• Keine Ergebnisse gefunden

metals Effect of nodal mass on macroscopic mechanical properties of nanoporous International Journal of Mechanical Sciences

N/A
N/A
Protected

Academic year: 2022

Aktie "metals Effect of nodal mass on macroscopic mechanical properties of nanoporous International Journal of Mechanical Sciences"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

International Journal of Mechanical Sciences

journalhomepage:www.elsevier.com/locate/ijmecsci

Effect of nodal mass on macroscopic mechanical properties of nanoporous metals

J. Jiao

a,

, N. Huber

a,b

aInstitute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Germany

bInstitute of Materials Physics and Technology, Hamburg University of Technology, Germany

a r t i c le i n f o

Keywords:

Nanoporous metal Finite element method Nodal mass Macroscopic response Scaling laws Size dependent strength

a b s t r a ct

Thecurrentworkinvestigatestheeffectofthenodalmassonthemacroscopicmechanicalbehaviorofnanoporous metalsusingtheFiniteElementMethod.Anodalcorrectedbeammodelingconceptisintroducedthatallows localincorporationoftheeffectiveelastoplasticmechanicalbehaviorofthenodalmassinthenodalareaofa representativevolumeelement(RVE).ThecalibrationtothecorrespondingFiniteElementsolidmodelisachieved byintegratingadditionalgeometryandmaterialparameterstotheso-callednodalareasinthebeammodel.With thistechniqueanexcellentpredictioncanbeachievedoveralargerangeofdeformationfordifferenttypes ofRVEs.Fromtheresultsofthenodalcorrectedbeammodel,modifiedleadingconstantsaredeterminedin thescalinglawsforYoung’smodulusandyieldstrength.Theeffectofthenodalcorrectionisalsostudiedwith respecttovariousrandomizationlevels.Finally,theligamentsizedependentstrengthisanalyzedbyapplyingthe proposedmodeltoexperimentaldata.Itcouldbeshownthatthenodalcorrectionimprovestheoverallagreement withliteraturedata,particularlyforsuchdatapointsthatarerelatedtosampleswithahighsolidfraction.

© 2017TheAuthors.PublishedbyElsevierLtd.

ThisisanopenaccessarticleundertheCCBY-NC-NDlicense.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Nanoporousgold(NPG)madeby de-alloyingcan beproducedas macroscopicobjectsthatexhibitabi-continuousnetworkofnanoscale poresandsolid‘ligaments’ whichareconnectedinnodes.Thesolidfrac- tion𝜑oftheporousbodyisapprox.30%[1–4].𝜑isusedasthemajor parameterinseveraltheoreticalmodelsforpredictingthemacroscopic mechanicalbehavioroftheporousmaterials[5–9].TheGibson-Ashby model[10], asthemostcommonlyusedone amongthese modelsis reportedtosignificantlyoverestimatethemacroscopicmechanicalre- sponseofnanoporousmetals[11–14].Theoverestimationindicatesthat themassutilizationfordeformationinsuchamaterialisnotasefficient asassumedbytheGibson-Ashbystructuralmodelforopenporefoams.

Inawider spectrumof attemptsforunderstanding theextraordi- narymechanicalresponsesofnanoporousmetals,extensivemodeling approacheshavebeenconducted. Atomisticandmoleculardynamics simulationshavebeenimplementedtoinvestigatethedeformationbe- haviorundertensionandcompression[6,15–17].Itwasfoundthatthe surfacestresshasasubstantialimpactonthetension/compressionasym- metry,anomalouscomplianceandearlyyield.Thesimulationsreported in[16]revealedsignificantstackingfaultformationanddislocationac- cumulationwithinthenanosizedligaments,confirmingtheexistence

Corresponding author.

E-mail address: jingsi.jiao@hzg.de (J. Jiao).

ofsubstantialworkhardeningunderplasticdeformationassuggested in[8].Further modelingworkonthemicrostructuralandcontinuum level[18,19]wasconductedtoexploretheorigin oftheunusuallow Poisson’sratioobservedduringmacroscopiccompressionofnanoporous goldsamples.ItwasfoundthatontheonehandtheelasticPossion’sra- tio isindependentoftheligamentsizebutdecreaseswithincreasing degreeofrandomizationthroughanincreasingpercentageoftorsionof theligaments[18].Ontheotherhand,theplasticPoisson’sratioshowed astrongdependencyontheligamentsize,whichcouldbesuccessfully reproducedwiththeDeshpande–Fleckmodel[19].

