• Keine Ergebnisse gefunden

Land-surface processes in the globalenergy and water cycles.Part (a)

N/A
N/A
Protected

Academic year: 2021

Aktie "Land-surface processes in the globalenergy and water cycles.Part (a)"

Copied!
20
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Schär, ETH Zürich

Sonia I. Seneviratne and Christoph Schär Land-Atmosphere-Climate Interactions Winter term 2006/07

Land-surface processes in the global energy and water cycles.

Part (a)

Christoph Schär

Institute for Atmospheric and Climate Science ETH Zürich

schaer@env.ethz.ch

Schär, ETH Zürich

6

Outline

Global energy cycle

Global water cycle

Reservoirs of the water cycle Residence times in the water cycle

(2)

Schär, ETH Zürich

Global energy balance

Sun

solar radiation

emitted infrared radiation reflected solar

radiation

Energy input = Energy output

Schär, ETH Zürich

8

Incoming solar radiation

Earth’s surface 4 π r2

Earth’s shadow π r2 extraterrestrial

solar constant So = 1367 W/m2

S =1 4So Mean incident solar radiation:

(3)

Schär, ETH Zürich

Albedo

Albedo = Fraction of incoming radiation that is reflected

Surface properties and clouds are important for global energy balance:

Cloud-albedo feedback

Snow/ice-albedo feedback

Vegetation-albedo feedback

Surface Albedo α

Clouds 100 m deep 0.4

500 m deep 0.7

Ocean zenith angle 30° 0.05

60° 0.10

85° 0.6

Ice 0.25-0.35

Snow old-new 0.45-0.85

Grassland 0.2-0.3

Forest 0.1-0.2

Global mean 0.3

Short Wave

–100% +33%

+67%

Long Wave +67%

–67%

S S·α

Schär, ETH Zürich

10

Absorption by trace gases – greenhouse effect

(Peixoto and Oort, 1992)

Absorption [%]

Wave length [µ]

CH4 N2O O2,O3 CO2 H2O

H2O vapor is the most important greenhouse gas.

CO2 is the most important anthropogenic greenhouse gas.

shortwave longwave

(4)

Schär, ETH Zürich

Global energy balance

Short Wave

global radiation

–100% +22% +8%

+42%

+28%

Long Wave +60%

–113% +101%

+10%

Latent Heat

–25%

Sensible Heat

–5%

–58% +5% +25%

CO2

H20

Space

Atmosphere

Land / Ocean

(based on data of Ohmura and Wild)

Transport of heat and water vapor

342 W/m2

Schär, ETH Zürich

12

Outline

Global energy cycle Global water cycle

Reservoirs of the water cycle Residence times in the water cycle

(5)

Schär, ETH Zürich

Water on planet Earth

Oceans 2620 96.5

Polar ice, sea ice, glaciers 47 1.7

Ground water 46 1.7

Permafrost 0.59 0.02

Lakes 0.35 0.013

Soil moisture 0.032 0.0012

Atmosphere 0.025 0.00093

Swamps 0.023 0.00083

Rivers 0.0042 0.00015

Biological water 0.0022 0.000081

Global mean Global percentage

depth [m] [%]

Schär, ETH Zürich

14

Freshwater on planet Earth

Oceans 0

Polar ice, sea ice, glaciers 47 68.7

Ground water 21 30.1

Permafrost 0.59 0.86

Lakes 0.18 0.26

Soil moisture 0.032 0.047

Atmosphere 0.025 0.037

Swamps 0.023 0.033

Rivers 0.0042 0.0061

Biological water 0

Global mean Global percentage

depth [m] [%]

(6)

Schär, ETH Zürich

Freshwater on planet Earth

Polar ice, glaciers, snow

d=358 km

Ground water, soil moisture, permafrost

d=275 km

Lakes d=56 km

Rivers, swamps d=30 km

Atmosphere d=29 km

0 100 200 km

Intercomparison using spheres with the respective volumes

Schär, ETH Zürich

Global water cycle

16

Atmosphere 12.9

Oceans

1,338,000 Glaciers,

Polar ice 24,000 Soil moisture

16.5

Surface water

104

Ground water 10,800 116

(780 mm/y) 71

(470 mm/y) ~0 1 505

(1270 mm/y) 458

(1400 mm/y) 2.7 ~0

46 43.8 2.7

2.2 44.7

Numbers in Italic: Volumes [1000 km3] Numbers in normal: Fluxes [1000 km3/y]

(Numbers in brackets): Fluxes [mm/y], with respect to ocean / land-surface

All storage compartments have a zero balance in the longterm mean (in- and outgoing fluxes yield zero)!

