• Keine Ergebnisse gefunden

Quadrupole Coupling in the

N/A
N/A
Protected

Academic year: 2022

Aktie "Quadrupole Coupling in the "

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Notizen 585

Quadrupole Coupling in the

Microwave Spectrum of Ethylisothiocyanate

An Application of Microwave Fourier

Transform Spectroscopy

W. Kasten, H. Dreizler, and R. Schwarz

Abteilung C h e m i s c h e Physik im Institut f ü r Physikalische C h e m i e der Universität Kiel

Z. Naturforsch. 38 a, 5 8 5 - 5 8 6 (1983);

received March 12, 1983

We investigated the m i c r o w a v e spectrum of ethyliso- thiocyanate, C H3C H2 N C S , for the nitrogen q u a d r u p o l e coupling. T h e spectrum was first measured and assigned by Sakaizumi. O h a s h i , and Y a m a g u c h i [1], By c o m p a r i n g the measured rotational constants with those resulting f r o m an assumed structure they concluded that the synperi- planar (eis) form was m e a s u r e d .

By use of Microwave F o u r i e r T r a n s f o r m ( M W F T ) spectroscopy [2, 3] we were able to resolve the nitrogen q u a d r u p o l e hfs. T h e s a m p l e was purchased f r o m Ega Chemie, Steinheim, with a 95% purity and used after vacuum distillation. T h e spectra were recorded at temper- atures of — 60 ° C and pressures down to 0.2 mTorr.

T h e half width at half height was usually 30 kHz. We believe that our m e a s u r e m e n t s are more precise than those reported. O u r m e a s u r i n g error is less than 20 kHz*.

Figure 1 gives an example. T h e measured lines are given in Table 1. T h e h y p e r f i n e structure was analyzed by first order p e r t u r b a t i o n theory. T h i s a p p r o x i m a t i o n was checked by calculations using diagonalisation of a suffi- ciently large H a m i l t o n i a n s u b m a t r i x [4],

We f u r t h e r proved that no line within the range of our spectrometer is sensitive enough to the off diagonalelement /_.db of the q u a d r u p o l e coupling tensor. T h e results for the hfs-analysis are given in T a b l e 2. T h e standard deviation of the fit is 8 kHz for a m e a n splitting of 230 kHz.

In the course of our analysis we p e r f o r m e d a centrifugal distortion analysis to f o u r t h o r d e r with the Hamiltonian of van Eijck [5] and T y p k e [6],

As the selection of lines with mostly AJ = 1, AK_ = 0, AK+ = 1 is very u n f a v o u r a b l e , nine correlation coefficients are higher than 0.99. So we set as in [1] D'K = 0, Sj = 0 and /?6 = 0. T h e results are given in T a b l e 3. We included the lines of Table 1 and those lines of Table 1 of [1]** not measured by us.

* We monitor our high stability reference quartz by comparison with the normal frequency of D C F 77 Main- flingen.

** Lines of T a b l e 1 of [1] m a r k e d with c) were e x e m p t e d .

Reprint requests to Prof. Dr. H. Dreizler, Institut f ü r Physi- kalische C h e m i e der Universität Kiel, Olshausenstr. 40, D-2300 Kiel, Haus S 12c.

T h e standard deviation of the fit of 52 lines m e a s u r e d by [1] and 17 lines measured by us are 210 kHz.

Using the full fourth o r d e r H a m i l t o n i a n [6] the s t a n d a r d deviation decreases to 192 kHz taking all lines. W h e n we take v = ( X , 0 ' o b s — vc a i c )2/ " )l / 2 a s a measure of precision, we get 37 kHz for the 17 lines measured by M W F T - spectroscopy a n d 204 k H z for those of Table 1 of [1]. But as the correlation is high, we think that the set of constants of Table 3 is a good basis for f u r t h e r work.

We further repeated the calculations of the rotational constants by fitting the s a m e structural p a r a m e t e r s with the assumptions of T a b l e 3 of [1] by a /-0-structure. T h e results are in agreement with [1].

Only few determinations of the hfs in isothiocyanates have been reported. T h e coupling constants are given in Table 4. T h e information for these molecules is too limited to determine the principal axes c o m p o n e n t s of the cou- pling tensor.

We thank the m e m b e r s of our g r o u p for help and discus- sions, the Deutsche F o r s c h u n g s g e m e i n s c h a f t and F o n d s der C h e m i e for funds. O n e of us (W.K.) thanks for a fellowship of the F o n d s der C h e m i e . All calculations were made at the University C o m p u t i n g Centre.