Otherworks[20–23]thatstudiedsurfaceelasticityorsurfacebound- aryconditionshavebeenconductedaimingtoexplainthemacroscopic mechanicalbehaviorsofthismaterialfromamicroscopicpointofview, withaparticularemphasisonsizeeffects.Veryrecently,thesignature ofthesurfaceenergywasstudiedbycombiningmacroscopiccompres- sionexperimentswithaFiniteElementbeammodelofarandomized diamondstructure,enriched bycoaxialthin-walledtubularelements for modelinga switchablesurfacestress[24].Theresults showedin conjunctionwiththeexperimentalfindingsthat,contrarytotheelastic Poisson’sratio,theplasticPoisson’sratiorespondsstronglytoelectri- calsurfacemodulation.Thisbehaviorwasidentifiedasthesignature ofasurface-inducedtension-compressionasymmetryoftheflowstress

https://doi.org/10.1016/j.ijmecsci.2017.10.011

Received 23 June 2017; Received in revised form 20 September 2017; Accepted 7 October 2017 Available online 9 October 2017

0020-7403/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

(2)

sizeofthenodesconnectingtheligamentsisintroducedintheserefined models.Theextramassofthenodesisinvestigatedregardingthecal- culationofthesolidfraction𝜑andthemechanicalresponseoftheunit cell.Itisconcludedthatthenodalmassshouldbecountedasanother importantfactorthatisassociatedwiththerelationbetweenaspectratio oftheligaments,solidfractionandmacroscopicmechanicalproperties.

Morespecifically,itwasindicatedthatthediscrepancybetweentheex- perimentalmeasurementsandtheGibson-Ashbymodelpredictionisdue tothatthereisamassivemassaccumulatedatthenodes,whichdoes notcontributetotheelasticdeformationoftheunitcell[9,12,25].

Theeffectfromthenodesontheelastic-plasticdeformationwasin- vestigatedbycomparingresultsfromfiniteelementsimulationsfora finiteelementsolidmodelwithsphericalnodesandafiniteelement beammodel,thatreducesthenodestoacouplingconstraintofthecon- nectedbeamelements,basedonthediamondunitcell[8].Itwasfound thattheelasticstiffeningcausedbythenodesispartiallycompensated bytheeffectofincreasingsheardeformationforthickligaments.Con- cerningtheplasticdeformationbehavior,theshorteningoftheligament lengthduetothenodalmasswasidentifiedasanimportanteffectthat wasincorporatedasacorrectionfactorintheproposedscalinglaws.

Thus,forthescalinglawofthemacroscopicmechanicalbehavior,the structuralarrangementoftheligamentsisnottheonlyinfluentialpa- rameter;thedifferentapproachesformodelingthenodesintermsof theircontributiontothesolidfractionaswellaselasticandplasticde- formationbehaviorwillalsoleadtodifferentscalinglawscomparedto theGibson–Ashbymodel.

