• Keine Ergebnisse gefunden

First Derivatives of the log-L for the multivariate probit model

N/A
N/A
Protected

Academic year: 2022

Aktie "First Derivatives of the log-L for the multivariate probit model"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Munich Personal RePEc Archive

First Derivatives of the log-L for the multivariate probit model

Vargas Barrenechea, Martin

8 October 2007

Online at https://mpra.ub.uni-muenchen.de/5214/

(2)

First Derivatives of the log-L for the multivariate probit model

Martin H. Vargas Barrenechea

October 8, 2007

Abstract

In this work we found first derivatives for the log likelihood function of the multivariate probit model.

1 Introduction

The natural extension of the univariate probit model is the multivariate probit model (MVPM) that consist of a system of simultaneous equations of several non-observable dependent variables, in the case of the L-variate probit model the structure is the following:

yi=

 yi,1 yi,2 ... yi,L

=

xi,1β+εi,1

xi,2β+εi,2

... xi,Lβ+εi,L

 yi,l=

1 ifyi,l>0 0 ifyi,l≤0

whereyi is aL×1 vector of non-observable variables, as before xi,lis a vector 1×kl of characteristics of the individual/observationi at the equationl, βl is a coefficient vectorkl×1 andεi,lis an error.

By stacking the errors εi,lwe define εi= (εi,1, . . . , εi,L)=∼N(0, P) where P is a symmetric matrixL×Lof pairwise correlations, such that:

P =

1 . . . ρ1l . . . ρ1L

... . .. ... . .. ... ρ1L . . . ρLl . . . 1

We will denote the multivariate normal density of a variableu= (u1, . . . , uL)∈ RL with meanM and variance matrix Ω as

email: mvargasbarrenechea@wiwi.uni-bielefeld.de; phone:+49 521 106 4917; fax:+49 521 106 2997; address: Institute of Mathematical Economics, Bielefeld University 33501, Biele- feld/Germany.

(3)

φL(u;M,Ω) = (2π)L/2|Ω|1/2e1/2[(u−M)−1(u−M)] , then ΦL(wi; 0, Ri) =

Z wi,L

−∞

. . . Z wi,l

−∞

. . . Z wi,1

−∞

φL(u; 0, Ri)du1. . . duL=

= Z

Ai

φL(u; 0, Ri)du (1)

whereAi = [−∞, wi,1]× · · · ×[−∞, wi,l]× · · · ×[−∞, wi,L].

It’s straightforward to prove that in the multivariate case the log-likelihood function is:

ℓ(β, P|x) =

N

X

i=1

log ΦL(wi; 0, Ri)

where β = (β1, . . . , βl, . . . , βL), wi = (wi,1, . . . , wi,L), wi,l = (2yi,l−1)xi,lβl, Ri =QiP Qi and Qi is a diagonal matrix N×N with diagonal (2yi−1) and zeros in the other elements.

2 Derivatives

In this section we will find analytical expressions for first and second derivatives of the log-likelihood function, and for to begin we will introduce some nomen- clature, BecuaseRi =QiP Qi we know thatRi it is a symmetric matrix with ones along the diagoinal:

Ri=

1 . . . ri,1l . . . ri,1L

... . .. ... ... ... ... . .. ... ri,1L . . . ri,Ll . . . 1

now by reordering this matrix we obtain:

Rli =

1 . . . ri,1L ri,1l

... . .. ... ... ri,1L . . . 1 ri,Ll

ri,1l . . . ri,Ll 1

=

Rli,11 Ri,12l Rli,21 1

Rikl=

1 . . . ri,1L ri,1k ri,1l ... . .. ... ... ... ri,1L . . . 1 ri,Lk ri,Ll

ri,1k . . . ri,Lk 1 ri,kl

ri,1l . . . ri,Ll ri,kl 1

=

Rkli,11 Ri,12kl Rkli,21 Ri,22kl

Proposition 1.

