Theorem . . . 6

2.4 Plancherel’s Theorem . . . 7

2.5 An application: Heisenberg’s Uncertainty Principle . . . 8

3 The Heat Equation and Laplaces Equation 9 3.1 Existence and uniqueness for the heat equation . . . 9

3.2 Laplace’s equation . . . 11

3.3 Laplace equation in the upper half–plane . . . 11

3.4 The maximum principle . . . 12

3.5 Uniqueness for Laplace’s equation . . . 12

3.6 Mean Value Theorem . . . 13

3.7 Green’s Functions, Laplace’s eqn . . . 14

4 The Wave equation 15 4.1 1 Space Dimension . . . 15

4.2 1 Dimension in the Half Line . . . 15

4.3 The Wave Equation in 3 Dimensions . . . 16

5 Distributions 17 5.1 Definitions and basic properties . . . 17

5.2 Addition and multiplications of distributions . . . 18

5.3 Differentiation of distributions . . . 19

5.4 Convergence of Distributions . . . 19

5.5 Higher–dimensional distributions . . . 20

5.6 Fourier transform of distributions . . . 21

6 Nonlinearity 22

Index 23

(2)

1 THE GENERALIZED RIEMANN INTEGRAL

1 The Generalized Riemann Integral

Definition 1.1

Let f :[a,∞)→Rbe a function that is Riemann–integrable on each[a,b], b>a. We define Z

a f(x)dx= lim

b→ Z b

a f(x)dx provided that the limit exists.

Example 1.2 • f(x) = x12,x ∈[1,∞). ThenRb

1 f(x)dx=hx−2+12+1ib

1= (b−1−1) =1−b−1−−−→b→ 1

1x,x∈[1,∞),Rb 1 1

xdx= [lnx]b1=lnb−−−→b→ =⇒ the integral does not exist.

Remark Integrals with∞limits sometimes are called "improper" integrals.

Definition 1.3

Let f : (−∞,a] → Rbe a function which is Riemann–integrable on each [b,a] with b < a. We define Ra

f(x)dx = limb→−Ra

b f(x)dx provided the limit exists.

Definition 1.4

Let f :RRbe a given function. We defineR

f(x)dx=R0

f(x)dx+R

0 f(x)dx provided both limits exist.

Proposition 1.5 The integralR

a f(x)dx exists iffRb0

b f(x)dx→0as b,b0∞.

Proof: Problem 2.

Proposition 1.6 IfR

a |f(x)|dx exists, so doesR

a f(x)dx.

Proof: Assume R

a |f(x)|dx exists. Then Prop. 1.5. implies Rb0

b |f(x)|dx −−−−→b,b0 0. But

Rb0

b f(x)dx ≤ Rb0

b |f(x)|dx. Hence Prop 1.5 impliesR

a f(x)dxexists.

Proposition 1.7 (Comparison)

Let f,g be Riemann–integrable on every[a,b]and suppose that|f(x)| ≤g(x)on[a,∞)andR

a g(x)dx exists. Then so does R

a f(x)dx.

Proof: Rb

a |f(x)|dx ≤ Rb

a g(x)dx −−−→b→ R

a g(x)dx from below. Obviously Rb

a |f(x)|dx is a non–decreasing function ofband bounded above byR

a g(x)dx. HenceR

a |f(x)|dxexists, henceR

a f(x)dxexists by Prop.

1.6.

Example 1.8 • TestR

0 cosx 1+x2dx.

cosx 1+x2

x12 andRb 0 dx

1+x2 = [arctanx]b0 =arctanb −−−→b→ π2. Hence convergence by Prop. 1.7.

• TestR

0 e−x2dx. Nowx2≥xifx ≥1 and so ifb>1:Rb

0 e−x2dx=R1

0 e−x2dx+Rb

1 e−x2dxwhere|e−x2| ≤e−x (ifx>1).

Rb

1 e−xdx= [−e−x]1b=e−b+e−1−−−→b→ e−1. Hence the whole integral exists.

• TestR

1 xke−xdx. e−x = e1xxn1/n! for anyn≥0 and allx ≥0. Choosen> k+1. Thusxke−x ≤n!xk−n and Rb

1 xk−ndx= k−n+11 hxk−n+1ib

1= k−n+11 ek−n+1−1 b→

−−−→ −k−n+11 . Hence convergence.

Theorem 1.9 (Leibniz’ rule for improper integrals) Suppose f(x,τ)and fx(x,τ)are continuous functions fora ≤ x ≤ bandc ≤ τ < ∞. Define F[x,t) = Rt

c f(x,τ)dτand supposeF(x,t) → ϕ(x) ≡ R

c f(x,τ)dτandFx(x,t) → ψ(x)uniformly forx∈[a,b].

Thenϕis differentiable andψ(x) =ϕ0(x) =R

c fx(x,τ)dτ.

Remark Basically dxd R

c f(x,τ)dτ=R

c

∂xf(x,τ)dτprovided that integral on the right has uniform convergence.