Thestudiesonnanoporousmetalscannotberestrictedtoasimpli- fied,geometricallyperfectunitcellstructure,duetothattherealstruc- tureofnanoporousmetalsisaspatialnetworkstructurewithcomplex topologicalandmorphologicalcharacteristics[7,13,26,27].Inorderto investigatethestructuralparametersandobtainamorerealisticdefor- mationoftheligaments,highlygeneralizedbeamelementsareused, whichofferexcellentcomputationalefficiencyevenwiththousandsof ligamentsmodeledinarepresentativevolumeelement(RVE).Basedon thediamondlatticestructurethatwasestablishedintheworkof[8]and furtherrefinedby[29],theeffectsofligamentshapevariationandran- domizationonthevariousdeformationmodesofbending,torsion,and tension/compressionwasinvestigated[18].Itcouldbeshown,thatthe beamelementB31inABAQUS[28]iscapableofcapturingallfunda- mentaldeformationsforeventhick beamswithaligamentradiusto lengthratio,r/l,upto0.5correspondingtoasolidfractionof69%.So faroneremainingdrawbackoftheRVEbuiltfrombeamelementsisthe unsolvedquestionofhowtomodelthemassinthenodalareas,because theligamentsinthemodelareconjugatedatvirtualnodes.Thisleadsto alargercomplianceandlowerstrengthofthebeammodel.Inthestudy of[29],acorrectionofthemacroscopicyieldstrengthwasconsidered byincreasingtheyieldstrengthofthesolidphasebyafactorthatwas derivedfromtheavailableleverforbendingoftheligamentwhichis shortenedbythenodalmass,basedonthecorrectionderivedin[8]. Itishoweverunclear,howaccurateandhowgeneralthisapproachis, particularlywhentheRVEhasincreasingcomplexity throughadding randomizationorvariationsofligamentshape.

lyzedandcomparedtopreviousstudies.Gibson-Ashbyscalinglawsfor elasticityandplasticitywithmodifiedleadingconstantsareproposed thatincorporatetheeffectofthenodalmassonthemacroscopicme- chanicalresponse.Theroleofthenodalmassonthemacroscopicme- chanicalresponseisalsoanalyzedwithrespecttovariousrandomization levels.Finally,theligamentsizedependentstrengthofnanoporousgold is determinedbyapplyingtheproposedmodeltoexperimentaldata.

Theresultsarediscussedinthelightofpreviousstudies[29]. 2. Extensionofthebeammodel

ThegoalofthissectionistodevelopaRVEbuiltwithbeamelements, wherethemechanicsoftheconnectingnodesisphysicallyandlocally includedineachofthenodesofthebeamstructure.Itshallserveforpre- dictingtheelastic-plasticmacroscopicresponseofananoporousmetal withhighcomputationalefficiency.Thisapproachwouldallowelimi- natingthephenomenologicalcorrectionfactorthathaslimitedaccuracy anddoesnotallowconsideringeffectsoflocalstructuralvariationsin thevicinityofthenodes.

Inwhatfollows,abeamnodalcorrectionapproachwillbeproposed thatisbasedonatetrahedronstructure– thebuildingblockofthedi- amondstructure– thatallowsstudyingthemechanicalresponseona moreadvancedlevelcomparedtoasingleligamentRVE.Thetetrahe- dronstructureservesforadjustingtheelastic-plasticdeformationbe- haviorofthebeammodelinrelationtoasolidmodelofsamegeometry againstbending.Theapproachwillbevalidatedwithrespecttotorsion onthelevelofthetetrahedronstructureand,inasecondstep,forlarger RVEsthatarecomparedtosolidRVEs.

2.1. Tetrahedralbuildingblock

Atetrahedronstructureconsistingoffourligamentsissketchedin Fig.1.Itserves asthefundamentalbuildingblockfortheRVE,pro- posedby[8].Fig.1ashowsthestructuremodeledwithsolidelements.

Thegeometryconsistsof thenodalareain formof asphericalmass connectedwithfourligaments,of whichonlyhalfof theligamentis modeled.Fig.1bdemonstratestheequivalentstructurethatismodeled with beamelements. Theligamentsare connectedbytheir common nodevialinking alldisplacementandrotationaldegreesoffreedom.

Asthenatureofthebeammodel,thenodalareacontainsintersecting volumesoftheligaments.Thus,thesolidfractionhastobecalculated independentofthevolumeoftheelementsinthefiniteelementmodel basedontheinitialgeometryshowninFig.1a.Whilethecalculation ofthesolidfractioncanbeeasilycarriedoutfortheperfectlyordered diamondstructure[8]andalsofortherandomizeddiamondstructure [29], thecorrectmechanicalresponserequiresamodification of the beammodel.

Asbendingisthedominantdeformationmechanisminnanoporous metals,thecalibrationofthemodelparameterswillbecarriedoutfor suchadeformation.Thisisachievedbyapplyingatransversedisplace- mentwattheendofthetopligamentwhilefixingtheotherthreelig- amentendsinspace(showninFig.1aandb).Thefollowingapproach

(3)

Fig. 1. Geometry of the tetrahedron building block for (a) solid model and (b) beam model.

