• Keine Ergebnisse gefunden

für  Polar-­‐  und  Meeresforschung   Bremerhaven  

N/A
N/A
Protected

Academic year: 2022

Aktie "für  Polar-­‐  und  Meeresforschung   Bremerhaven  "

Copied!
66
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

  Site  Survey  Methods  in  Glacial  Ice  Drilling      

 GESEP  

EARTH  PROBING  SCHOOL  2011    

Frank.Wilhelms@awi.de   Alfred  Wegener  Ins6tut  

für  Polar-­‐  und  Meeresforschung   Bremerhaven  

EPICA

E U

R O P E A N P R O J E C T F O R I C E C O R I N G I N A N

T A R C T I C

A

D O M E C O

N C O R D I A D R O N Nbottom I N G M A U D L A N D 2774.15 m 17.01.2006 Dronning Maud Land

(2)

Polar  ice  sheets  

Snow  accumulation Snow  accumulation

Iceberg calving

Iceberg calving Ablation

subglacial  melting Ocean bedrock

ice  shelf Inlandice  /

Ice  sheet Summit

Equilibrium  line

typical  for

Antarctica Greenland

Ice  thicknees

Ice  thickneesMean:  1575  m Max:  3028  m Mean:  2034  m Max:  4775  m

500  -­  1000  km ca.  2000  km 100  -­  600  km

HansOerter,  2001 with  modifications Subglacial  Lake

Snow  accumulation Snow  accumulation

Iceberg calving

Iceberg calving Ablation

subglacial  melting Ocean bedrock

ice  shelf Inlandice  /

Ice  sheet Summit

Equilibrium  line

typical  for

Antarctica Greenland

Ice  thicknees

Ice  thickneesMean:  1575  m Max:  3028  m Mean:  2034  m Max:  4775  m

500  -­  1000  km ca.  2000  km 100  -­  600  km

Hans  Oerter,  2001 with  modifications Subglacial  Lake

(3)

1  mm   150  m  

300  m  

entrapped  air  bubbles  

in  the  ice  

(4)

the  entrapment  of  air  in  the  firn  

10  m   40  m  

70  m  

100  m  

1  cm  

x-­‐ray-­‐

computer-­‐

tomography  

Freitag,  Wilhelms,  

Kipfstuhl,  JGlaciol,  2004  

(5)

Ice  Cores  are  an  archive  of  the  past  atmosphere  

!"""""#!"""$!!""$#!""%!!""%#!""&!!""&#!""'!!""'#!""#!!""##!""(!!"""(#!"")!!"")#!""*!!

+,-".$/!!!"0-123"4-562-"$7#!8

&!!

'!!

#!!

(!!

)!!

*!!

9:'";6<;-<=21=>6<".?@?@4@A@89:'";6<;-<=21=>6<".?@?@4@A@8

&!!

'!!

#!!

(!!

)!!

*!!

B'(!

B''!

B'%!

B'!!

B&*!

B&(!

"bC".D8 (#!""()#"")!!"")%#"")#!" " ))#""*!!

+,-".$/!!!"0-123"4-562-"$7#!8

&!!

'!!

#!!

(!!

)!!

*!!

B'#!

B''!

B'&!

B'%!

B'$!

B'!!

B&7!

'@' '

&@(

&@%

%@*

!"! #"!$$$$$$$$$$%"& ''"&$$$$$$$'&"'

'$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'!"' '!"! '#"&$$$$$$'%"&

'(")$$$$'#"&$$$$$$$$$$$$'*"+$$$'%"&

"bC".D8b$*E"4-<=F>;"".D8 9:'";6<;-<=21=>6<".?@?@4@A@8

!"#

$##

$$#

$%#

$&#

$"#

'##

()$*+,-,-.-/-0

"##

1##

&##

2##

%##

'##

$##

!##

# 345*+678*9:0

;!$

;"

;%

#

%

<5.,58=>?85*=@A.=B7*+C(0

!"#"

!"#! !$ !%

&'

!(

!)

!*

!+

!!

!'