(3)

2 FOURIER TRANSFORMS

2 Fourier transforms

2.1 Definition and basic properties

Definition 2.1.1

Let f :RCbe such thatR

|f(x)|dx exists. We define theFourier transformof f by fˆ:RC, where fˆ(ξ) =

Z

f(x)e−iξxdx (ξR) Remark (i) The integral exists, becauseR

f(x)ex

dxexists, and using Prop 1.7.

(ii) ˆf is a bounded function, because for allξR

|fˆ(ξ)|=

Z

f(x)e−iξxdx

≤ Z

|f(x)e−iξx|dx= Z

|f(x)|dx Example 2.1.2 Take f(x) =

(1 if|x| ≤1

0 otherwiseIts F.T. is fˆ(ξ) =

Z

f(x)eξxdx= Z 1

−1eiξxdx=

1 iξe−iξx

1

−1

=−1

e−iξ−e

=−1

iξ(−2isinξ) = 2

ξsinξ if ξ6=0 Forξ=0, ˆf(0) =R1

−1 dx=2=limξ→02 sinξ

ξ . Thus ˆf(ξ) = (2 sinξ

ξ ifξ6=0 2 ifξ=0

Remark Sometimes we just write ˆf = 2 sinξ ξ on the understanding that ˆf(0) =limξ→0fˆ(ξ). Definition 2.1.3

TheSchwartz space(of rapidly decreasing functions) denotedS(R)is defined to be the set of all functions f :RCwhich are infinitely differentiable and have the following property: For all integers k,l ∈ (0, 1, 2, . . .)the function|x|k|f(l)(x)|is bounded.

Example 2.1.4 The function f(x) =e−x2 is inS(R). For f is obviously infinitely differentiable.

Also fixk,l∈ {0, 1, 2, . . .}, we show that|x|k|f(l)(x)|is bounded, as follows.

First, do

l=0 :|x|k|f(x)|=|x|ke−x2 = |x|k

ex2 = |x|k

1+x2+12x4+· · ·+(2k)!x2k +· · · ≤ |x|k 1+(2k)!x2k which is bounded.

Now considerl > 0. First, observe that f(x) = e−x2 =⇒ f0(x) = −2xe−x2 =⇒ f00(x) = (−2+4x2)e−x2. Clearly (or by induction) f(l)(x) = hl(x)e−x2, wherehl(x)is a polynomial. Hence|x|k|f(l)(x)| = |xkhl(x)|e−x2 =

|ql,k(x)|e−x2, whereql,kis another polynomial. Writeqk,l(x) = dn=0cnxk. Thenqk,l(x)e−x2 = dn=0cnxne−x2, each term is bounded

Proposition 2.1.5 If f ∈ S(R)thenR

|f(x)|dx exists.

Proof: Since|x|k|f(l)(x)|is bounded for eachk,l ∈(0, 1, 2, . . .),|f(x)|andx2|f(x)|are bounded. (l =0,k=0 and 2). Hence(1+x2)|f(x)|is bounded, i.e.∃Ms.t.(1+x2)|f(x)| ≤M. Hence|f(x)| ≤ 1+xM2.R

dx

1+x2 exists,

hence result, by Prop 1.7.

Corollary 2.1.6

The Fourier transformf exists for any fˆ ∈ S(R).

Proof: See Def 2.1.1 and remarks and Prop 2.1.5.

(4)

2.1 Definition and basic properties 2 FOURIER TRANSFORMS

Example 2.1.7 Let f : RCbe infinitely differentiable and suppose that f vanishes outside some interval[a,b]. Then f ∈ S(R).

For, given anyk,l the function|xk||f(l)(x)|vanishes outside[a,b]and is continuous and hence bounded on[a,b]. Hence it is bounded onR.

Example 2.1.8 The functione−|x|is not inS(R)as it is not differentiable atx=0.

Proposition 2.1.9

S(R)is closed under (i) differentiation and under (ii) multiplication by polynomials.

Proof: (i) Let f ∈ S(R). Then f is infinitely differentiable. Therefore f0is infinitely differentiable. Also for any integersk,l≥0 we havexk(f0)(l)(x) =xkf(l+1)(x), which is bounded.

(ii) See Problem 9.

Proposition 2.1.10

Let f ∈ S(R)and let h∈R. Define g(x) =e−ixhf(x). Thengˆ(ξ) = fˆ(ξ+h). Proof: gˆ(ξ) =R

g(x)e−iξxdx=R

f(x)e−i(ξ+h)dx= fˆ(ξ+h)

Proposition 2.1.11

Let f ∈ S(R), h∈Rand define g(x) = f(x+h). Thengˆ(ξ) = fˆ(ξ)eiξh Proof: gˆ(ξ) =R

g(xe−iξxdx=R

f(x+h)e−iξxdx. Change variable: Letx0 =x+h.

