• Keine Ergebnisse gefunden

Amiloride hydro­chloride methanol disolvate

N/A
N/A
Protected

Academic year: 2023

Aktie "Amiloride hydro­chloride methanol disolvate"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Amiloride hydrochloride methanol disolvate

Cuong Quoc Tonaand Michael Bolteb*

aInstitut fu¨r Organische Chemie, J. W. Goethe-Universita¨t Frankfurt, Max-von-Laue- Strasse 7, 60438 Frankfurt/Main, Germany, andbInstitut fu¨r Anorganische Chemie, J. W. Goethe-Universita¨t Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de Received 11 May 2010; accepted 12 May 2010

Key indicators: single-crystal X-ray study;T= 173 K; mean(C–C) = 0.004 A˚;

Rfactor = 0.050;wRfactor = 0.080; data-to-parameter ratio = 12.9.

In the crystal of the title compound [systematic name: 2-(3,5- diamino-6-chloropyrazin-2-ylcarbonyl)guanidinium chloride methanol disolvate], C6H9ClN7O+Cl2CH3OH , the compo- nents are connected by N—H N, N—H Cl, N—H O, O—H Cl and O—H O hydrogen bonds into a three- dimensional network. The dihedral angle between the aromatic ring and the guanidine residue is 6.0 (2).

Related literature

For other salts of amiloride, see: Pretscher et al. (2001);

Zeslawskaet al.(2004).

Experimental Crystal data

C6H9ClN7O+Cl2CH4O Mr= 330.19

Monoclinic,P21=n a= 5.9473 (5) A˚ b= 16.7278 (17) A˚

c= 14.7784 (15) A˚ = 90.080 (8) V= 1470.2 (2) A˚3 Z= 4

MoKradiation

= 0.46 mm1 T= 173 K

0.300.250.20 mm

Data collection Stoe IPDS II two-circle

diffractometer

Absorption correction: multi-scan (MULABS; Spek, 2009;

Blessing, 1995)

Tmin= 0.874,Tmax= 0.914

19184 measured reflections 2739 independent reflections 1852 reflections withI> 2(I) Rint= 0.071

Refinement

R[F2> 2(F2)] = 0.050 wR(F2) = 0.080 S= 0.96 2739 reflections 212 parameters 9 restraints

H atoms treated by a mixture of independent and constrained refinement

max= 0.22 e A˚3 min=0.25 e A˚3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N31—H31A N4i 0.88 (1) 2.14 (1) 2.996 (3) 165 (3) N31—H31B Cl1ii 0.87 (1) 2.50 (2) 3.281 (3) 150 (3) N51—H51A Cl1iii 0.88 (1) 2.54 (1) 3.396 (3) 165 (3) N51—H51B O11 0.88 (1) 2.11 (2) 2.781 (3) 133 (3) N12—H12 O2Miv 0.87 (1) 2.14 (2) 2.912 (3) 149 (3) N14—H14A Cl1v 0.88 (1) 2.34 (1) 3.188 (3) 162 (3) N14—H14B O2Miv 0.88 (1) 1.93 (2) 2.783 (3) 162 (3) N15—H15A Cl1v 0.88 (1) 2.61 (2) 3.367 (3) 145 (3) N15—H15B O11 0.88 (1) 2.03 (3) 2.688 (3) 131 (3)

O1M—H1M Cl1 0.84 2.26 3.091 (2) 171

O2M—H2M O1M 0.84 1.91 2.745 (3) 170

Symmetry codes: (i) xþ2;y;zþ1; (ii) xþ32;y12;zþ12; (iii) xþ12;yþ12;zþ12; (iv)xþ12;y12;zþ12; (v)x1;y;z.

Data collection:X-AREA(Stoe & Cie, 2001); cell refinement:X- AREA; data reduction:X-AREA; program(s) used to solve structure:

SHELXS97(Sheldrick, 2008); program(s) used to refine structure:

SHELXL97(Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication:

SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2772).

References

Blessing, R. H. (1995).Acta Cryst.A51, 33–38.

Pretscher, A., Brisander, M., Bauer-Brandl, A. & Hansen, L. K. (2001).Acta Cryst.C57, 1217–1219.

Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.

Spek, A. L. (2009).Acta Cryst.D65, 148–155.

Stoe & Cie (2001).X-AREA. Stoe & Cie, Darmstadt, Germany.

Zeslawska, E., Oleksyn, B. & Stadnicka, K. (2004).Struct. Chem.15, 567–571.

organic compounds

o1364

Ton and Bolte doi:10.1107/S1600536810017484 Acta Cryst.(2010). E66, o1364 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(2)
(3)

supplementary materials

sup-1

Acta Cryst. (2010). E66, o1364 [ doi:10.1107/S1600536810017484 ] Amiloride hydrochloride methanol disolvate

C. Q. Ton and M. Bolte

Experimental

Crystals of the title structure were obtained by recrystallization of amiloride hydrochloride (100 mg) from a methanol (3 g) solution.