%

(

$

)

"

+ ,-./&

01213454

* !&

<D <DD <DDD <DE <E <ED <EDD <EDDD <DF

Lüthi  et  al.,  Nature,  2008   Loulerge  et  al.,  Nature,  2008  

(6)

Major sources of information on past ocean and atmosphere

MARINE SEDIMENT CORES

ICECORES

(7)

Temperature archive: The isotope thermometer

summer winter

Fractionation of water isotopes during phase changes

after Stauffer, 2001

Willi Dansgaard, The O18-abundance in fresh water, Geochim. et Cosmochim. Acta 6, 1954

(8)

Ice sheets’ sibling: The ocean The glacial effect

source:  wikipedia  

Shackleton, N. Oxygen Isotope Analyses and Pleistocene

Temperatures Re-assessed, Nature, 215, 15-17, 1967

(9)

EPICA-MIS: synchronization of ice

and marine sediment records

(10)

Dansgaard,  Johnsen,  Møller,  Langway,  Science,  1969  

Da6ng  of  ice  cores  

dw

dy = − rh ; hyH dw

dy = − rz ; 0yh

Dansgaard-­‐Johnsen  model:  ver6cal  speed  w:  

H  

h  

(11)

solving  the  Dansgaard-­‐Johnsen  model  

•  integra6on  of   with  constant   rate  thinning   rate  r  

•  yields  for  w:  

•  and  constant  accumula6on  at    surface  w(H)=-­‐A  yields  

•  6me  is  the  integral  of      inverse  speed  by  height    above  bedrock  

w( y) = − r

2 y

2

; 0 ≤ yh w( y) = − rh

2 (2 yh ) ; h ≤ yH

dw

dy = − rh ; hyH dw

dy = − rz ; 0yh

t( y ) = 1

w dy

H y

(12)

Dansgaard-­‐Johnson:  depth-­‐6me  rela6on  

•  just  solving  the  integral  yields  

•  logarithmic  age-­‐depth  rela6on  within  h  above  bed    and  an  

•  inverse  age-­‐depth  rela6on  above  h  

•  influenced  by:  accumula6on,  ice  thickness,  flow      

t( y ) = 2 Hh

2 A ln 2 Hh

2 yh ; 0 ≤ yh t(y) = 2H - h

2A ln 2 Hh

h + 2 Hh A

h

y − 1

⎛

⎝ ⎜ ⎞

⎠ ⎟ ; h ≤ yH

(13)

The  depth  scale  in  the  data  sets  

!"!

#$%

&'()'*

EPICA  Community  Members,  Nature    2004    

(14)

800

600

400

200

0

age / kyr B.P.

3000 2500

2000 1500

1000 500

0

depth / m

El Chichon? 10Be/14C 10Be/14C YD/Holocene PB/BO 10Be peak Mt Berlin erupt. term. II air content air content air content air content air content air content air content air content air content air content 18Oatm 18Oatm B-M reversal

Krakatua Tambora Huaynaputina

Kuwae El Chichon? UnidentifiedUnknown 10Be/14C PB/BO 10Be peak

age-depth relation model age tie points top correction

bottom correction (18Oatm Vostok )

EDC3  age-­‐depth  rela6on  

(15)

-­‐10   -­‐8   -­‐6   -­‐4   -­‐2   0   2   4  

EPICA  Dome  C  proxy  temperature  /  °C    rela6ve  to  present    

1600000   1200000  

800000   400000  

0  

age  /  years  B.P.  (=  1950)  

5.0   4.5   4.0   3.5   3.0  

benthic    δ   18  O  /  ‰  proxy  for  ice  volume    

What  to  expect  even  earlier?  

40  kyr  world   100  kyr  world  

Jouzel  et  al.  (2007)                                                                                                                                            Lisiecki  &  Raymo  (2005)  

(16)

The scientific goals - IPICS

1.  The oldest ice core: A 1.5 million year record of climate and greenhouse gases from Antarctica (a time period where Earth’s climate shifted from 40,000 year to 100,000 year cycles).

2.  The last interglacial and beyond: A northwest Greenland deep ice core drilling project (a deep ice core in Greenland recovering an intact record of the last interglacial period).

3.  The IPICS 40,000 year network: A bipolar record of climate forcing and response.

5.  The IPICS 2k Array: A network of ice core climate and climate forcing records for the last two millennia

A fifth, and critical, element of IPICS is the development of advanced ice core drilling technology. A technical white paper, entitled "Ice Core Drilling Technical Challenges" addresses this.

www.pages.unibe.ch/science/initiatives/ipics Non exclusive list, more will follow if promoted by science, e.g. biodiversity in ice cores, sub-glacial lakes, ice dynamics, etc.