Then ˆg(ξ) =R

f(x0)e−iξ(x0−h)dx0=R

e−iξx0eiξhdx0 =eihξfˆ(ξ).

Remark Props 2.1.10-11 are calledshift–theorems.

Proposition 2.1.12

Let f ∈ S(R). The(df0)(ξ) =iξfˆ(ξ).

Remark analogue ofcn(f0) =incn(f)complex Fourier series.

Proof: (df0)(ξ) =R

f0(x)e−iξxdx=f(x)e−iξx

−R

f(x)(−iξ)e−iξxdx. Now f ∈ S(R) =⇒ |x f(x)| ≤ M =⇒ |f(x)| ≤ |x|M for allx6=0.Hence limx→±|f(x)e−iξx|=0. Finally(df0)(ξ) =iξfˆ.

Proposition 2.1.13

Let f ∈ S(R). Then(fˆ)0(ξ) =gˆ(ξ)where g(x) =−ix f(x). Proof: (fˆ)0(ξ) = d R

f(x)e−iξxdx=R

∂ξ f(x)e−iξx

dx=R

(−ix f(x))e−iξxdxby Prop 1.9.

Remark \x f(x)(ξ) =ifˆ0(ξ). Corollary 2.1.14

If f ∈ S(R)thendf(k)= (iξ)kf .ˆ

Proof: Induction onk. Prop 2.1.12 givesk=1. Also, assuming 2.1.14,\f(k+1)=(\f(k))0 =iξdf(k)=iξ(iξ)kfˆ.

Corollary 2.1.15

If f ∈ S(R)thenf is infinitely differentiable.ˆ fˆ(k)(ξ) =gˆk(ξ)where gk(x) = (−ix)kf(x). Proof: Induction based on Prop 2.1.13.

Remark x\kf(x)(ξ) =ik(k)(ξ).

Example Let f(x) = e−x2. f0(x) = −2xe−x2 = −2x f(x) (∗).The FT of f0 isiξfˆ(Prop 2.1.12) and the FT ofx f(x) isifˆ0. Hence(∗) =⇒ iξfˆ= −2ifˆ0. We are using the fact that the Fourier transform, being an integral, is a linear operation. Hence dfˆ=−ξ2fˆ. Separable differential eqn:

Z dfˆ fˆ −

Z ξ

2dξ =⇒ ln ˆf =−ξ

2

4 +const. =⇒ fˆ(ξ) =Ce−ξ2/4 Cconst.

(5)

2.2 Gaussians 2 FOURIER TRANSFORMS

Z

e−x2−iξxdx x2+iξx=x+22+ξ42

= Z

e−(x+2)2−ξ2/4dx=e−ξ2/4 Z

e−(x+2)2dx x0=x+ 2

=e−ξ2/4

+iξ/2

Z

+iξ/2

e−x02dx0

Now ˆf(0) =R

f(x)dxby Def 2.1.1.C=R

e−x2dx=√

π. Hence ˆf(ξ) =√ πeξ2/4. Proposition 2.1.16

If f ∈ S(R)thenfˆ∈ S(R). Proof: We need to show

(a) ˆf is infinitely differentiable and

(b) |ξ|k|fˆ(l)(ξ)|is bounded for all integersk,l≥0

To proof (b) we have (iξ)kfˆ(l)(ξ) = (iξ)kl(ξ)where gl(x) = (−ix)lf(x). by Cor 2.1.15. Now gl ∈ S(R) because it is a product off ∈ S(R)by a polynomial (Prop 2.1.9).

fˆ(k)=

Z

f(x)e−iξxdx

≤ Z

|f(x)||e−iξx|dx

Also(iξ)kl(ξ) = dg(k)l (ξ)by Cor 2.1.14. But since gl ∈ S(R)we haveg(k)l ∈ S(R)(Prop 2.1.9 again). Hence

dg(k)l

≤R

|g(k)l |dx(by Def 2.1, Remark ii), i.e.

ξkfˆ(l)(ξ)=(iξ)kfˆ(l)

=(iξ)kl(ξ)=

gd(k)l (ξ)

is bounded

Remark The mapF :S(R)→ S(R), defined byF(f) = fˆis linear (as integration). We shall see it is 1–1 and onto and (almost) an isometry.

2.2 Gaussians

i.e. functions of the forme−ax2,a>0.

Definition 2.2.1

Forδ>0define Kδ(x) = 1

2πδe−x2/2δ. Lemma 2.2.2

δ(ξ) =eδξ2/2. Proof:

Z

√1

2πδe−x2/2δ−iξxdx x=√ 2δx0

= Z

√1

πe−x02−2ξx0

dx=e−ξ22δ/4=e−ξ2δ/2

Remark K1 δ

(x)Def 2.2.1= q

δ

eδx2/2 Lemma 2.2.2= q

δ

δ(x). Also ˆK1 δ

(ξ) =√

2πδKδ(ξ).

