• Keine Ergebnisse gefunden

Helle HallikRational spline histopolation

N/A
N/A
Protected

Academic year: 2022

Aktie "Helle HallikRational spline histopolation"

Copied!
100
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Helle Hallik Rational spline histopolation

Tartu 2015 ISSN 1024-4212 ISBN 978-9949-32-834-5

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

98

Helle Hallik

Rational spline histopolation

(2)

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

98

(3)

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 98

HELLE HALLIK

Rational spline histopolation

(4)

#

" " $" " %&

%#

" "$" " ' ()

*

*+

" " " ,,

- ),./ .0121."12 +.3405"

"

!'10.434.1.

!(' 6783664635.385432

!(' 6783664635.38523.

::).012

!"#$% &

'

(print) (pdf)

University of Tartu Press

www.tyk.ee

(5)

."1 " " " " " " " " " " " " " " " " " " " " " " " 1.

.". > " " " " " " " " " " " " " " " " " " " " " 15

."5 * " " " " " " " " " " " " " " " " " " " 14

."4 " " " " " " " " " " " " " " " " " " " " " " " " " " 1/

."2 ? " " " " " " " " " " " " " " " " " " " " " " " " .1

."/ * " " " " " " " " " " " " " " " " " " " " " " " " " " ..

."7 % " " " " " " " " " " " " " " " " .5

5"1 @" " " " " " " " " " " " " " " " " " " " " " " .8

5". " " " " " " " " " " " " " " " " " " " " " " " " " 55

4"1 : " " " " " " " " " " " " " " " " " " " " " " " " " 52

4". > " " " " " " " " " " " " " " " " " " " " " 52

4"5 * " " " " " " " " " " " " " " " " " " " " " " " " 5/

4"4 " " " " " " " " " " " " " " " " " " " " " " " " " " 57

4"2 $" " " " " " " " " " " " " " " " " " " " " " " " " " " " 58

4"/ 3 " " " " " " " " " " " " " " " " 45

4"7 @ 3 " " " " " " " " " " " 44

(6)

2"1 $ >" " " " " " " " " " " " " " " " " " " " " " " 20

2". " " " " " " " " " " " " " " " " " " " " " " " " " " " 28

!

/"1 " " " " " " " " " " " " " " " " " " " " " " " /1

/". > " " " " " " " " " " " " " " " " " " " " " /.

/"5 * " " " " " " " " " " " " " " " " " " " /5

/"4 " " " " " " " " " " " " " " " " " " " " " " " " " " /2

/"2 (> " " " " " " " " " " " " " " " " " " " " " " " " " " " " " //

/"/ (> " " " " " " " " " " " " " " " " " " " /8

/"7 (> " " " " " " " " " " " " " " " " " " " " " " " " " " /6

/"8 ? " " " " " " " " " " " " " " " " " " " " " " 71

"

7"1 " " " " " " " " " " " " " 7/

7". 3 " " " " " " " " " " " " " 78

7"5 ? " " " " " " " " " " " " " " " " " " 81

7"4 " " 85

7"2 3 84

#

$%%%& '$ () *

+ %, *

- *

(%. ' - () *

/ 01 *

(7)

! @

- "

"

A

- "

" ! &

"

- - ?

1600 -@

164/ B21 C"

--

D > - -

- @ " !

- A @ D

- "" B8C " -

-" 16/0

316/0 - -

- - - -

? -"

! 1600 ->?

- " ! -

"

16/0" ! "

$ ' B1 C()A (

B7C$'EB.5 C $) B/CB2. 25 24C"

(8)

B/. C ) B28C

B1. .8 C " )

B/0 C ) B4C"

"

- )" ! -)

B28 C -

" )

?3 "

? A

A>

B/. C"

!

3

B.5 C

""B22C" ! 3

-

a = x 0 < x 1 < . . . < x n = b

f i

i = 0, . . . , n,

x i

" E

S : [a, b] R

S(x i ) = f i , i = 0, . . . , n,

"

! -

a = x 0 < x 1 < . . . < x n = b

z i

i = 1, . . . , n

-

[x i−1 , x i ]

" E

T : [a, b] R

-

x i

x i−1

T (x)dx = z i (x i x i−1 ), i = 1, . . . , n,

"

! - - @?

f 0 R

f i = f i−1 + z i (x i x i−1 )

i = 1, . . . , n

"

S

-

S

" !- -

-

z i = (f i f i−1 )/(x i x i−1 )

i = 1, . . . , n,

-@

T

" !