Refinement

H atoms bonded to O and C were geometrically positioned and refined using a riding model with fixed individual displace- ment parameters [U(H) = 1.5 U

eq

(C,O)] using a riding model with C—H = 0.98Å and O—H = 0.84 Å, respectively. The methyl and hydroxyl groups were allowed to rotate but not to tip. H atoms bonded to N were refined with a distance restraint of 0.88 (1)Å and with U(H) = 1.2 U

eq

(N).

Figures

Fig. 1. Perspective view of the asymmetric unit of the title compound. Displacement ellips- oids are at the 50° probability level.

2-(3,5-diamino-6-chloropyrazin-2-ylcarbonyl)guanidinium chloride methanol disolvate

Crystal data

C6H9ClN7O+·Cl·2CH4O F(000) = 688

Mr = 330.19 Dx = 1.492 Mg m−3

Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 11166 reflections

a = 5.9473 (5) Å θ = 3.7–25.7°

b = 16.7278 (17) Å µ = 0.46 mm−1

c = 14.7784 (15) Å T = 173 K

β = 90.080 (8)° Block, colourless

V = 1470.2 (2) Å3 0.30 × 0.25 × 0.20 mm Z = 4

Data collection

Stoe IPDS II two-circle 2739 independent reflections

(4)

diffractometer

Radiation source: fine-focus sealed tube 1852 reflections with I > 2σ(I)

graphite Rint = 0.071

ω scans θmax = 25.6°, θmin = 3.6°

Absorption correction: multi-scan

(MULABS; Spek, 2009; Blessing, 1995) h = −7→7 Tmin = 0.874, Tmax = 0.914 k = −20→20

19184 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods

Least-squares matrix: full Secondary atom site location: difference Fourier map R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring

sites

wR(F2) = 0.080 H atoms treated by a mixture of independent and constrained refinement

S = 0.96 w = 1/[σ2(Fo2) + (0.0253P)2] where P = (Fo2 + 2Fc2)/3

2739 reflections (Δ/σ)max < 0.001

212 parameters Δρmax = 0.22 e Å−3

9 restraints Δρmin = −0.25 e Å−3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention- al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å

2

)

x y z Uiso*/Ueq

N1 0.4136 (4) 0.07364 (14) 0.32999 (16) 0.0187 (6)

C2 0.5851 (5) 0.02607 (17) 0.32413 (18) 0.0179 (6)

Cl2 0.62266 (14) −0.02883 (5) 0.22493 (5) 0.0315 (2)

C3 0.7485 (5) 0.01732 (16) 0.39568 (19) 0.0182 (6)

N31 0.9232 (4) −0.03176 (16) 0.38692 (17) 0.0241 (6)

H31A 1.006 (5) −0.0400 (18) 0.4354 (14) 0.029*

H31B 0.939 (5) −0.0621 (16) 0.3394 (14) 0.029*

N4 0.7256 (4) 0.06106 (13) 0.47133 (16) 0.0179 (5)

C5 0.5473 (5) 0.11111 (16) 0.47856 (19) 0.0173 (6)

(5)

supplementary materials

sup-3

N51 0.5303 (5) 0.15414 (15) 0.55477 (18) 0.0256 (6)

H51A 0.624 (4) 0.1497 (18) 0.6007 (15) 0.031*

H51B 0.410 (3) 0.1839 (16) 0.561 (2) 0.031*

C6 0.3874 (5) 0.11725 (17) 0.40695 (19) 0.0168 (6)

C11 0.1930 (5) 0.17089 (18) 0.4093 (2) 0.0202 (7)

O11 0.1433 (4) 0.21444 (12) 0.47391 (14) 0.0249 (5)

N12 0.0642 (4) 0.16832 (14) 0.33015 (15) 0.0173 (5)

H12 0.110 (5) 0.1370 (14) 0.2874 (15) 0.021*

C13 −0.1158 (5) 0.21632 (17) 0.3097 (2) 0.0196 (7)

N14 −0.2054 (4) 0.20867 (16) 0.22820 (18) 0.0250 (6)

H14A −0.326 (3) 0.2377 (16) 0.218 (2) 0.030*

H14B −0.134 (5) 0.1739 (15) 0.1935 (18) 0.030*

N15 −0.1985 (4) 0.26602 (16) 0.37008 (18) 0.0250 (6)

H15A −0.310 (4) 0.2979 (16) 0.355 (2) 0.030*

H15B −0.141 (5) 0.2664 (19) 0.4246 (11) 0.030*

Cl1 0.36907 (12) 0.32420 (4) 0.23835 (5) 0.02329 (18)