Fig. 2. Parameters defining the geometry of the ligament-nodal structure (a) solid model and (b) beam model.

Table 1

Geometry parameters and resulting solid fractions for simulations with variation of r / l and c R.

r / l = 0.19 r / l = 0.25 r / l = 0.31

c R= 1 c R= 1.05 c R= 1.1 c R= 1 c R= 1.05 c R= 1.1 c R= 1 c R= 1.05 c R= 1.1 𝜑 = 0.126 𝜑 = 0.127 𝜑 = 0.129 𝜑 = 0.207 𝜑 = 0.210 𝜑 = 0.214 𝜑 = 0.301 𝜑 = 0.307 𝜑 = 0.313

aimsatadjustinggeometricalandmaterialparametersofthebeamele- mentsinthenodalarea,suchthatthemechanicalresponseofthebeam modelisequivalenttothatofthesolidmodel.

Forintroducing thegeometricalparametersofthemodifiedbeam model,oneligamentwithitsconnectingnodeisschematicallyshownin Fig.2aandb.ForthesolidmodelinFig.2a,theparametersRandln arethenodalradiusandthelengthbetweennodalcenterandtheendof theligamentattachedtothenode,respectively.Inthenodalcorrected beammodel,shown inFig. 2b,𝑟𝑛 and𝑙𝑛 areadjustablegeometrical parametersdescribingthelargercross-sectionofthebeamelementsin thenodalareaandthelengthbetweenthenodecenterandtheendofthe ligament,respectively.Theligamentradiusrandligamentlengthlthat isdefinedasthedistancebetweenthetwonodecenters,arecommon parametersforthesolidmodelandthebeammodel.Anotherparameter cR isintroduced,whichis aconstantgoverningtheadjustablenodal massbylinkingtheligamentradiusrandnodalradiusRintheformof 𝑅=√

3∕2𝑐𝑅𝑟[8].

AllthecalculationsinthestudyareconductedwiththeFEAcode ABAQUS/Implicit[28].Thegeometryofthesolidandthebeammodel ismeshedwithR3D3andB31elements.InTable1threer/lratiosand cRvaluesarelistedthatresultinninemodelrealizations.Therangeof r/lisselectedbasedontherangefromthemorphologicalstudyforthe ligamentsofNPGintheworkof[9],whichincludesthetypicalrangeof thesolidfractionofNPGfrom0.25to0.3[8,29].AvalueofcR=1leads totheminimumpossible sizeof theconnectingnodewherethefour ligamentstouch,whilecR=1.1isreportedtorepresentamorerealistic estimationofthenodesizeinnanoporousmetals[8].

Toapplythesameloadingconditiontothesolidmodelastothe beammodel,thesolidligamentcrosssectionalsurface(Fig.1a)iscou- pledtoarigidplatewitha‘Coupling’ constraintthathasa‘Continuum distribution’.Theloadingcanbethereforeassignedtothecenterpoint of therigidplateanddistributedtothewholesurface[28],ensuring themaximumlevelofthesimilaritybetweenthesolidandbeammod- elswithrespecttotheloadapplication[18].

Thematerialbehaviorofthesolidfractionisassumedtobeelastic- perfectlyplasticwithaYoung’smodulusESof81GPaandaPoisson’s ratio𝜈of0.42.Theyieldstrength𝜎y,Sis500MPaandplasticdeforma- tionevolveswithoutworkhardening[8,29].

2.2. Calibrationofthenodalbeamelements

Asmentionedintheprevioussection,thecalibrationofthebeam modelisconductedwiththereferencetothemechanicalresponseofthe solidmodelunderbendingdeformation.Fig.3illustratesthevonMises stressdistributionforasolidtetrahedronstructure(r/l=0.25,cR=1.1) underthetransverseloadingdisplacementwaccordingtoFig.1athat leadstoplasticbendingandshearingofthetopligament,butalsoofthe upperpartoftheconnectingnodeanditssurroundingligaments.