S(x) = f 0 + x

a T (s)ds

"

"

> "

(9)

# ?" !)-3

)

? ?" $ ?

f (x) = 1/x 2

x [ 2, 0.2]

B54 C-)

? A"

?B.2 C-->=

"

- -

" @ )

B5.55 525/58 27C" -

B44 46 20 C" !)B51CB46 C

" $

B47C3 " %

=

C 1

>=

C 2

? "

@ -

G - ) B42CEB/4C"

$ - @ ) B2/C" $

G B42 C B6 C"

" ! B/5 C 3

- - > "

? B14C

C 2

>=> B12C

C 1

= " ! B50C 3

-3" $

C 2

=>

B.0 C"

O(h 3 )

O(h 4 )

"

=>=

H-

" "

f

=

S

)-

|| S f || = O(h 3 )

"" B.456C" =

C 1

- ?>B5641C" !B.4C

? 3

"

" ! =

C 1

>

-B.4C"

3

B15 14 12 16 .045 48C" )

?" ?B10 C?

- H

(10)

?

B.7 C"

> B4. C"

""B4/ C-3

>=B41 C ->

= "

! = 3

" B1/56 4041 4/C" E=-

-)

B1/ C ? B2C " !B1/ C

'-B.6 C "

+= B41 C

B1/ 17 18 .1C A > B./ 57C"

I= B42 4/ C" (

-->=

" - >=

C 2

B..C

- > @" ? > 3

"" 3

)

G 3E B28C ?

" ! >3

) -

B4C" ? = )

B41C >= ? 3

?B4/C" )- =

B1/18C" !

A - >= "

$-)

- B44 20 47 46 11 C" J 3

B26 C B51C"

+

B5126 C"

! - - - "

-) "

!1--

- ) -

"

! . - B1/ C" -

(11)

=

C 1

"

>? "

- @ "

'-K "

! 5 - B17 C"

- =

C 1

" +G

"

! 4 -

=>" $>3

) ? - -)

" ! - -) @

"

- ) @

" 4 B18C"

!2- -

C 1

= >

" @ G

G" 2 B.1C"

/>=3

" ) -

? "

) -

" >

" ! - ? H

?" /

B.. C"

7-

"

(12)

B1/ C"

- - " E@

B1/C) 3

" :-? B1/ C"

+

x i

[a, b]

a = x 0 < x 1 < . . . < x n = b

z i

i = 1, . . . , n

" E-

C 1

S

[a, b]

S(x) = a i + b i (x x i−1 )

1 + d i (x x i−1 )

."1

-

1 + d i (x x i−1 ) > 0 x [x i−1 , x i ]

i = 1, . . . , n,

"" =

D

x i

x i−1

S(x)dx = z i (x i x i−1 ) , i = 1, . . . , n .

.".

! -

S (x 0 ) = α , S (x n ) = β

."5

S(x 0 ) = α , S(x n ) = β

."4

(13)

α

β

" :- ."5 ."4

A

x 0

x n

"

%

[x i−1 , x i ]

-

S (x) = b i a i d i

(1 + d i (x x i−1 )) 2 ,

."2

-

S

C 1 [a, b]

[a, b]

" ?

.". -."5 ."4

z 1 < . . . < z n or z 1 > . . . > z n or z 1 = . . . = z n ,

."/

-

z i

? @

S (x 0 ) = α > 0

S (x n ) = β > 0

S(x 0 ) = α < z 1

S(x n ) = β > z n

"

23 3

C 1

+

S 1

S 2

=

[x i−1 , x i ]

S 1 (x) = a 1i + b 1i (x x i−1 )

1 + d 1i (x x i−1 )

S 2 (x) = a 2i + b 2i (x x i−1 ) 1 + d 2i (x x i−1 ) ,

x [x i−1 , x i ]

"

c 1i = b 1i a 1i d 1i

c 2i = b 2i a 2i d 2i

."2

-

g (x) = c 1i

(1 + d 1i (x x i−1 )) 2 c 2i

(1 + d 2i (x x i−1 )) 2 .