(17)

IPICS: The IPICS 40,000 year network:

a bipolar record of climate forcing and response

(18)

Willi  Dansgaard  memoirs:  Frozen  Annals  hkp://

www.iceandclimate.nbi.ku.dk/publica6ons/

frozen_annals/  

The  Greenland  story  

(19)

GRIP  

(20)

GRIP  –  GISP2  

Grootes  et  al.,  Nature  366,  1993  

(21)

ice  

thickness  

hkp://nsidc.org/data/atlas/atlas_info.html   Bamber  et  al.,  JGR,  2001  

(22)

Accumu-­‐  

la6on  

hkp://nsidc.org/data/atlas/atlas_info.html   Bales  et  al.,  JGR,  2009  

(23)

bedrock   topography  

hkp://nsidc.org/data/atlas/atlas_info.html   Bamber  et  al.,  JGR,  2001  

(24)

bedrock   undula6ons  

at  20  x  ice   thickness  

Layberry  &  Bamber,  JGR,  2001  

(25)

Bamber  et  al.,   JGR,  2001  

Data  resolu6on   -­‐  flight  lines  

Nixdorf  &  Göktas,    J.  Appl.  Geophys.,     2001  

(26)

Results  of  local  studies  

Nixdorf  &  Göktas,  J.  Appl.  Geophys.,  2001  

(27)

volcanic  horizons  

15  cm  

 810  m  depth  (EDML)  

(approx.  20  kyr  BP)  

Foto: S

epp Kipfstuhl

(28)

mapping  the  ice  thickness  and  internal  reflec6ons  

Steinhage  et.al.,  Journal  of  Applied  Geophysics  47  (3-­‐4),  pp.  183-­‐189,  2001  

POLAR  2  (D-­‐CAWI)  

(29)

Deep  ice  cores  in  Antarc6ca  and  Greenland  

Antarc6c  Digital  Database,  Ekholm,  1998,  maps  by  Steinhage  with  modifica6ons  

(30)

Internal  horizons  at  ice  core  drill  sites  

(31)

Internal  horizons  at  ice  core  drill  sites  

(32)

Internal  horizons  at  ice  core  drill  sites  

(33)

FDTD  synthe6c  radar  traces  to  link  ice-­‐core   and  radar  surveys  

T  raveltime (µs   )  

S  2  : GA  P   ice  =3.09  

S  4  : GA  P   ice  =3.09   S  3  : DE  P   ice  =3.09  

S  3    : DE  P   ice  =3.20  

S  5     ice  =3.20  

2   3   4   5   10   15   20   25  

S  1  : DE  P   ice  =3.09  

R  1  : 023150  

R  2  : 033042  

Eisen  et.al.,  2006  

(34)

Linking  Ice  Cores   and  surveys  in  East  

Antarc6ca  

map:  Daniel  Steinhage  

Data:  Antarc6c  Digital  Database  

We  have  the  tools,  but  to  bring  the  fuel  is  the  challenge  

Siegert  et.al.,  

Antarc=c  Science  17   (3),  453–460,  2005  

(35)

NorthGRIP  –  a  warning  

Dahl-­‐Jensen  et  al.,  JGlaciol,  1997   NGRIP  community  members,  Nature,  2004  

Only  really  con6nuous  radar  layers  may  be  used  for  

tracing  from  one  loca6on  to  another!  

(36)

NGRIP  -­‐  mel6ng  at  the  bokom  

(37)

hkp://geophysics.ou.edu/geomechanics/

notes/heaplow/global_heat_flow.htm   Pollack  et  al.,  RG,  1993  

(38)

Geothermal  heat  flux  from  model  interpola6on  

Greve,  Ann.  Galciol.,  42,  2005  

(39)

crustal  thickness  from  seismology  an  

isosta6c  analysis  

Braun  et  al.,  EPSL,  2007  

(40)

NGRIP  –  anyhow  good  science  

NGRIP  community  members,  Nature,  2004  

(41)

Linking  of  Hemispheres  

EPICA  community  members,  Nature  2006   EPICA  DML,  NGRIP  

-­‐52  

-­‐48  

-­‐44  

T  s  u  r  f  [  °  C  ]  

-­‐450  

-­‐430  

-­‐410  

A  C  R   E  D  C  

δ  D  c  o  r  r  [  °  /   °  °  ]  