Thecorrectionforthemechanicalresponseofthebeamtetrahedron structure iscarried outbyfirstlyadjustingitsadditionalgeometrical parameters𝑟𝑛 and𝑙𝑛.Tothatend,thestiffnessofthetetrahedron(for bothofthebeamandsolidmodels),k=F/w,iscomputedfromthefirst loadingincrementintheelasticregime,suchthatthestructureisun- dergoingonlysmallelasticdeformation.ThestrengthFisreadasthe reactionforceofthetetrahedronstructureintheplasticregimewhen

(4)

Fig. 3. Mises stress distribution of solid model with r / l = 0.25, c R= 1.1; top ligament and upper part of the nodal mass and lower ligaments are plastically deformed.

w/l=0.017.Thisdeformationvalueleadstoamacroscopicdeformation withintheplasticregimeoftheforcedisplacementcurve,whichissuf- ficientlyfarfromtheelastic-plastictransition.ThedataksolidandFsolid, determinedfromthesolidmodel,areusedasreferencesforthecali- brationofthebeammodel’selasticandplasticresponse,represented bykbeamandFbeam,respectively.Fig.4ashowstheratiosofkbeam/ksolid (blackcrosses)andFbeam/Fsolid(redcircles)forthecaseofr/l=0.19and cR=1.1.Theanalyzisisconductedwithsystematicallyvaryingthepa- rameters𝑟𝑛and𝑙𝑛;anditisdoneforallgeometrieslistedinTable1.The bestfitisfoundwherestiffnessandstrengthresultsaresimultaneously closesttothevalueof1,representedbytheyellowplaneinFig.4a.

ItcanbeseenfromFig.4athatthestiffnesskbeamsmoothlyincreases with𝑟𝑛.Incontrasttothat,thestrengthratiofirstincreasesinthesame waywith𝑟𝑛butthenarrivesataplateau.Thisisbecauseplasticyielding wouldalwaysinitiateattheendoftheligamentoncethenodalregion issufficientlystrong.Untilthen,thenodalregionalsocontributestothe plasticdeformation,asshowninFig.3.Themagnitudeoftheplateau isrelatedtotheleverlengthoftheligamentthatcanbeobtainedinthe formof𝑙𝑙𝑛.Alargervaluefor𝑙𝑛resultsinsmallerleverlengthwith theconsequencefortheyieldingtorequirealargerexternalforce,which againleadstoanincreaseoftheplateauvalueasshowninFig.4a.

valueFbeam/Fsolid ≥1representedbytheyellowplaneinFig.4a.

Thisisdonebytuningthenumberofbeamelementsincludedinthe nodalarea,assignedwiththenodalradius,𝑟𝑛,whiletheremaining elementskeeptheradiusoftheligament,r.

b) 𝑟𝑛issecondlyadjustedforthebeammodeltoreproducethecorrect strengthofthesolidmodelsuchthatFbeam/Fsolid =1.

c) Thefinalcalibrationof𝐸𝑛willresolvetheremainingcalibrationof thestiffnesskbeam/ksolid =1withoutaffectingthestrengththatwas calibratedbefore.

Accordingtothestepslistedabove,forthecaseshowninFig.4a, firstly𝑙𝑛𝑙𝑛=2.23isdetermined,whichisfollowedbythedetermination of𝑟𝑛𝑟=1.4.Thefittingiscompletedbyadjusting𝐸𝑛to𝐸𝑛𝐸𝑠=0.75 and, as illustrated in Fig. 4b, a 99% agreement is simultaneously reachedforthestiffness andstrengthratio, markedbytherectangle inFig.4b.Itshouldnotedthatanexactmatchinstepa)isnorrequired neitherdesired,becausewewanttousetheinitialdiscretizationofthe ligamenttoformtheelementsinthenodalareasintherandomizedRVEs structures.Otherapproacheswithvariableelementlengtharealsopos- sible,butwouldneedaremeshingofnodalareaaswellastheremaining ligament.