>

g (x) = 0

>

c 1i

(1 + d 1i (x x i−1 )) 2 = c 2i

(1 + d 2i (x x i−1 )) 2 .

."1

1 + d 1i (x x i−1 ) > 0

1+d 2i (x x i−1 ) > 0

-

c 1i

c 2i

" !

c 1i = c 2i = 0

g (x) = 0

-

[x i−1 , x i ]

" !

c 1i c 2i > 0

g (x) = 0

>

1 + d 1i (x x i−1 ) 1 + d 2i (x x i−1 ) =

c 1i c 2i

1/2

(14)

1 + d 1i (x x i−1 ) = c 1i

c 2i 1/2

(1 + d 2i (x x i−1 )).

+ > @

[x i−1 , x i ]

-

-" -

g (x) = 0

-

g

n

G

[x 0 , x n ]

"

S 1

S 2

.". -

z i

"

x i

x i−1

g(x)dx = 0 , i = 1, . . . , n ,

."7

-

ξ i (x i−1 , x i )

g(ξ i ) = 0

"

[x i−1 , x i ]

-

g (x) = 0

-"

."4 -

g(x 0 ) = 0

g(x n ) = 0

"

g

n + 2

AG

[x 0 , x n ]

" *K

g

n + 1

AG

(x 0 , x n )

"

-

g

n

G"

."5 -

g (x 0 ) = 0

g (x n ) = 0

" $

g

n 1

AG-

ξ i

i = 1, . . . , n

" -

n + 1

G

g

-" ! >

.". - ."5 ."4 -

g

n + 1

G

[x 0 , x n ]

- "

!

[x i−1 , x i ]

-

g (x) = 0

--

?> & -

g

G-" ! &

x i

i = 1, . . . , n 1

-

g (x i ) = 0

"

g (x) = 0

[x 0 , x n ]

g

."7

g(x) = 0

-" "

c i = b i a i d i

i = 1, . . . , n

--."2

."1

[x i−1 , x i ]

S (x) = c i

(1 + d i (x x i−1 )) 2 .

."8

+

S (x i ) = m i

i = 0, . . . , n

h i = x i x i−1

i = 1, . . . , n

"

."8 -

c i = m i−1 and c i

(1 + d i h i ) 2 = m i .

."6

(15)

! .". -

S

m i

?

m i > 0

m i < 0

m i = 0

i = 0, . . . , n

"

!

m i = 0

- ."6

m i−1

m i = (1 + h i d i ) 2 ,

-

d i = 1 h i

m i−1 m i

1/2

1

.

."10

+

d i = 0

m i−1 = m i

"

S(x) = b i

d i c i

d i (1 + d i (x x i−1 )) .

."11

x i

x i−1

S(x)dx = x i

x i−1

b i

d i c i

d i (1 + d i (x x i−1 ))

dx

= b i d i h i c i

d 2 i log(1 + h i d i ),

.". -

b i d i c i

h i d 2 i log(1 + h i d i ) = z i .

."1.

>."1. -

b i

d i = z i + c i

h i d 2 i log(1 + h i d i ).

."11

S(x) = z i + m i−1

h i d 2 i log(1 + h i d i ) m i−1

d i (1 + d i (x x i−1 )) ,

."15

) >."10

S(x) = z i + h i m i−1 m

m i−1 i

1/2

1 2 log

m i−1 m i

1/2

h i m i−1

m i−1

m i

1/2

1 1 + t m i−1

m i

1/2

1 ,

."14

(16)

x [x i−1 , x i ], i = 1, . . . , n, t = (x x i−1 )/h i .

!

d i = 0

-

m i−1 = m i

b i = c i = m i

" .".

a i = z i h i m i /2

-

x [x i−1 , x i ]

S(x) = z i + m i

x

x i−1 + h i 2

.

."12

m i = 0

-

S(x) = z i

x [a, b]

- -

."12 "

S

m i

."14 ."12

S

" ! -- ?