Example What is the function whose FT isξeδξ2/2? We use 2.1.12: bf0 = iξfˆ. Let f(x) = Kδ(x) = 1

2πδe−x2/2δ. Hence bf0 =iξe−δξ2/2. Required function is 1iK0δ(x) =−i2πδ1 (−2x)e−x2/2δ= ix

δKδ(x).

(6)

2.3 Inversion Theorem 2 FOURIER TRANSFORMS

Proposition 2.2.3

The family Kδ,δ>0has the properties (i) ∀δ>0 :R

Kδ(x)dx=1 (ii) ∀η>0 :R

|x|>ηKδ(x)dx→0asδ→0.

Definition 2.2.4

For f,g∈ S(R)define theirconvolutionby

f∗g:RC where (f∗g)(x) = Z

f(x−y)g(y)dy

Theorem 2.2.5 (Convolution Theorem) Let f,g∈ S(R)then(\f∗g)(ξ) = fˆ(ξ)gˆ(ξ). Proposition 2.2.6

If f ∈ S(R)then f∗Kδ → f uniformly onRasδ→0.

2.3 Inversion Theorem

Proposition 2.3.1 (Multiplication Formula) Let f,g∈ S(R). Then

Z

f(x)gˆ(x)dx= Z

fˆ(x)g(x)dx

Theorem 2.3.2 (Inversion Theorem) Let f ∈ S(R). Then∀x∈R f(x) = 1

2π Z

fˆ(ξ)eixξ

Remark This is the analogue of the following result for a well–behaved 2π–periodic function f. If cn = 1

2π Z π

−π f(x)e−inxdx then f(x) =

cneinx Proof: First prove it forx=0, i.e. f(0) = 1 R

fˆ(ξ)dξ(∗). Letg(x) =Gδ(x) = 1 eδx2/2where Z

f(x−y)Kδ(y)

| {z }

ˆ g(y)

dy→ f(x) Kδ= √1

2πδe−x2/2δ) F√1

2πδe−x2/2δ is eδx2/2 F

r δ

2πeδx2/2 is e−x2/2δ (δ1

δ) Gˆδ(ξ) =Kδ(ξ)(remark to Lemma 2.2.2). ThusR

f(x)Kδ(x)dx= R

fˆ(x)eδx2/2 dx. Now letδ→0. RHS→

1

R

fˆ(x)dxand LHS=R

f(x)Kδ(x)dx.

Z

f(x−y)Kδ(y)dy→ f(x)

= Z

f(−y)Kδ(−y)y (x=−y)

= Z

f(0−y)Kδ(y)dy sinceKδ(y) =Kδ(−y)

= (f∗Kδ)(0)→ f(0) as δ→0 by Prop 2.2.6 Hence f(0) = 1 R

fˆ(ξ)dξ.

Fix x0R. Define g(x) = f(x+x0). Apply (∗) to g : g(0) = 1 R

gˆ(ξ)dξ. But g(0) = f(x0) and ˆ

g(ξ) =eiξx0fˆ(ξ)(Prop 2.1.11). Hence f(x0) = 1 R

fˆ(ξ)eiξx0dξ.

(7)

2.4 Plancherel’s Theorem 2 FOURIER TRANSFORMS

Corollary 2.3.3

(i) If f ∈ S(R)and fˆ(0) =0(i.e. fˆ(ξ) =0for allξR) then f =0.

(ii) If f1,f2∈ S(R)and fˆ1= fˆ2then f1= f2 Proof: (i) f(x) = 1 R

0eiξxdξ=0

(ii) apply (i) to f1−f2.

Definition 2.3.4

For f ∈ S(R)we have defined its FT by(Ff)(ξ) = fˆ(ξ) =R

f(x)e−ixξdx.

We now also define theinverse Fourier transformof f by(F−1f)(ξ) = 1 R

f(x)eixξdx= fˇ(ξ). Remark (i) We can show that if f ∈ S(R), then ˇf ∈ S(R).

(ii) The inversion theorem (2.3.2) states thatF−1(Ff) = f. Similarly we can show thatF(F−1f) = f. Corollary 2.3.5

The mapF :S(R)→ S(R), f 7→ Ff = f is 1–1 and onto (i.e. bijection).ˆ Proof:onto: If f ∈ S(R)letg=F−1f. ThenFg= f.

1–1: Ff1=Ff2 =⇒ f1= f2(Cor 2.3.3(ii))

Remark The inversion theorem is true for many f ∈ S(/ R). Example 2.3.6 Let f(x) =

(e−x ,x>0

0 ,x≤0. Then ˆf(ξ) =1+iξ1 (Tutorial Q4b). Hence f(x) = 1 R

eiξx

1+iξdξ. f(−x) =

1

R

eiξx

1+iξ and withx↔ξwe have f(−ξ) = 1 R

eiξxdx 1+ix

2.4 Plancherel’s Theorem

Recall:For 2π–periodic functions f :RCwe haveParceval’s identity 1

2π Z π

π

|f(x)|2dx=

|cn|2 Theorem 2.4.1 Iff ∈ S(R)then

Z

|f(x)|2dx= 1

Z

|fˆ(ξ)|2Remark (i) In terms of theL2–normkfk2=R

|f(x)|dx1/2

,Plancherel’s Theoremsays thatkfk2= 1

kfˆk2. (ii) Except for the factor 1

, which can be removed by slight redefinition ofF, F is an isometry (preserving length).