-­‐52  

-­‐49  

-­‐46  

-­‐43  

E  D  ML    

δ  1  8  O  c  o  r  r  [  °  /   °  °  ]  

A  I  M  8   A  I  M  1  2  

A  I  M  1  

A  I  M  2  

A  I  M  4   5  6   7  

3   9  1  0  1  1  

4  .  1  

-­‐40  

-­‐37  

-­‐34  

A  1   A  2   B  y  r  d  

δ  1  8  O  [  °  /   °  °  ]  

N  o  r  t  h  G  R  I  P  

D  O  1  

2   3  4   5  6   7   D  O  8  

9  1  0  1  1   D  O  1  2  

-­‐45   -­‐41   -­‐37   -­‐33  

4  .  1  

H  1  

H  2   H  3   H  4   H  5  

r  e  n  a   d   H  

G  e   l  n   C  

350   500   650   800  

10000   20000   30000   40000   50000   60000  

NGRIP  age  /  years  BP  (1950)  

4  

c  o  m  p  o  s  i  t  e  

E  D  M  L  

CH 4  /  ppbv   δ 18O  /  ‰  

(42)

EDML-­‐  Ice  Coring  goes  arts  

Siegert  et.al.,  

Antarc=c  Science  17   (3),  453–460,  2005  

(43)

NEEM  

•  N  77°26‘54.93‘‘,    

•  W  51°03‘19.89‘‘  

•  Al6tude:  2484  m  a.s.l.  

•  Ice  Thickness:  2542  m  

(44)

Is  there  an  Eemian?  

Susanne  Liljia  Buchardt,  PhD  thesis,  Ice  and  Climate  Centre,  Univ.  København,  2009  

(45)

Radar  reflectors  from  NGRIP  to   NEEM  

Susanne  Liljia  Buchardt,  PhD  thesis,  Ice  and  Climate  Centre,  Univ.  

København,  2009  

Age  

(kyr)   Depth  

(m)   z  (m)  

1.4   273   2644  

2.7   501   2416  

3.2   571   2346  

4.0   689   2229  

4.8   802   2116  

5.9   955   1963  

7.5   1146   1771   10.2   1396   1521   14.6   1600   1318   37.7   2055   863   45.0   2182   735   51.0   2284   633   74.6   2553   365   Age  depth  at  NGRIP  and   eleva6on  above  sea  level   at  NGRIP  (Table  2.2)  

(46)
(47)

The  European  Project  for  Ice  Coring  in   Antarc6ca  

Antarc6c  Digital  Database,  Ekholm,  1998,  map  by  Steinhage  with  modifica6ons  

Dome  C  

Vostok  

South Pole  

Casey  

Dumont d’Urville  

Mario ZucchelliMcMurdo    

Syowa  

Halley  

Neumayer  

Kohnen  

Dome Fuji  

Davis  

Mirny  

Molodezhnaya  

Zhongshan  

Byrd  

EDC   EDML  

DF   Byrd   V  

(48)

Explore  the  area    

•   GPS  measurements  for  ground  truthing,  ice  flow      and  digital  eleva6on  model  

•   shallow  ice  cores,  snow  pits  and  automa6c        weather  sta6ons  for  proxy  establishment  

•   radar  survey  for  ice  thickness  determina6on  

•   geophysical  survey  to    study  underlying  crust  

(49)

isotope  thermometer  for  EDML  

Graf,  W.,  Oerter,  H.,  Reinwarth,  O.,  S6chler,  W.,  Wilhelms,  F.,  Miller,  H.,  Mulvaney,  R.  Stable-­‐isotope  records   from  Dronning  Maud  Land,  Antarc=ca,  Annals  of  Glaciology,  35,  195–201,  2002.  

Antark6s  (Dronning  Maud  Land)  T  =  

1.3°C  /‰  *  δ

18

O    +  14.8°C  

(50)

-48 -44 -40 -36

!18 O / ‰

2.0 1.5

1.0 0.5

0.0

depth (firn) / m

seasonal  varia6ons  

snow  pit  0203  in  the  EDML  vicinity  

Oerter  et  al.,  Annals  of  Glaciology,  2004.  