S

)

x 1 , . . . , x n−1

>"

E

m i > 0

i

m i < 0

i

" +

d i = 0

"

m i−1 = m i (1 + h i d i ) 2

--

."15

S(x i 0) = z i + h i m i (1 + h i d i ) 2 log(1 + h i d i ) h i d i (1 + h i d i ) h 2 i d 2 i

= z i + h i m i (1 + h i d i ) 2 (log(1 + h i d i ) 1) + 1 + h i d i h 2 i d 2 i

= z i + h i m i m i−1

m i

log m i−1

m i 1/2

1

+ m i−1

m i 1/2

m i−1 m i

1/2

1

2 .

."1/

$ ."15 -

S(x i−1 + 0) = z i + h i m i−1 log(1 + h i d i ) h i d i h 2 i d 2 i

= z i h i m i−1 (1 + h i d i ) −2

log(1 + h i d i ) −1 1

+ (1 + h i d i ) −1

((1 + h i d i ) −1 1) 2

(17)

= z i h i m i−1 m i m i−1

log

m i m i−1

1/2

1

+ m i

m i−1 1/2

m i m i−1

1/2

1

2 .

."17

."12 -

d i = 0 S(x i 0) = z i + h i

2 m i , S(x i−1 + 0) = z i h i 2 m i .

+

ϕ(x) =

⎧ ⎪

⎪ ⎩

x 2 (log x 1) + x

(x 1) 2 for x > 0 , x = 1 , 1

2 for x = 1 .

/ 3 3 "

#

ϕ(x) > 0

$

ϕ (x) > 0

ϕ (x) < 0

x > 0

$

lim

x→1 ϕ(x) = 1 2

$

lim

x→1 ϕ (x) = 1 3

$

lim

x→0+

ϕ(x)

x = 1

$

lim

x→∞

ϕ(x) log x = 1

$

1

2 < ϕ(x)

x < 1

0 < x < 1

$

%

ϕ(x 1/2 ) log x

x 1.84.

1 $

x > 0

?

(x 2 (log x 1)+x)/(x 1) 2 .

:

x→0 lim + (x 2 (log x 1) + x) = lim

x→0 +

log x 1 1 x 2

= lim

x→0 +

1 x

2 x 3

= lim

x→0 +

x 2 2 = 0.

lim x→0 + ϕ(x) = 0

"

'?

x > 0

x = 1

-@

ϕ (x) =

(2x(log x 1) + x 2 · 1

x + 1)(x 1) 2

(x 1) 4 (x 2 (log x 1) + x) · 2(x 1) (x 1) 4

= x 2 2x log x 1 (x 1) 3 .

!

x > 1

(x 1) 3 > 0

" +

f (x) = x 2 2x log x 1

" !

f(1) = 0

"

'-

f (x) = 2x 2 log x 2 = 2(x log x 1)

" E

f (1) = 0

" !

(18)

f (x) = 2 (1 1/x) > 0 x > 1

f (x) > 0 x > 1

-

f (x) > 0 x > 1

" !>

ϕ (x) > 0 x > 1

" E@

x→1 lim + ϕ (x) = lim

x→1 +

x 2 2x log x 1 (x 1) 3 = lim

x→1 +

2 x 2

6 = 1 3 > 0.

+-

0 < x < 1

ϕ (x)

"

(x 1) 3 < 0

"

f (x) = x 2 2x log x 1

-

lim x→0 + f (x) = 1

lim x→0 + f (x) =

"

f (x) = 2 (1 1/x) < 0 0 < x < 1

""

f

(0, 1)

" (

f (1) = 0

f (x) > 0

(0, 1)

"

f

(0, 1)

"

f (x) < 0 0 < x < 1

" :

ϕ (x) > 0

-

0 < x < 1

" ! -

lim x→1 ϕ(x) = 1/3

" ! -

ϕ (x) > 0 x > 0

-

ϕ

x > 0

"

lim x→0 + ϕ(x) = 0,

--

ϕ(x) > 0 x > 0

"

-

ϕ

"

. E

x→1 lim

x=1

ϕ(x) = lim

x→1 x=1

=

2x(log x 1) + x 2 · 1 x + 1 2(x 1)

= lim

x→1 x=1

2x log x x + 1 2(x 1)

= lim

x→1 x=1

2 log x + 2x · 1 x 1 2

= lim

x→1 x=1

2 log x + 1

2 = 1

2 .

x→1 lim ϕ(x) = 1 2 .