O1M 0.4195 (4) 0.44145 (13) 0.39875 (15) 0.0335 (6)

H1M 0.4001 0.4139 0.3519 0.050*

C1M 0.2507 (6) 0.4216 (2) 0.4641 (2) 0.0355 (8)

H1M1 0.2637 0.3650 0.4802 0.053*

H1M2 0.1015 0.4318 0.4384 0.053*

H1M3 0.2716 0.4545 0.5183 0.053*

O2M 0.4108 (4) 0.59993 (13) 0.35076 (15) 0.0315 (6)

H2M 0.4196 0.5504 0.3592 0.047*

C2MA 0.2302 (6) 0.6318 (2) 0.4037 (2) 0.0370 (9)

H2M1 0.0883 0.6071 0.3848 0.056*

H2M2 0.2214 0.6898 0.3945 0.056*

H2M3 0.2573 0.6205 0.4678 0.056*

Atomic displacement parameters (Å

2

)

U11 U22 U33 U12 U13 U23

N1 0.0148 (14) 0.0184 (13) 0.0229 (14) −0.0003 (11) −0.0025 (10) 0.0018 (11) C2 0.0171 (15) 0.0209 (15) 0.0157 (14) −0.0018 (13) −0.0030 (12) 0.0000 (12)

Cl2 0.0278 (5) 0.0391 (5) 0.0276 (4) 0.0122 (4) −0.0061 (3) −0.0114 (4)

C3 0.0142 (15) 0.0149 (15) 0.0254 (16) −0.0011 (13) 0.0002 (12) 0.0037 (13) N31 0.0209 (14) 0.0244 (15) 0.0268 (15) 0.0082 (12) −0.0059 (12) −0.0050 (12) N4 0.0133 (13) 0.0146 (12) 0.0258 (14) 0.0018 (10) −0.0036 (10) 0.0012 (10) C5 0.0172 (16) 0.0129 (14) 0.0220 (16) −0.0037 (12) −0.0017 (12) 0.0012 (12) N51 0.0250 (16) 0.0269 (15) 0.0250 (15) 0.0067 (12) −0.0070 (12) −0.0061 (12) C6 0.0125 (15) 0.0141 (14) 0.0238 (16) −0.0012 (12) −0.0014 (12) −0.0002 (12) C11 0.0186 (16) 0.0162 (15) 0.0257 (16) −0.0046 (13) −0.0006 (13) 0.0037 (14) O11 0.0265 (12) 0.0212 (11) 0.0268 (12) 0.0062 (9) −0.0021 (9) −0.0042 (9) N12 0.0174 (13) 0.0166 (13) 0.0180 (13) 0.0043 (11) −0.0024 (10) −0.0011 (10) C13 0.0141 (15) 0.0156 (15) 0.0290 (17) −0.0004 (12) 0.0001 (13) 0.0027 (13) N14 0.0197 (15) 0.0272 (15) 0.0280 (16) 0.0083 (11) −0.0061 (12) 0.0000 (12) N15 0.0197 (15) 0.0263 (15) 0.0290 (15) 0.0103 (12) −0.0039 (12) −0.0018 (12)

Cl1 0.0196 (4) 0.0206 (4) 0.0296 (4) 0.0024 (3) −0.0022 (3) 0.0006 (3)

(6)

O1M 0.0372 (14) 0.0317 (14) 0.0317 (13) −0.0091 (11) 0.0034 (11) −0.0026 (10) C1M 0.040 (2) 0.0347 (19) 0.0318 (19) −0.0092 (17) −0.0015 (16) 0.0054 (16) O2M 0.0344 (14) 0.0271 (13) 0.0328 (13) −0.0055 (11) −0.0006 (11) 0.0064 (11)

C2MA 0.039 (2) 0.033 (2) 0.039 (2) −0.0027 (17) 0.0032 (17) 0.0001 (16)

Geometric parameters (Å, °)

N1—C2 1.297 (4) N12—H12 0.866 (10)

N1—C6 1.360 (4) C13—N15 1.316 (4)

C2—C3 1.443 (4) C13—N14 1.322 (4)

C2—Cl2 1.745 (3) N14—H14A 0.880 (10)

C3—N31 1.331 (4) N14—H14B 0.884 (10)

C3—N4 1.343 (4) N15—H15A 0.880 (10)

N31—H31A 0.880 (10) N15—H15B 0.876 (10)

N31—H31B 0.872 (10) O1M—C1M 1.432 (4)

N4—C5 1.355 (4) O1M—H1M 0.8400

C5—N51 1.341 (4) C1M—H1M1 0.9800

C5—C6 1.426 (4) C1M—H1M2 0.9800

N51—H51A 0.879 (10) C1M—H1M3 0.9800

N51—H51B 0.878 (10) O2M—C2MA 1.433 (4)