AllninegeometrieslistedinTable1wereanalyzedfollowingthe stepsintroducedabove.Anoverallfittingaccuracyof98%isachieved simultaneouslyforstiffnessandstrength.TheresultsshowninFig.5a–d arepresentedinformoftheratiosoftheadjustableparametersofthe nodalcorrected beammodeltothecorresponding parametersofthe solidmodel,𝑙𝑛𝑙𝑛,𝑙𝑛𝑙,𝑟𝑛𝑟,and𝐸𝑛𝐸𝑠respectively.Theseratioscan beinterpretedasindicatorsforthegeometricaldifferenceofthenodal

Fig. 4. Comparison of the mechanical response obtained for the beam and solid model for the case r / l = 0.19 and c R= 1.1. (a) Scan with variation of geometrical parameters 𝑟 𝑛and 𝑙 𝑛; best agreement is achieved along the curve 𝑙 𝑛𝑙 𝑛= 2.23 at 𝑟 𝑛𝑟 = 1.4; (b) Final fitting with 99% accuracy of stiffness and strength by additionally adjusting the material parameter 𝐸 𝑛to 𝐸 𝑛𝐸= 0.75.

(5)

Fig. 5. Identified values for the adjustable parameters of the nodal beam elements providing an 98% agreement of the tetrahedron beam model with the solid model with respect to stiffness and strength for the cases listed Table 1 (a) 𝑙 𝑛𝑙 𝑛; (b) 𝑙 𝑛𝑙; (c) 𝑟 𝑛𝑟 ; and (d) 𝐸 𝑛𝐸 𝑠ratio.

areamodeledbybeamelementssuchthatitpredictsthemacroscopicre- sponseofasolidmodel.Fig.5ashowsthatthevalueof𝑙𝑛𝑙𝑛isstrongly dependentonther/lratioandcR.AsitisfurthershowninFig.5b,the magnitudeof𝑙𝑛𝑙(liskeptconstant)foragivenr/ldoesnotdependon cR.Thisshowsthatthedependencyof𝑙𝑛𝑙𝑛 oncRshowninFig.5ais causedbythecalculationofthelnvaluesasfunctionofcR.Thedecrease of𝑙𝑛𝑙𝑛 from2±0.2to1±0.1inFig.5asuggeststhatthesizeofthe nodalareaisconvergingwithincreasingligamentsize.Inotherwords, thebeammodel’splasticbehaviorbasedonthesamegeometryiscloser tothatofthesolidmodelforlargerligamentsizes(thisisfurtherdis- cussedinsect.4.1).Thesamelineofargumentsappliestotheratio𝑟𝑛𝑟, seeFig.5c.

Thethirdadjustablematerialparameter,𝐸𝑛,controlstheelasticbe- haviorof the nodalarea.Fig. 5ddemonstrates a generaltrend that theratioof𝐸𝑛𝐸𝑠increasesfrom0.75forr/l=0.19to2.5±0.04for r/l=0.31.Therequiredcorrectionof theeffectivenodalstiffness in- creasesprogressivelywithincreasingr/l ratioand,atthesametime, itshowsanincreasingsensitivitywithregardtothenodalextension, representedbycR.Thegeneraltrendfromavaluebelow1toincreas- ingvaluessimplyresultsfromthediscrepancybetweenthestiffnessand strengthratiothathasbeendiscussedincontextofFig.4a.Thatratio followstheoppositeandhastobecompensatedbyanincreasinglocal Young’smodulusassignedtothenodalbeamelements.

Eqs(1)–(3)arethefittingfunctionsthataregeneratedbasedonthe datesetsfromFig.5(a),(c)and(d),respectively.Thefittingconstants arelistedinTable2.

𝑙𝑛𝑙𝑛=𝑎0+𝑎1𝑟𝑙 (1)

𝑟𝑛𝑟𝑛=𝑎0+𝑎1𝑟𝑙 (2)

𝐸𝑛𝐸=𝑎0+𝑎1⋅exp( 𝑎2𝑟𝑙)

(3)

2.3. Modelvalidation

Itwasreportedintheworkof[18]thatbesidesbendingasthemajor deformationmechanism,torsionrepresentsanotherfundamentaldefor- mationthatiscausedbythespatiallycurvedligamentsandshouldnot beneglected.Thetorqueintheligamentsoccupiesapprox.20%ofliga- mentloadingundermacroscopiccompressingofnanoporousgold.The validationoftheproposedmodelisthereforefirstlycomparingthenodal correctedbeamtetrahedronmodeltothesolidmodel,seeFig.1,under externaltorsionloading.