ϕ

1

- 1 "

5 E

x→0 lim +

ϕ(x) x = lim

x→0 +

x(log x 1) + 1 (x 1) 2 = 1

lim x→0 + x log x = 0

"

(19)

E )-

ϕ(x) > 0 x > 0

" $

x→∞ lim ϕ(x) log x = lim

x→∞

x 2 (log x 1) (x 1) 2 log x + lim

x→∞

x (x 1) 2 log x .

G

x → ∞

" :

x→∞ lim ϕ(x) log x = lim

x→∞

x 2

(x 1) 2 · lim

x→∞

log x 1 log x

- >" E

x→∞ lim ϕ(x) log x = 1.

4

ψ(x) = ϕ(x)/x = (x(log x 1) + 1)/(x 1) 2

"

ψ (x) =

((log x 1) + x · 1

x )(x 1) 2 (x(log x 1) + 1)2(x 1) (x 1) 4

= (x + 1) log x + 2(x 1) (x 1) 3 .

+

ψ (x) x (0, 1)

"

E

χ(x) = (x + 1) log x + 2(x 1)

"

lim x→0 + χ(x) =

" !

χ(1) = 0

" E

χ (x) = 1/x + 1/x 2 = ( x + 1)/x 2 > 0 0 < x < 1

"

χ

0 < x < 1

" >

χ (1) = 0

-

χ (x) < 0 0 < x < 1

-

χ

0 < x < 1

"

χ(1) = 0

-

χ(x) > 0 0 < x < 1

" E--

ψ (x) = χ(x)/(x 1) 3 < 0 0 < x < 1

"

ϕ(x)/x

0 < x < 1

" 5

. -

lim x→0 + ϕ(x)/x = 1

lim x→1 ϕ(x)/x = 1/2

4

"

2 5 -

x

ϕ(x)/ log x 2

ϕ(x) 2 log x

" + @ ?

x

>

ϕ(x) = 2 log x

" '

ϕ(1) = 1/2

log 1 = 0

-

lim x→1 + ϕ(x)/ log x =

x

?" !

x x

ϕ(x)/ log x 2

" $

x <

1.84

x

1.84

x x

ϕ(x)/ log x 2

"

E+."1 "

ϕ

- - >."1/ ."17

S(x i 0) = z i + h i m i ϕ

m i−1 m i

1/2

."18

(20)

S (x i−1 + 0) = z i h i m i−1 ϕ

m i m i−1

1/2

.

."16

S

""

S(x i 0) = S(x i + 0)

i = 1, . . . , n 1

-

m i

h i ϕ

m i−1 m i

1/2

+ h i+1 ϕ

m i+1 m i

1/2

= δ i ,

.".0

-

δ i = z i+1 z i

" $

m i > 0

S

-

δ i > 0

"

!

d i = 0

d i+1 = 0

>

S(x i 0) = z i + h i

2 m i

.".1

S(x i−1 + 0) = z i h i 2 m i

-

m i (h i + h i+1 ) = 2δ i .

."..

!

d i = 0

d i+1 = 0

d i = 0

d i+1 = 0

."16

.".1 -

m i h i

2 + h i+1 ϕ

m i+1 m i

1/2

= δ i .

.".5

'.".. .".5 .".0 "

d i = 0

m i−1 = m i

ϕ(1) = 1/2

"

( ."5 @?

m 0 = α

m n = β

" (

."4

d 0

d n

-

z 1 h 1 m 0 ϕ

m 1 m 0

1/2

= α , z n + h n m n ϕ

m n−1 m n

1/2

= β.

.".4

' >.".4 .".0 -

i = 0

i = n

h 0 = 0

z 0 = α

h n+1 = 0

z n+1 = β

"

(21)

? =

z i

α

β

"

2 33 (

z i

) *

α

$

β

$

C 1

δ i = 0

" .".0 >."..