Proof: (idea)

Z

|f(x)|2dx= Z

f(x)f(x)dx= 1

Z

fˆ(ξ)eixξdξf(x)dx

But fˆ(ξ) = Z

f(x)e−ixξdx

fˆ(ξ) = Z

f(x)e−ixξdx= Z

f(x)e−ixξdx= Z

f(x)eixξdx

Hence Z

|f(x)|2dx= 1

Z

fˆ(ξ)fˆ(ξ)dξ= 1

Z

|fˆ(ξ)|2

(8)

2.5 An application: Heisenberg’s Uncertainty Principle 2 FOURIER TRANSFORMS

2.5 An application: Heisenberg’s Uncertainty Principle

Theorem 2.5.1 Let f ∈ S(R)be such that R

|f(x)|2dx=1. Then R

x2|f(x)|2dx

! R

ξ2|f(ξ)|2

!

π2

Proof:

1= Z

1· |f(x)|2dx= Z

dx

dx|f(x)|2dx

=− Z

x

|f(x)|20 dx integration by parts

=− Z

x

f(x)f(x)0 dx=− Z

x

f0(x)f(x) +f(x)f0(x)dx

Hence 1=

Z

x

f0(x)f(x) +f(x)f0(x)dx

≤ Z

|x||f0(x)||f(x)|+|f(x)||f0(x)| dx=2 Z

|x||f(x)||f0(x)|dx

Cauchy Schwarz

≤2

 Z

|x|2|f(x)|2dx

1/2

 Z

|f0(x)|2dx

1/2

(∗)

=2

 Z

|x|2|f(x)|2dx

1/2

 1 2π

Z

|bf0(ξ)|2

1/2

by Theorem 2.4.1

=2

 Z

|x|2|f(x)|2dx

1/2

 1 2π

Z

|iξfˆ(ξ)|2

1/2

by Theorem 2.1.12

Squaring: π 2 ≤

 Z

|x|2|f(x)|2dx

 Z

|ξ|2|fˆ(ξ)|2

Remark In quantum mechanics, the position of a particle moving on thex–axis is known only probabilistically, in terms of awave functionψ:RC,|ψ(x)|2dxis the probability of finding the particle in[x,x+ dx]. Thus|ψ(x)|2is the probability density function and soR

|ψ(x)|2dx=1. Its width is characterized by∆xwhere (∆x)2=

Z

x2|ψ(x)|2dx

Similarly its velocity (strictly, momentum) has a probability distribution whose width is∆p, where (∆p)2=

Z

| −i¯h∂ψ

∂x|2dx where ¯h= h wherehisPlanck’s constant. Hence(∗)

=⇒ 1<4(∆x)2 ∆p

¯ h

2

, i.e. ∆x,∆x≥ ¯h 2

Hence, if the uncertainty in position is small, the uncertainty in velocity is large and conversely.

(9)

3 THE HEAT EQUATION AND LAPLACES EQUATION

Example 2.5.2 Let f(x) =pKδ(x) =q1

2πδe−x2/2δ= (2πδ)11/4e−x2/4δ(Def. 2.2.1). Then Z

|f(x)|2dx= Z

Kδ(x)x=1 Prop 2.2.3

Also Z

x2|f(x)|2dx= Z

x2

√2πδe−x2/2δdx= √1 2πδ

Z

d

dx(e−x2/2δ)(−δ)x dx

= r

δ

he−x2/2δxi

− Z

e−x2/2δdx

=???

Next, f(x) = 1 (2πδ)1/4

4πδK(x) = (8πδ)1/4K(x) and so fˆ(ξ) = (8πδ)1/4e−δξ2 Lemma 2.2.2 By a similar calculationR

|ξ|2|fˆ(ξ)|2dξ= π. Hence Heisenbergs inequality becomes equality.

3 The Heat Equation and Laplaces Equation

ut=uxx uxx+uyy=0

Interpretation LetT(x,t)be the temperature at timet, at position x along a rod which conducts heat. Then for common substancesk∂x2T2 = ∂T∂t. By scalingt= tk,∂x2T2 = ∂t∂T (heat equation).

NextT(x,y,t)be the temperature at timetat position(x,y)on a flat object which conducts heat. Then

∂T

∂t =k 2T

∂x2 +

2T

∂y2

If the temperature settles into steady, ∂T∂t =0 and so∂x2T2 +∂y2T2 =0 (Laplaces equation).

For the heat equation, the usual initial condition isu(x, 0) = f(x)∈ S(R).