(7)

Schär, ETH Zürich

Outline

Global energy cycle Global water cycle

Reservoirs of the water cycle

• soil moisture

• ground water

• surface water

• snow / ice

Residence times in the water cycle

Schär, ETH Zürich

18

Ground water Recharge

table

Storage and fluxes in the soil

Unsaturated (soil moisture):

Pores filled with water and air

Saturated (ground water):

Pores filled with water

Percolation

Ground water flow

(8)

Schär, ETH Zürich

0%

100%

100%

0%

Soils can be described by grading curves

25%

50%

75%

75%

50%

25%

Mass fraction < diameter Mass fraction > diameter

Soil classification

USDA Classification Particle diameter

20% sand

73% silt

7% clay

Gravel {Kies}

Sand {Sand}

Silt {Schluff}

2 µm 0.002 mm

5 µm 20 µm 50 µm 0.05 mm

0.2 mm

2 mm

5 mm 20 mm

Clay {Lehm}

0.5 µm 0.5 mm

Schär, ETH Zürich

22

Soil triangle

% Silt (2µm - 50 µm)

% Sand (50µm - 2 mm)

% Clay (< 2 µm)

(USDA Classification) Percentages are based on mass fraction

(9)

Schär, ETH Zürich

Gravimetric measurement of soil moisture content

m

dried

sample dried

sample (at 105°C for 2 days) Based on weight of sample:

msample

Volume of sample: Vsample Density of water: ρw

Volumetric soil moisture content, Volume fraction of soil moisture:

θ= Vwater

Vsample =(msamplemdried) ρw Vsample

Schär, ETH Zürich

Measures of soil moisture content

24

Volumetric soil moisture content [1]

Gravimetric soil moisture content [1]

Relative saturation, saturation relative to pore volume [1]:

Water equivalent, water column [m]:

θ= Vwater Vsample

θrel=Vwater Vpores

n

θg= mwater

mdry = Vwater ρwater

Vsample ρdry = θ ρwater ρdry

hwhsoil hsoil= depth of soil

n = volume fraction of pores

(10)

Schär, ETH Zürich

Porosity and field capacity

Volume of sample: Vsample soil

sample

m

sample

dried sample (at 105°C for 2 days)

m

dried

saturated sample (confined)

m

sat

saturated sample (unconfined,

no drainage after 2 days)

m

fc

Schär, ETH Zürich

26

Volumetric water content θ [1]: Volume fraction of soil moisture

Porosity n [1]: Volume fraction of pores

Field capacity FC [1]: Saturated water in balance with capillary forces

This definition of the field capacity is a bit casual (see later)

n= Vpores

Vsample =(msatmdried) ρw Vsample

Bodenwassergehalt, Porosität und Feldkapazität

θ= Vwater

Vsample =(msamplemdried) ρw Vsample

FC=Vwater at fc

Vsample = (mfcmdried) ρw Vsample

(11)

Schär, ETH Zürich

Summary on soil moisture content

All pores saturated

Completely dry sample BodensubstratWasserLuft

0 1

Volumenanteil

n Porenvolumen FK Feldkapazität

θ Wassergehalt

soil substrateairwater

0 ≤ θ ≤ n

Volume fraction

Water content θ

1

0

Porosity n

Plants wilt Wilting point PWP

Maximum water content in balance with capillary forces Field capacity FK

Schär, ETH Zürich

Typical values of n , FK, PWP

28

volume fraction

Porosity n 0.3 - 0.55

Field capacity FC 0.1 - 0.35

Permanent wilting point PWP 0.05 - 0.25

Dry 0

Coarse texture (z.B. Sand)

Fine texture (e.g. clay)

(12)

Schär, ETH Zürich

Other methods to measure soil moisture

Local measurements

• TDR (Time Domain Reflectometry):

measurement of dielectric constant

• Neutron probe

Remote sensing

• microwaves

• GRACE (Gravity Recovery and Climate Experiment)

Large-scale water balance

• Estimates of (P-E) and Q in a catchment provides information on terrestrial water storage changes (see later)

P E

Q

Schär, ETH Zürich

Groundwater / aquifers

30

Unconfined Aquifer

Confined Aquifer Piezometric Surface

Groundwater Table Grundwasserspiegel Artesian Spring / Well

Impervious strata Impervious

(13)

Schär, ETH Zürich

Töss-Aquifer

(Beyerle 1999)

Schär, ETH Zürich

32

Vertical section across Töss-Aquifer

(Beyerle 1999)

Aquifer

(14)

Schär, ETH Zürich

Measurement of the groundwater table

Location of groundwater wells in the Valais

Measurement of groundwater table using pressure sensors

Schär, ETH Zürich

Surface water (rivers and lakes)

34

Example: central Switzerland

P Precipitation ET Evapotranspiration Q direct runoff Gout groundwater runoff Gin groundwater input

(Hydrologischer Atlas der Schweiz)

Concept of a catchment

“A water catchment area is a drainage basin or watershed, the region of land whose water drains past a specific point along a river or into a specified body of water such as a lake” (Wikipedia)