.".5 .".4 .".0

m i = 0

S

.". -

."5 ."4 " (

S

" -

δ i > 0

i = 1, . . . , n 1

-

α > 0

β > 0

."5

α < z 1

β > z n

."4 "

E - > .".0 D.".5 - - 3

m i = ϕ i (m)

-

m = (m 0 , . . . , m n )

- -

[c, M ]

ϕ i : [c, M] n+1 [c, M]

ϕ i

" (3(- @?

m i = ϕ i (m)

i = 0, . . . , n

"

>.".0

m i = ϕ i (m) = δ i

h i ϕ m

m i−1 i

1/2

+ h i+1 ϕ m

m i+1 i

1/2 .

.".2

m i−1

m i

m i+1 [c, M ]

-

0 < c < M

"

ϕ

-

ϕ i (m) δ i

(h i + h i+1c

M

1/2 .

( + ."1 4

ϕ((c/M) 1/2 ) (c/M) 1/2 /2

" -

-

ϕ i (m) 2δ i h i + h i+1

M c

1/2

M

i

h i + h i+1 (M c) 1/2 .

."./

% H

c

M

H

)

M/c 1.84

ϕ((M/c) 1/2 ) 2 log(M/c) 1/2

-

ϕ i (m) δ i

2(h i + h i+1 ) log M c

1/2 c

(22)

δ i

h i + h i+1 c log M

c .

.".7

E > .".. .".5

.".0 -

> ."./ .".7 " .".4

."5 - ) >

α, β [c, M]

c

M

"

-

h 0 = 0

h n+1 = 0

.".4

A = max

0in

i

h i + h i+1 , B = min

0in

δ i h i + h i+1 .

<

A = (M c) 1/2

c

M

-

B c log(M/c)

" "

!"

- )

ξ i

(x i−1 , x i )

i = 1, . . . , n

3

S(ξ i ) = fi ) , i = 1, . . . , n ,

.".8

f

@

[a, b]

" !B56 C -

0 3 3 + * ,

f f Lip 1

$

S

C 1

-

, ,

x i = a + ih

$

h = (b a)/n

$

i = 0, . . . , n

*

O(h 3 )

,,

#% 3 3

O(h 3 )

' ./0,

1 $, ,

, 2 $ ',$

S (x 0 ) = f 0 = f (x 0 )

S i = S(x i )

$

i = 0, 1

h 2 f 0 (S 1 f1 )) h(f1 ) S 0 )(S 1 S 0 ) = 0

2 ,# ./0

=

S

x i

x i−1

S(x)dx =

x i

x i−1

f (x)dx , i = 1, . . . , n ,

.".6

(23)

f

" (

ξ i (x i−1 , x i )

x i

x i−1

S(x) f (x))dx = (S(ξ i ) fi ))(x i x i−1

= 0

-

S(ξ i ) = f(ξ i )

"

S

"

S (x 0 ) = f (x 0 ) , S (x n ) = f (x n )

."50

S(x 0 ) = f (x 0 ) , S(x n ) = f(x n ) .

."51

( ."1- -

2 33 ( * ,

f f Lip 1

5

$

f C 3 [a, b]

$

S

C 1

/ , , 6 #

*

O(h 3 )

,,

E- 5"

# $

."14 ."12 > )-

m i

" > > .".0

i = 1, . . . , n 1

.".. .".5 -

- .".4 .".0

."4

m 0 = α

m n = β

" -

ψ 0 (m) m 0 α = 0 ,

ψ i (m) m i

h i ϕ

m i−1 m i

1/2

+ h i+1 ϕ

m i+1 m i

1/2

δ i = 0 , i = 1, . . . , n 1 , ψ n (m) m n β = 0

."5.

-@ ->.".4 " E-

Ψ(m) = (ψ 0 (m), . . . , ψ m (m))

Ψ(m) = 0

."5. "

% - @ ."5. '-K " $

'-K

Ψ (m k )m k+1 = Ψ (m k )m k Ψ(m k )

."55

(24)

- ?" ?