3.1 Existence and uniqueness of solutions of the heat equation

Proposition 3.1.1 (Existence forut =uxx)

Let f ∈ S(R). Define u(x,t) = (f ∗Ht)(x)where Ht(x) = √1

4πte−x2/4tfor t>0theHeat Kernel, i.e.

u(x,t) = √1 4πt

Z

f(y)e−(x−y)2/4tdy Then

(i) ut=uxxif t>0 (ii) limt→0+u(x,t) = f(x)

Proof: (i) By Leibniz’s rule (Prop 1.9) ut(x,t) = =

Z

f(y)

∂t √1

4πte−(x−y)2/4t

dy

& similarly uxx(t) = Z

f(y)

2

∂x2 1

√4πte−(x−y)2/4t

dy

(10)

3.1 Existence and uniqueness for the heat equation 3 THE HEAT EQUATION AND LAPLACES EQUATION

Now, sincex−yis independent oft

∂t 1

√te−(x−y)2/4t

= 1/2

t1/2e−(x−y)2/4t+(x−y)2

4t5/2 e−(x−y)2/4t

∂x 1

√te−(x−y)2/4t

= (x−y)

2t3/2 e−(x−y)2/4t =⇒

2

∂x2 1

√te−(x−y)2/4t

=

∂t 1

√te−(x−y)2/4t

Hence result.

(ii) SinceHt(x) =K2t(x), (ii) is an application of Theorem 2.2.6.

Remark The expressionu(x,t) = √1 4πt

Z

f(y)e−(x−y)2/4tdyis an (integral) superposition of solutions of the form

√1

4πte−(x−y)2/4t.

Remark 3.1.2 For fixedt > 0,uis a convolution of 2 functions inS(R)and so is in S(R)(see problem 17). Also u(x, 0)∈ S(R).

Proposition 3.1.3 (Uniqueness for the heat equation) Let u(x,t), v(x,t)have the following properties:

(i) both are defined for x∈R, t≥0and are continuous

(ii) both solve the heat equation in the region x∈R, t>0with u(x, 0) =v(x, 0). (iii) both have the property in Remark 3.1.2 (inS(R))

Then u=v.

Proof: Letw=u−v. Thenwhas properties (i)–(iii) withw(x, 0) =0. DefineE[w](t) =R

|w(x,t)|2dx. Then E[w]0(t) =

Z

∂t|w(x,t)|2dx Z

(wtw¯+ww¯t)x= Z

(wxxw¯+ww¯xx)dx

= Z

((ww¯)xx−2wxx)dx=

(ww¯)x

| {z }

=0 asw∈ S(R)

−2 Z

|wx|2dx≤0

ThereforeE[w]is a decreasing function oft. Hence∀t≥0 0≤E[w](t)≤E[w](0) =

Z

|w(x, 0)|2dx=0 HenceE[w](t) =R

|w(x,t)|2dx=and sow(x,t) =0. Henceu(x,t) =v(x,t).

Remark 3.1.5 Though we assumed f ∈ S(R)the formulau(x,t) = √1 4πt

Z

f(y)e−(x−y)2/4tdyis also correct for many f ∈ S/ (R).

Example 3.1.6 Take f =e3x∈ S/ (R). Thenu(x,t) = √1 4πt

Z

e3ye−(x−y)2/4tdywhere the exponent is 3y1

4t(x2−2xy+y2) =−1

4t(y2−2y(x+6t) +x2) =−1

4t((y−(x+6t))2−x2−12xt−36t2+x2)

=−1

4t(y−x−6t)2+3x+9t u(x,t) = √1

4πt Z

e4t1(y−x−6t)2+3x+9tdy= √1

4πte3x+9t Z

e4t1(y−x−6t)2dy

= √1

4πte3x+9t Z

e−y02/4tdy0 (y0 =y−x−6t)

=e3x+9t by Prop 2.2.3, since the integrand isK2t(y0)

(11)

3.2 Laplace’s equation 3 THE HEAT EQUATION AND LAPLACES EQUATION

3.2 Laplace’s equation u

xx

+ u

yy

= 0

Definition 3.2.1

A setΩ ⊆R2is said to be open iff for every(x,y)∈ Ω, there is an r>0, s.t. the disc D((x,y),r), i.e. the disc of radius r, centered at(x,y), is contained inΩ.

Definition 3.2.2

LetΩ⊆R2be open. A function u:Ω→R(orC) is said to beharmoniciff it is twice differentiable and s.t. uxx+uyy=0.

Example 3.2.3 If f(z) is holomorphic with real and imaginary parts u,v, then u,v satisfy the Cauchy–Riemann equationux=vy,uy=−vxand souxx+uyy=vyx−vxy=0. Similarlyvxx+vyy=0, i.e.uandvare harmonic.

f(z) =

0

anzn=

0

anrneinθ =

0

anrn(cosnθ+isinnθ) zn =rncosnθ+irnsinnθ

3.3 Laplace equation in the upper half–plane

Ω={(x,y):y,x∈R,y>0}=R2+and we have∇2u=0,u= f(x).