1111111 iJLu-iJ 11111111111111111111111111111111 n 1111111u l u i l m l

Fig. 1. Section of 1.5 M H z below a 12.5 M H z recording near the 42 3 - 322 transition of C H3C H2N C S . T e m p e r a t u r e - 6 0 ° C , pressure 0.4 mTorr. D a t a aquisition: 1024 data points filled with zeros u p to 4096 data points, 20 ns sample interval, time d o m a i n averaging 218 cycles, f r e q u e n - cy domain averaging 30 cycles, spectral point distance

12.5 kHz, line frequencies by three point interpolation.

0340-4811 / 83 / 0500-0583 $ 01.3 0 / 0 . - Please order a reprint rather t h a n m a k i n g y o u r own copy.

(2)

586 Notizen T a b l e 1. M e a s u r e d r o t a t i o n a l t r a n s i t i o n s of e t h y l i s o t h i o c y a n a t e .

v

unsp

ii

t is

o b t a i n e d a d d i n g t h e h f s - c o r r e c t i o n s t o t h e f r e q u e n c i e s v0t>s of t h e hfs c o m p o - nents. T r a n s i t i o n s b e l o w t h e line c o u l d not b e r e s o l v e d .

J'KLK; --JK.K+ F'- -F Vobs

''unsplit

A Vhfs.obs A Vhfs.calc

32I -

220

3

4 2

— 2 - 3 - 1

10 182.119 10 181.518 10 181.184

10 1 8 1 . 6 5 2 0 . 6 0 1 0 . 3 3 4

0 . 6 0 4 0 . 3 3 5

303 —

2o:

2

4 3

- 1 - 3 - 2

10 167.423 10 167.306

10 167.326 0 . 1 1 7 0 . 1 1 0

3,3

2,2

3

4 2

- 2 - 3 - 1

9 9 2 2 . 4 4 6 9 9 2 2 . 2 5 9

9 9 2 2 . 3 1 5 0 . 1 8 7 0 . 1 6 6

322 -221

3

4 2

- 2 - 3 - 1

10 175.409 10 174.810 10 174.478

10 174.944 0 . 5 9 9 0 . 3 3 2

0 . 6 0 2 0 . 3 3 4

4(14-

3()3

3

5 4

- 2 - 4 - 3

13 5 4 8 . 4 8 9 13 5 4 8 . 4 2 1

13 5 4 8 . 4 3 9 0 . 0 6 8 0 . 0 5 1

431- 4 ,2- 330 331

4 5

3 - 3 - 4 - 2

13 5 7 1 . 6 7 6 13 5 7 1 . 1 2 7 13 5 7 0 . 8 9 2

13 5 7 1 . 2 5 3 0 . 5 4 9 0 . 2 3 5

0 . 5 5 8 0 . 2 1 6

4,3

3,2 4 5

- 3

- 4 13 8 9 6 . 6 8 7

13 8 9 6 . 5 9 6 13 8 9 6 . 6 3 4 0 . 0 9 1 0 . 0 7 6

4 ,4-

3,3 4 5

- 3 - 4

13 2 2 7 . 7 3 5

13 2 2 7 . 6 5 1 13 2 2 7 . 6 8 2 0 . 0 8 4 0 . 0 7 1

423 -322

4

5 - 3

- 4 13 5 6 5 . 2 9 8

13 5 6 5 . 0 4 2 13 5 6 5 . 1 1 0 0 . 2 5 6 0 . 2 5 5 3

_ 2

13 5 6 4 . 9 6 2

0 . 0 8 0 0 . 0 6 6

3 _ 2

13 5 6 4 . 9 6 2

541 - 542 - 440

441

5 6

4 - 4 - 5 - 3

16 9 6 6 . 2 9 0 16 9 6 5 . 8 0 3 16 9 6 5 . 6 3 3

16 9 6 5 . 9 2 1 0 . 4 8 7 0 . 1 7 0

0 . 5 0 5 0 . 1 5 1

523

-422

5

6 4

- 4 - 5 - 3

16 9 8 7 . 6 2 7 16 9 8 7 . 4 6 3

16 9 8 7 . 5 2 0 0 . 1 6 4 0 . 1 4 2

505 -404

4

6 5

- 3 - 5 - 4

16 9 2 2 . 7 4 3 16 9 2 2 . 7 0 6

16 9 2 2 . 7 1 6 0 . 0 3 7 0 . 0 3 1

5 ,4-

4,3 5 4 6

- 4 - 3 - 5

17 3 6 7 . 2 4 6 17 3 6 7 . 2 2 3 17 3 6 7 . 1 9 5

17 3 6 7 . 2 1 8 0 . 0 2 3 0 . 0 2 8

0 . 0 1 5 0 . 0 2 7

524 -423

5

6 4

- 4 - 5

- 3

16 9 5 4 . 1 0 8 16 9 5 3 . 9 7 0

16 9 5 4 . 0 1 5 0 . 1 3 8 0 . 1 3 8

1 0 , 9 - 10,10 10

11 9

- 10 - 11 - 9

9 175.183 9 174.940

9 1 7 5 . 0 2 0 0 . 2 4 3 0 . 2 4 3

202 -

loi 3 2

- 2

- 1 6 7 8 1 . 0 5 0 6 7 8 1 . 0 5 0 0 . 0 0 0 0 . 0 4 0

5 , 5 - 4,4 5 - 4

4 - 3 16 5 3 1 . 2 9 5 16 5 3 1 . 2 9 5 0 . 0 0 0 0 . 0 1 5

6 - 5 0 . 0 2 9

T a b l e 2. N i t r o g e n q u a d r u p o l e c o u p l i n g c o n s t a n t s of et- h y l i s o t h i o c y a n a t e ( M H z ) . T h e e r r o r s a r e s t a n d a r d er- rors.

= Xhh + Xcc - 1 . 8 7 3 ( 1 8 ) Xtui 1.873 ( 1 8 ) 7 - ~ Xhh - Xcc - 0 . 6 5 6 ( 3 5 ) Xhh - 1 . 2 6 4 ( 2 6 )

correlation

c o e f f i c i e n t 0 . 0 0 8 Xcc - 0 . 6 0 9 ( 2 6 )

T a b l e 3. R o t a t i o n a l [ M H z ] a n d c e n t r i f u g a l [kHz]

d i s t o r t i o n constants of e t h v i s o t h i o c y a n a t e . E r r o r s are s t a n d a r d errors. A s s u m p t i o n in s q u a r e b r a c k e t s , x: a s y m m e t r y p a r a m e t e r . ( C . D ' j ) : h i g h e s t c o r r e l a t i o n .

A 14 188.5 (5.4) D'K [0]

B 1 779.274 (6) SJ f0]

C 1 612.130 (6) R'I [0]

D'I 1.53 (4) X - 0 . 9 7 3 4 1 9

D'JK - 3 6 . 8 4 (9) (C. D'J) 0.855

T a b l e 4. Q u a d r u p o l e c o u p l i n g c o n s t a n t s [ M H z ] of s o m e i s o t h i o c y a n a t e s .

Xau Xhh Xcc

H N C S [7] 1 . 1 1 4 ( 2 6 ) - 0 . 5 3 0 ( 7 1 ) - 0 . 5 8 5 ( 7 1 )

C H i N C S [8] 1 . 9 0 ( 3 ) - -

C H , C H ^ N C S 1.873 ( 1 8 ) - 1 . 2 6 4 ( 2 6 ) - 0 . 6 0 9 ( 2 6 )

[1] T. Sakaizumi. O. Ohashi. and I. Yamaauchi, Bull.

Chem. Soc. Japan 49,948 (1976).

[2] G. Bestmann and H. Dreizler, Z. Naturforsch. 3 7 a , 58 (1982).

[3] G. Bestmann. H. Dreizler. H. Mäder. and U. Andresen.

Z. Naturforsch. 35 a, 392 (1980).

[4] D. Hübner and M. Stolze, program N Q H F S , Diplom- arbeiten Kiel 1980.

[5] B. P. van Eijck, J. Mol. Spectrosc. 53,246 (1974).

[6] V. Tvpke. J. Mol. Spectroscop. 63, 170 (1976). formula (6), program VT26.

[7] K. Yamada, M. Winnewisser. G. Winnewisser, L. B.

Szalowski. and M. C. L. Gerry. J. Mol. Spectrosc. 79, 295 (1980).

[8] R. G. Lett and W. H. Flygare, J. Chem. Phys. 47, 4730 (1967).

Referenzen

ÄHNLICHE DOKUMENTE