Ψ

i

3-

∂ψ i

∂m i−1 = 1 2 h i 1

u i ϕ (u i ) ,

∂ψ i

∂m i = h i ϕ(u i ) 1

2 h i u i ϕ (u i ) + h i+1 ϕ(v i ) 1

2 h i+1 v i ϕ (v i ) ,

∂ψ i

∂m i+1 = 1 2 h i+1 1

v i ϕ (v i )

-

u i = (m i−1 /m i ) 1/2

v i = (m i+1 /m i ) 1/2

"

0 33 (

u i > 0

$

v i > 0

∂ψ i /∂m i > 0

χ(x) = ϕ(x) (x)/2

" - @

χ (x) = (ϕ (x) (x))/2

" + ."1 1 -

χ (x) > 0 x > 0

"

χ(0) = 0

lim χ(x) = 0

x 0 +

-

"

!

∂ψ i /∂m i−1 > 0

∂ψ i /∂m i+1 > 0

?

.".4 ->G " A

i

3-

∂ψ i

∂m i ∂ψ i

∂m i−1 ∂ψ i

∂m i+1

= h i

ϕ(u i ) 1 2

u i + 1

u i

ϕ (u i )

+ h i+1

ϕ(v i ) 1 2

v i + 1 v i

ϕ (v i )

.

+

δ(x) = ϕ(x) 1 2

x + 1

x

ϕ (x) .

δ (x) = 1 2

1 + 1 x 2

ϕ (x) 1 2

x + 1

x

ϕ (x)

+ ."1

δ (x) > 0 x > 0

" >

δ(x) = 0

>

>

2x 4 log x 3x 4 + 4x 3 2x 2 + 2x log x + 1 = 0

x 0.734

" > - -#

0 33 , ' 78 , ,

m i−1 /m i (x ) 2 0.54

$

m i+1 /m i (x ) 2

(25)

+ )

n → ∞

-

m i−1

m i

m i+1

-

"

! - - )- -

."14 ."12 " ."..

-- -

d i = 0

>

m i−1 = m i

"

E- -"" B.6C

'-K "

033 9

B(m 0 , R)

$ ,

,$

Ψ (x) Ψ (y) L x y x, y B(m 0 , R) ,

Ψ (m 0 ) −1 b 0 ,

."54

Ψ (m 0 ) −1

Ψ(m 0 ) b 1

."52

b 0 b 1 L 1/2

R (1

1 2b 0 )b 1 /b 0

,*

m B(m 0 , R)

,

+ +G

Ψ

>""

m k+1 m = O( m k m 2 )

"

! +G

Ψ

ϕ

" ."54 @""

& ."5"

m 0

m k

-

> ."52 @

b 1

"

-

f C 3 [a, b]

-

z i = 1 h i

x i

x i−1

f (x)dx , i = 1, . . . , n .

)

m i = 2(z i+1 z i )

h i + h i+1 , i = 1, . . . , n 1 .

."5/

K

m 0 i = f (x i ) + O(h)

h = max h i

m 0 i = f (x i ) + O(h 2 )

"

-

m i = f (x i ) + O(h)

>

m 0 i m i = O(h)

"

h

."4

'-K - "

Referenzen

ÄHNLICHE DOKUMENTE

The present thesis is most closely related to the works [14, 53, 56] where a discussion about the convergence of piecewise polynomial collocation methods for solving Volterra

In this thesis we study piecewise polynomial collocation methods for solving weakly singular Volterra and Fredholm integro-differential equations, where the approximate solution

Tarang, Stability of the spline collocation method for second order Volterra integro-differential equations, Mathematical Modelling and Analysis, 9, 1, 2004, 79-90....

In this problem finding more it- erations of He’s variational iteration method is very time consuming, so modification of the initial guess can provide an accurate and

The results show that the method provides a straightforward and powerful mathematical tool for solving various nonlinear integro-differential equations1. Key words: He’s

The discretized modified Korteweg- de Vries (mKdV) lattice equation and the discretized nonlinear Schr¨odinger equation are taken as examples to illustrate the validity and the

Comparison with numerical Runge-Kutta methods (RK) shows that the modified algorithm presented in this paper has the advantage of giving an analytical form of the so- lution, which

One Way of Choosing the Auxiliary Parameter It is important to ensure that a solution series ob- tained using PIM, which is always as a family of solu- tion expressions in the