Consider the following boundary value problem: given a functionf, find a functionu(x,y)s.t.uxx+uyy=0 inR2+ andu(x, 0) = f(x).

Definition 3.3.1

ThePoisson kernelis defined to be Py(x) = π1x2+yy 2, x∈R, y>0

Remark 3.3.2 For fixedy >0,Py(x)is infinitely differentiable, but it doesn’t decay rapidly enough as|x| →∞and is not inS(R).

Proposition 3.3.5

The Poisson kernel has the properties (i) ∀y>0R

Py(x)dx=1 (ii) F(Py)(ξ) =Pˆy(ξ) =e−y|ξ| (iii) for fixedδ>0,Ry

x>δPy(x)dx→0as y→0+. Proof: (i) 1

π Z

y

y2+x2dx= 1 π

tan−1 x

y

= 1 π

π

2 −π 2

=1

(ii) tutorial Ex 2.1 (iii) By symmetry,

Z

|x|>δ

Py(x)dx= 2 π

Z

δ

y

x2+y2dx= 2 π

tanx

y

δ

= 2 π

π

2 −tan−1δ y

2 π

π 2 −π

2

=0

asy→0+.

Theorem 3.3.6 Let f ∈ S(R). Defineu(x,y) = (f∗Py)(x),x ∈R,y>0. Then

(i) u(x,y)is twice differentiable in the upper half planey>0 anduxx+uyy=0 (i.e.uis harmonic) (ii) lim

y→0+u(x,y) = f(x)for allx∈R

(iii) if we extendu(x,y)tox∈R,y≥0 by defining it to be f(x)wheny=0, the extendeduis continuous.

Proof: Similar to the heat equation (Prop. 3.1.1).

Again, this formula to applies to many f ∈ S/ (R).

(12)

3.4 The maximum principle 3 THE HEAT EQUATION AND LAPLACES EQUATION

Example 3.3.7 Letu(x, 0) =H(x) =

(1 ifx>0

0 ifx<0 (Heaviside step function). Then

u(x,y) = (H∗Py)(x) = Z

H(z)Py(x−y)dz= y π

Z

H(z) dz

y2+ (x−2)2 Def 3.3.1

= y π

Z 0

dz

y2+ (2−x)2 = 1 π

tan−12−x y

0

= 1 π

π

2 −tan−1

x y

= 1 π

π

2 +tan−1x y

z=x+iy

= 1 2+ 1

π π

2 −argz

=1− 1

πargz=Im

i− 1 πlnz

Ex 3.2.3

3.4 The maximum principle

In this section,Ω⊆R2is open and bounded. We define theclosureofΩby ¯Ω= Ω∪∂Ωwhere∂Ωis the set of all boundary points ofΩ. The set ¯Ωis closed and bounded. (Closed means its complement is open.)

Such sets in the plane are calledcompact. It can be shown that a continuous function on a compact set always has a maximum and a minimum.

Lemma 3.4.1

Let u: ¯Ω→Rbe continuous onΩ¯ and such that uxx+uyy≥0inΩ. Then the max. of u onΩ¯ is attained on∂Ω.

Remark such a function is calledsubharmonic.

Proof: Suppose that the max is attained at an interior point(x0,y0)∈Ω. Thenuxx(x0,y0)≤0 anduyy(x0,y0)≤ 0. Henceuxx(x0,y0) +uyy(x0,y0)≤0. This is a contradiction.

Theorem 3.4.2 (Max Principle) Letu: ¯Ω→Rbe continuous and harmonic inΩ. Then the max ofuon ¯Ωis attained on the boundary∂Ω.

Remark It may also be attained at an interior point, e.g.u=constant.

Proof: Letε > 0. Definev(x,y) = u(x,y) +ε(x2+y2). Thenvx = ux+2εx,vxx = uxx+2ε, similarlyvyy = uyy+2ε. Hencevxx+vyy=4ε>0 By Lemma 3.4.1 the max ofvis attended on∂Ω. Hence for any(x0,y0)∈Ω, v(x0,y0)≤max∂Ωv(x,y)i.e.

u(x0,y0) +ε(x20+y20)≤max

(x,y)

n

u(x,y) +ε(x2+y2)o≤max

∂Ω u(x,y) +εM

where M > 0 is a bound for x2+y2on∂Ω. Henceu(x0,y0) ≤ max∂Ωu(x,y) +ε(M−(x20+y20)). Now let

ε→0+:u(x0,y0≤max∂Ωu(x,y).

Corollary 3.4.3

Under the same assumptions the minimum of u is attained on∂Ω.

Proof: Apply Theorem 3.4.2 to−u.