C.  H.  Reijmer  et  al.,  JGR,  2006:  hkp://www.phys.uu.nl/~wwwimau/research/ice_climate/aws/

antarc6ca_sta6ons.html#aws9  

T  =  1.3°C  /‰  *  δ18O    +  14.8°C   -­‐52  °C  

-­‐32  °C  

Hans  Oerter  

(51)

explore  the  area  for  logis6c  access  

(52)

Accumula6on  rate  folio  for  modelling  of  the   East  Antarc6c  ice  sheet  

Huybrecht  et  al.,  AnnGlaciol  30,  2000  

(53)

ice  sheet  models  

Huybrechts,  Glacier  Science  and  Environmental  change,  ed.  P.  Knight,  Blackwell,  2006  

(54)

ice  sheet  models  to  improve  the   interpreta6on  of  the  ice  cores  

Huybrechts,  Clim.  Past,  2007  

(55)

ice  sheet  models  to  search  oldest  ice  

Huybrechts,  as  reproduced  in  Nature,  2007  

(56)

BEDMAP  

hkp://www.antarc6ca.ac.uk/Resources/AEDC/bedmap/examples/bed10.gif  

(57)

Mapping  of  the  ice  sheet  –  BEDMAP  dataset  

hkp://www.antarc6ca.ac.uk/Resources/AEDC/bedmap/database/bedmap_coverage.html  

(58)

Linking  Ice  Cores   and  surveys  in  East  

Antarc6ca  

map:  Daniel  Steinhage  

Data:  Antarc6c  Digital  Database  

We  have  the  tools,  but  to  bring  the  fuel  is  the  challenge  

Siegert  et.al.,  

Antarc=c  Science  17   (3),  453–460,  2005  

(59)

Logis6cs  for  40k  projects  

Twin  Oker  DHC-­‐6,  Basler  BT-­‐67  based  logis6cs,  with  ship  supply  to  the  coast,  personnel  

moved  through  major  air  links.  Approved  by  Berkner  Island,  Talos  Dome,  James  Ross  

Island  

(60)

Opera6on  in  Antarc6ca  –  heavy  equipment  

European  logis6c  means  

surface  traverses   Air  drop  capability  by  

ALCI  

US  logis6c  means   addi6onally  LC-­‐130   heavy  aircra}  

opera6on  on  the  ice  

Lightweight  

field  camps  

(61)

Personnel  to  and  from  Antarc6ca  

© 2002 Seth White

(62)

DROMLAN  AIR  NETWORK  

Troll Novo Airbase

THE GATEWAYS INTO ANTARCTICA

(63)

Infrastructure  for  Ice  Coring  

(64)

Infrastructure  for  spli~ng  cores  and  standard  analysis  

(65)

socio-­‐economic  impact  &  outreach  

(66)

If  you  look  for  a  drill  site  from  scratch  

•   define  the  scien6fic  ques6on:  age,  resolu6on,   represented  area,  etc.  

•  define  feasible  target  area:  logis6cs,  safety,  6me,   etc.  

•  geophysical  mapping  of  the  area:  ice  thickness,   surface  eleva6on,  surface  velocity,  op6onal:  

gravity,  magne6cs,  seismics,  etc.  

•  shallow  core  suvey:  proxies,  accumula6on  rate,   etc.  

•  if  you  look  for  a  clima6c  record:  look  for  an  area   with  comprehension  of  ice  movement  (dome,  ice   divide  etc.),  appropriate  accumula6on,  low  

surface  velocity,  high  ice  thickness  and  flat  bed  

Referenzen

ÄHNLICHE DOKUMENTE

(2) The core was dated by combining the annual layer thickness measurements from stable isotope studies with volcanogenic signals in the electrical conductivity record used as

A major question that remains is whether all the partners that subscribed to the Busan Partnership (South–South providers, the private sector, civil society, and philanthropic

[ 23 ] The oxygen and carbon isotopic ratios and annual growth layer thicknesses of a stalagmite from the Salalah area of southern Oman provide a record of changes in monsoon

There is ample evidence that the stable isotope records are reliable proxies for the temperature variations caused by the changes between glacial epochs and inter- stadials and

gebieten eine Tendenz zu hohen jedoch schwankenden Ertragen besteht. A method of plotting two variables on the same choropleth map has already been described1). Recently

 We also used the polarized dust template map based on the stellar polarization data to subtract the dust contamination.  We found evidence that W band data is contaminated

With a boiling charter market, many transactions took place during the first 4 months of the year, driving prices up and motivating more owners to consider selling their

Taking into account that real demographic processes are sufficiently homo- geneous over such a small period of time, it is reasonable to suppose that the spatial distribution of