Gout P ET

Gin

Q

Water divide

(15)

Schär, ETH Zürich

Major river basins in Europe

http://www.transboundarywaters.orst.edu/publications/atlas/atlas_html/graphics/imagemaps/europe_imagemaps.html

Schär, ETH Zürich

Major river basins

36

Siehe auch: http://www.iucn.org/themes/wani/eatlas/

Amazonas

Kongo

Yangtzekiang Mississippi

(16)

Schär, ETH Zürich

Major river basins

Area Mean runoff Runoff ratio1) [103 km2] [m3/s] [%] R/P [1]

Amazonas 7,180 210,000 16.6 0.47

Kongo 3,822 42,000 3.3 0.25

Yangtzekiang 1,970 35,000 2.7 0.50

Orinoco 1,086 29,000 2.3 0.46

Brahmaputra 586 20,000 1.6 0.65

Parana 2,650 19,500 1.6 0.20

Donau 817 6,400 0.5

Rhein 190 2,200 0.2 ca 0.5

1)Runoff ratio: mean runoff / mean precipitation

(Baumgartner & Liebscher 1996, Dingman 1993)

Schär, ETH Zürich

Polar ice and sea ice

40

(17)

Schär, ETH Zürich

Snow and sea ice

Fläche

Global land surface: 149 · 106 km2 Global sea surface: 361 · 106 km2

Sea ice cover Snow cover

Seasonal cycle

Schär, ETH Zürich

Alpine snow cover

42

Climate change:

Warming of ΔT=3ºC Snow line climbes by about 500 m

Number of days with snow cover

Altitude

(Schüepp, Gensler and Bouet 1980)

(18)

Schär, ETH Zürich

Rsnow = ρsnow ρw =

hw hsnow Water equivalent hw [m]:

Water depth of the molten snow/ice cover (snow depth: hsnow):

Relative snow density Rsnow [1]:

Water equivalent of snow

hw ρw =hsnow ρsnowhw = ρsnow ρw hsnow

(Dingman, modified from McKay 1970)

Schär, ETH Zürich

44

Outline

Global energy cycle Global water cycle

Reservoirs of the water cycle Residence times in the water cycle

(19)

Schär, ETH Zürich

Mean residence time

Fin S Fout

In the stationary case: Fin = Fout

The mean residence time τ of a water molecule in a particular storage S is determined by the size of the storage and the flux through it:

It corresponds to the time needed to fill the storage S with the flux Fin, or to the time needed to empty it with the flux Fout.

τ = S Fin = S

Fout

Schär, ETH Zürich

Global water cycle

46

Atmosphere 12.9

Oceans

1,338,000 Glaciers,

Polar ice 24,000 Soil moisture

16.5

Surface water

104

Ground water 10,800 116

(780 mm/y) 71

(470 mm/y) ~0 1 505

(1270 mm/y) 458

(1400 mm/y) 2.7 ~0

46 43.8 2.7

2.2 44.7

Numbers in Italic: Volumes [1000 km3] Numbers in normal: Fluxes [1000 km3/y]

(Numbers in brackets): Fluxes [mm/y], with respect to ocean / land-surface

All storage compartments have a zero balance in the longterm mean (in- and outgoing fluxes yield zero)!

(20)

Schär, ETH Zürich

Mean residence time

Example 1: Residence time in the atmosphere

Fout precipitation on land 116,000 km3/y

precipitation on sea 458,000 km3/y polar precipitation 2,700 km3/y total precipitation 576,700 km3/y

S storage 12’900 km3

τ = S / Fout = 0.022 y = 8.2 d

Example 2: Residence time in the ground water (global mean) Fin ground water formation 46'000 km3/y S storage 10'800'000 km3

τ = S / Fin = 235 y

Referenzen

ÄHNLICHE DOKUMENTE

Regions where the water supply is dominated by snow and glacier melt, such as the Hindu Kush-Himalaya and the Rocky Mountains, will also be highly vulnerable, particularly

The calibration tests presented in this paper show that the water potential in unsaturated granodiorite, a crystalline rock, can be measured very sensitively and

The economic assumptions of the one season model will be used, for the most part, ,in the two season analysis. For the upstream user, the three piece linear benefit function given

Š Die Schülerinnen und Schüler sollen sich der Bedeutung des Wassers für das Leben auf der Welt und für ihren eigenen Tagesablauf bewusst werden.. Š Sie sollen den

Stockholm Environment Institute, Stockholm, Sweden (1997). Water scarcity indicators; the deception of the numbers. Review and classification of indicators of green water

The other goals and components of the study include: a survey of various emissions, the development of wastewater treatment alternatives and upgrading strategies,

Lake acidity scenarios for lake OraJiirvi generated by using the s e t of input data combinations, which fulfilled the con- straint conditions (see Table

Built into an interactive, modular decision support system's framework, which includes simple database management, interactive video graphics, and linguistic output