∂ℓ(β, P|x)

∂βl

=

N

X

i=1

φ(wi,l; 0,1)ΦL1(wi,−1;Ml,Ωl)(2yi,l−1)xi,l

ΦL(wi; 0, Ri) (2)

(4)

whereMil=Rli,12wil,Ωli=Rli,11−Rli,12Rli,21 andwi,−l= (wi,1, . . . , . . . , wi,l1, wi,l+1, . . . , wi,L).

Proof. By known facts ΦL(wi, Ri) =

Z

Ai

φL(u; 0, Ri)du= Z

Ai

φL1(ul;Ml,Ωli)φ(ul; 0,1)du=

= Z

Ai

φ(ul; 0,1)φL1(ul;Ml,Ωli)du= Z wi,l

−∞

φ(ul; 0,1)×ΦL1(wi,−l;Ml,Ωli)dul

whereMl=Rli,12ul,ul= (u1, . . . , ul1, ul+1, . . . , uL) andwi,−l= (wi,1, . . . , . . . , wi,l1, wi,l+1, . . . , wi,L) , then

∂Φ(wi; 0, Ri)

∂wi,l

1(wi,l; 0,1)ΦL1(wi,−l;Mil,Ωl) (3) becausewi,l= (2yi,l−1)xi,lβl we have that

∂Φ(wi; 0, Ri)

∂βl

1(wi,l; 0,1)ΦL1(wi,−l;Mil,Ωl)(2yi,l−1)xi,l (4) whereMil=Rli,12wil, Ωli=Ri,11l −Rli,12Ri,21l . By using the last result and the definition ofℓ(β, P|x) we find the wished result

∂ℓ(β, P|x)

∂βl

=

N

X

i=1

φ(wi,l; 0,1)ΦL1(wi,−1;Ml,Ωl)(2yi,l−1)xi,l

ΦL(wi; 0, Ri)

Proposition 2.

∂ℓ(β, P|x)

∂ρkl

=

N

X

i=1

φ2(wi,k, wi,l; 0, Rkli,22L2(wi,−kl;Mikl,Ωkli )

Φ(wi, Ri) ×

×(2yi,k−1)(2yi,l−1) (5) where Mikl = Rkli,12(Rkli,22)1(wi,l, wi,k), Ωkli = Rkli,11−Rkli,12(Rkli,22)1Rkli,21 andwi,−kl= (w1, . . . , wk1, wk2, . . . , wl1, wl2, . . . wL)

Proof. By known facts

ΦL(wi, Ri) = Z

Ai

φL(u; 0, Ri)du=

= Z

Ai

φL2(ukl; 0, Rkli,112(ul, uk;Mi,kl,Ωi,kl)du=

= Z

Ai,−kl

φL2(ukl; 0, Rkli,11) Z wi,k

−∞

Z wi,l

−∞

φ2(ul, uk;Mi,kl,Ωi,kl)dulduk

du−kl=

= Z

Ai,−kl

φL2(ukl; 0, Rkli,112(wil, wik;Mi,kl,Ωi,kl)

du−kl (6)

(5)

where

Ai,kl= [−∞, wi,1]· · ·[−∞, wi,k1][−∞, wi,k+1]· · ·

· · ·[−∞, wi,l1][−∞, wl+1,l]· · ·[−∞, wi,L] u−kl= (u1, . . . , uk1, uk2, . . . , ul1, ul2, . . . uL) Mi,kl=Rkli,21(Rkli,11)1u−kl

i,kl=Rkli,22−Rkli,21(Rkli,11)1Rkli,12 Without loss of generality we will rewriteMi,kl and Ωi,kl like

Mi,kl= a1i

a2i

and

i,kl=

1 ri,kl

ri,kl 1

b11i b12i

b12i b22i

Because we know that only Φ2(wil, wik;Mi,kl,Ωi,kl) depends onρkl, we will just analyze the derivative of the second expression of the integrand in (6).

