• Keine Ergebnisse gefunden

-A Posteriori Error Estimate (8 points)

N/A
N/A
Protected

Academic year: 2022

Aktie "-A Posteriori Error Estimate (8 points)"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

IWR – Universit¨at Heidelberg Prof. Dr. Guido Kanschat

Due date:20.12.2013

Homework No. 8

Numerical Methods for PDE, Winter 2013/14 Problem 8.1: Dual Problem and Error Functionals (8 points)

Consider the following convection-diffusion equation

−ε∆u+β· ∇u=f inΩ, u= 0 on∂Ω,

with a sufficiently smoothβandε >0. The domainΩis a convex polygon in two space dimensions.

(a) Formulate the dual problem weakly as well as classically for a general linear error functionalJ(·).

(b) Draw the transport fields of the dual solution for the specific transport fields (i) β1= (1,1)T,

(ii) β2= (y−0.5,0.5−x)T.

(c) Formulate appropriate error functionalsJ(·)for the computation of the (i) energy errork∇(u−uh)kL2(Ω),

(ii) L2-errorku−uhkL2(Ω), (iii) the mean value of the solutionu.

Problem 8.2: “Sharp” L

2

-A Posteriori Error Estimate (8 points)

Consider the standard Poisson problem

−∆u(x) =f inΩ, u(x) = 0 on∂Ω, whereΩis a convex polygonal domain inR2.

The a posteriori error estimate inL2is given by

kehkL2(Ω)≤ηL2(uh) :=c X

T∈Ωh

h4T ρT(uh)2+h−1T ρ∂T(uh)2

!12 ,

witheh=u−uh, and

ρT(uh) :=kf+ ∆uhkL2(T), ρ∂T(uh) =1

2k[∂nuh]kL2(∂T), where[·]denotes the jump of the normal derivative on the edge of neighboring cells.

(a) Prove the estimate

k∂nuk2L2(∂T)≤c

hTk∆uk2L2(T)+h−3T kuk2L2(T)

,

by proving a similar estimate on the reference element.

Hint:Use the regularity theory for elliptic PDE’s and the trace equation.

(b) Use the estimate to prove thatηL2(uh)is reliable and efficient in the following sense ηL2(uh)≤c1kehkL2(Ω)+c2h2kfkL2(Ω)

withh:= maxT∈ΩhhT.

Each problem 5 points

Referenzen