C6—C11 1.464 (4) O2M—H2M 0.8400

C11—O11 1.238 (3) C2MA—H2M1 0.9800

C11—N12 1.398 (4) C2MA—H2M2 0.9800

N12—C13 1.371 (4) C2MA—H2M3 0.9800

C2—N1—C6 118.4 (2) C11—N12—H12 117 (2)

N1—C2—C3 122.9 (3) N15—C13—N14 121.9 (3)

N1—C2—Cl2 118.7 (2) N15—C13—N12 120.8 (3)

C3—C2—Cl2 118.4 (2) N14—C13—N12 117.2 (3)

N31—C3—N4 119.8 (3) C13—N14—H14A 116 (2)

N31—C3—C2 121.1 (3) C13—N14—H14B 114 (2)

N4—C3—C2 119.1 (3) H14A—N14—H14B 131 (3)

C3—N31—H31A 117 (2) C13—N15—H15A 119 (2)

C3—N31—H31B 122 (2) C13—N15—H15B 119 (2)

H31A—N31—H31B 120 (3) H15A—N15—H15B 122 (3)

C3—N4—C5 118.8 (2) C1M—O1M—H1M 109.5

N51—C5—N4 117.2 (3) O1M—C1M—H1M1 109.5

N51—C5—C6 122.3 (3) O1M—C1M—H1M2 109.5

N4—C5—C6 120.5 (3) H1M1—C1M—H1M2 109.5

C5—N51—H51A 124 (2) O1M—C1M—H1M3 109.5

C5—N51—H51B 117 (2) H1M1—C1M—H1M3 109.5

H51A—N51—H51B 119 (3) H1M2—C1M—H1M3 109.5

N1—C6—C5 120.3 (3) C2MA—O2M—H2M 109.5

N1—C6—C11 116.1 (2) O2M—C2MA—H2M1 109.5

C5—C6—C11 123.6 (3) O2M—C2MA—H2M2 109.5

O11—C11—N12 122.2 (3) H2M1—C2MA—H2M2 109.5

O11—C11—C6 124.6 (3) O2M—C2MA—H2M3 109.5

N12—C11—C6 113.2 (3) H2M1—C2MA—H2M3 109.5

C13—N12—C11 126.4 (2) H2M2—C2MA—H2M3 109.5

C13—N12—H12 116 (2)

(7)

supplementary materials

sup-5

C6—N1—C2—C3 0.1 (4) N51—C5—C6—N1 178.7 (3)

C6—N1—C2—Cl2 −178.9 (2) N4—C5—C6—N1 −0.8 (4)

N1—C2—C3—N31 −179.6 (3) N51—C5—C6—C11 0.6 (4)

Cl2—C2—C3—N31 −0.5 (4) N4—C5—C6—C11 −178.9 (3)

N1—C2—C3—N4 −1.1 (4) N1—C6—C11—O11 179.6 (3)

Cl2—C2—C3—N4 178.0 (2) C5—C6—C11—O11 −2.2 (4)

N31—C3—N4—C5 179.5 (3) N1—C6—C11—N12 −0.1 (4)

C2—C3—N4—C5 1.1 (4) C5—C6—C11—N12 178.1 (3)

C3—N4—C5—N51 −179.7 (2) O11—C11—N12—C13 6.0 (4)

C3—N4—C5—C6 −0.2 (4) C6—C11—N12—C13 −174.3 (3)

C2—N1—C6—C5 0.8 (4) C11—N12—C13—N15 −6.9 (4)

C2—N1—C6—C11 179.0 (3) C11—N12—C13—N14 175.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A

N31—H31A···N4i 0.88 (1) 2.14 (1) 2.996 (3) 165 (3)

N31—H31B···Cl1ii 0.87 (1) 2.50 (2) 3.281 (3) 150 (3)

N51—H51A···Cl1iii 0.88 (1) 2.54 (1) 3.396 (3) 165 (3)

N51—H51B···O11 0.88 (1) 2.11 (2) 2.781 (3) 133 (3)

N12—H12···O2Miv 0.87 (1) 2.14 (2) 2.912 (3) 149 (3)

N14—H14A···Cl1v 0.88 (1) 2.34 (1) 3.188 (3) 162 (3)

N14—H14B···O2Miv 0.88 (1) 1.93 (2) 2.783 (3) 162 (3)

N15—H15A···Cl1v 0.88 (1) 2.61 (2) 3.367 (3) 145 (3)

N15—H15B···O11 0.88 (1) 2.03 (3) 2.688 (3) 131 (3)

O1M—H1M···Cl1 0.84 2.26 3.091 (2) 171.

O2M—H2M···O1M 0.84 1.91 2.745 (3) 170.

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) x−1, y, z.

(8)

Fig. 1

Referenzen

ÄHNLICHE DOKUMENTE

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are