We know that

Φ2(wil, wik;Mi,kl,Ωi,kl) = Φ2(wik, wili,kl) wherewik= wik−a1i

√1−b11i

,wil= wil−a2i

√1−b22i

i,kl= ri,kl−b12i p(1−b11i)(1−b22i) Φ2(wil, wiki,kl) =

Z wi,l

−∞

Z wi,k

−∞

φ2(uk, uli,kl)dukdul

with

φ2(uk, uli,kl) =e1/2[u2l+u2ki,kluluk]/(1i,kl)2)

2πq

1−(ρi,kl)2

Notice that the last expression is the density of the standard bivariate normal distribution, then the limits wil, wik and the correlation coefficient ρi,kl are obtained by normalization using the meanMi,kland the variance matrix Ωi,kl, notice too that onlyρi,kl depends onρkl.

Then

∂Φ2(wil, wik;Mkl,Ωkl)

∂ρkl

=∂Φ2(wil, wikkl)

∂ρkl × ∂ρkl

∂ri,kl ×∂ri,kl

∂ρkl

(7) now by using the

∂Φ2(wil, wikkl)

∂ρkl2(wil, wikkl) (8) (see Greene [1], pp 850) it is straightforward prove that

(6)

∂Φ2(wil, wik;Mi,kl,Ωi,kl)

∂ρkl2(wil, wik;Mkl,Ωkl)(2yi,k−1)(2yi,l−1) (9) By using the last result in (6), we obtain that

∂ΦL(wi, Ri)

∂ρkl =

= Z

Ai,−kl

φL2(ukl; 0, Rkli,112(wil, wik;Mkl,Ωkl)(2yi,k−1)(2yi,l−1)

du−kl=

= Z

Ai,−kl

φL(u; 0, Ri)(2yi,k−1)(2yi,l−1)du−kl=

2(wil, wik; 0, Rkli,22L2(wi,−kl;Mikl,Ωkli )(2yi,k−1)(2yi,l−1) (10) where

Mikl=Rkli,12(Rkli,22)1(wi,l, wi,k) and

kli =Rkli,11−Rkli,12(Rkli,22)1Ri,21kl .

Finally using the last result and the definition ofℓ(β, P|x), we have that

∂ℓ(β, P|x)

∂ρkl =

N

X

i=1

φ2(wi,k, wi,l; 0, Rkli,22L2(wi,−kl;Mikl,Ωkli )

Φ(wi, Ri) ×

×(2yi,k−1)(2yi,l−1)

3 Conclusions

The first derivatives of the log likelihood function for the multivariate probit are analytical expressions and without considerate the integral of the function it is just necessary to calculate integral with one order less for obtain the derivatives.

References

[1] W.H. Greene. Econometric Analysis (ed.). Upper Saddle River, page 850, 2000.

Referenzen

ÄHNLICHE DOKUMENTE

2) Cuando está activado el selector del modo de gran total/fijación de tipos (posición GT), el contador contará el número de veces que se han almacenado los resultados de cálculo

Using the same matrix representation of the array of the Bernstein co- efficients as in [22] (in the case of the tensorial Bernstein basis), we present in this paper two methods for

The Enron insolvency, the Californian crisis, and the British Energy problems are interesting in that they show real threats faced by stand-alone electricity companies operating

Keywords: timing of daily consumption/demand for goods and services, shopping hours, consumption and service activities, German Time Budget Survey 2001/2002, time use diaries,

The swap fixed rate is computed in such a way that the forward rates for the floating periods have the same present value using the Libor curve.. Or said in the opposite way that

First Derivatives of the log-L for the multivariate probit model.. Vargas

Campbell; Gaburro 1986). SoluŃiile adoptate în macromodelul economiei române ti de tranziŃie sunt sistematizate în Figura 5. a) Versiunea 1996 a introdus conceptul de

semi-parametric estimation method for the binary choice model: Probit. Maximum Likelihood versus