3.5 Uniqueness for Laplace’s equation in the upper half plane

Given f(x)∈ S(R), letu(x,y) = (f∗Py)(x). Then by Theorem 3.3.6u(x,y)satisfies (i) uxx+uyy=0 fory>0

(ii) u(x,y)→ f(x)asy→0+

Remark (iii) It is also true thatu(x,y)→0 asx2+y2∞,y>0 (Problem 33) Theorem 3.5.1 u(x,y)satisfying (i)-(iii) is unique.

(13)

3.6 Mean Value Theorem 3 THE HEAT EQUATION AND LAPLACES EQUATION

Proof: Given f, suppose∃two suchu, i.e.u1(x,y)andu2(x,y). Letw=u1−u2. Thenwxx+wyy=0 inR2+ = {(x,y)∈ R2,y >0}. w(x, 0) = u1(x, 0)−u2(x, 0) = f(x)− f(x) =0. wis continuous in{(x,y)∈R2,y ≥0} and limx2+y2w(x,y) =0−0=0.

We want to showw=0. Suppose on the contrary that∃(x0,y0)∈R2+s.t.w(x0,y0)6=0, sayw(x0,y0)>0. (For w(x0,y0)<0, the proof is similar). PickRlarge enough so that

(i) x20+y20<R2

(ii) ∀(x,y)on the semicirclex2+y2=R2,y≥0,w(x,y)≤ 12w(x0,y0). Apply maximum principle towon the setΩR={(x,y):x2+y2<R,y>0}

max

x2+y2=R2,y>0

12w(x0,y0) max

AB w(x, 0) =0 whereABis the straight part of the semicircle max∂ΩR

w(x0,y0) =⇒ w(x0,y0)≤ 12w(x0,y0)<w(x0,y0)

This clearly is a contradiction.

3.6 Mean Value Theorem

Theorem 3.6.1 SupposeΩ ⊆R2is open and bounded andu:Ω →Ris harmonic. Let(x0,y0)∈Ωand letR>0 be such thatD((x0,y0),R)⊆Ω. Then for anyr∈[0,R]we have

u(x0,y0) = 1

Z

0 u(x0+rcosθ,y0+rsinθ)dθ Proof: Define

f(r) = 1

Z

0 u(x0+rcosθ,y0+rsinθ)

| {z }

U(r,θ)

r,θare polar coords with origin(x0,y0). Thus sinceuis harmonic, ∂r2U2 +1r∂U∂r +r122U

∂θ2 =0 d f

dr = 1

d dr

Z

0 U(r,θ)dθ= 1

Z 0

∂U

∂r(r,θ)dθ (1) d2f

dr2 = 1

Z 0

2U

∂r2(r,θ)dθ Hence rd f

dr +r2d2f dr2 = 1

2π Z

0

r∂U

∂r +r22U

∂r2

=− 1

Z 0

2U

∂θ2 dθ=− 1

∂U

∂θ

0

=0 (2)

SinceU(r,θ) = U(r,θ+2π) =⇒ ∂U∂θ(r,θ) = ∂U∂θ(r,θ+2π). Hence d fdr +rddr2f = 0 =⇒ drd(rd fdr) = 0 =⇒ rd fdr =const. (1) =⇒ d fdr is bounded inD((x0,y0),R). Taking lim asr→0 we find the constraint is 0 and so

d f

dr =0 =⇒ f =constc.

Evaluating atr=0, f(r) = 1 R

0 u(x0,y0)dθ=u(x0,y0).

Example 3.6.2 Suppose u(x,y) is cts in x2+y2 ≤ 1, harmonic in x2+y2 > 1 andu(x,y) = 2x2+3y2 on the boundaryx2+y2=1. Its value at the origin isu(0, 0) =. . .= 52.

Remark u(cosθ, sinθ) = 2 cos2θ+3 sin2θ = 2+sin2θ. maxx2+y2=1u(x,y) = 3 and minu(x,y) = 2. Hence 2≤u(x,y)≤3 inx2+y2≤1 by Maximum principle.

Referenzen

ÄHNLICHE DOKUMENTE

Dieser Bewerb be- steht in den Vereinigten Staaten schon seit über 20 Jahren und wird nun auch seit 5 Jahren in Europa durchgeführt.. Studenten aus über I 50 Universitäten

der Richtlinie über das Verfahren der Berücksichtigung der tatsächlich erforderlichen Aufwendungen für die Schülerbeförderung im Rahmen der Leistun- gen für Bildung und Teilhabe

Die inspirierende Zusammenarbeit mit dem Vorstand, die uns die Fortführung und Weiterentwick- lung bewährter Aktivitäten und Services (Führungen, Wörkshops, VöKK

[r]

[r]

[r]

kann dies allenfalls dann gelten, wenn - übereinstimmend mit der Ansicht des SVR - der GI-SVR nicht das einzige Instrument zur Beur- teilung von konjunktureller Lage

Auch Ihnen gegenüber haben Kunden sicher schon öfter einen Einwand gegen den Preis einer Ware vorgebracht. Formulieren Sie drei unterschiedliche Widerlegungen an Wa- renbeispielen