Fig.6showsthecomparisonbetweensolidmodel(SM)andbeam tetrahedronundertorsion.ThetorqueMthasbeennormalizedwithEr3.

(6)

Fig. 6. The mechanical responses of solid model (SM), beam model (BM) and nodal cor- rected beam model (NCBM) for the tetrahedron structure under external torsion loading for the case of r / l = 0.25, c R= 1.1.

Theoverallfittingofthenodalcorrectedbeammodel(NCBM)iscom- parabletothatofthebeammodel(BM),reachingabeamtosolidstiff- nessratioof130%andanapprox.80%overallaccuracyfortheplastic deformation.Theperformancefortorsionwasfoundtobeconsistent acrossthewholerangeofr/lstudiedinthecurrentwork.Asinrandom- izedRVEsapprox.80%oftheligamentdeformationisoriginatingfrom bendingasthegoverningdeformationmechanismandapprox.20%is relatedtotorsion[18],itisreasonabletoassumethattheoverallerror inthemacroscopicresponseoftheRVEiskeptwithin10%.

Asdiscussedintheintroduction,theRVEbeammodelprovidesan idealaccessforstudyingthemechanicsofnanoporousmaterials.Incon- trasttotheanalyzesbasedonabuildingblock,anRVEhowevercon- tainsthousandsofligamentsinterconnectedinanetworkstructure.Such anetworkstructureis muchmorerepresentativeoftherealmaterial intermsofstructuralfeatures,localloadingoftheligamentsaswell asobservabledeformationmechanisms.Thecurrentnodalcorrection methodisthereforeintegratedintotheRVEbeammodelusingthedi- amondstructure,developedintheworkof[8].ThreeRVEshavebeen generatedassolidandbeammodelsforcR=1.1andligamentaspect ratiosofr/l=0.19,0.25,and0.31.InFig.7aandbtheRVEsareshown forr/l=0.25forthesolidandthebeammodel(inrenderingmode), respectively.TheRVEsareloadedwiththesamecompressiondeforma- tionof25%engineeringstrainonthetopsurface.Althoughthestructure isperfectlyordered,itrepresentsafurtherstepofvalidation,because themacroscopiccompressionoftheRVEtranslatesintoadifferentlocal loaddistributionanddeformationinthetetrahedronsasappliedduring thecalibrationofthenodalcorrectedelements.

Theresulting agreementfor themacroscopic elasticmodulusbe- tweenthebeamandsolidRVEis100±5%forallthree cases.Thus, thenodalcorrectedbeammodeliscapableofpredictingtheelasticme- chanicalresponseoftheRVEequivalentlytothesolidmodel.

Becauseanelastic-perfectlyplastic materialmodelis usedso far, earlyconvergenceproblemshavebeenfacedinallbeamRVEsimula- tions,possiblyowingtobuckling.Therefore,amore realisticelastic- linearplasticconstitutivelawisemployedtothesimulationsofRVEs forbothofthebeamandsolidmodels,usingthesameelasticproper-

examiningthegeneralityofthenodalcorrectedbeammodelingconcept inpresenceofworkhardening.

Fig.8ademonstratestheresultingmacroscopicstress-strainresponse fromthenodalcorrectedbeamRVEandthesolidmodelRVEfordif- ferentr/lratiosincomparisonwiththeresultsfromtheoriginalbeam model.Thenodalcorrectedbeammodel(NCBM)significantlyimproves thepredictionsofthemacroscopicmechanicalresponsebyeliminating thesystematicunderestimationofstiffnessandstrengthoftheoriginal beammodel(BM).Furthermore,averygoodagreementwiththesolid model(SM)isachievedoverthewholestrainrange.Fig.8bshowsthe ratioof theresultingreaction forceobtained forthenodalcorrected beamRVEandthesolidmodelRVEagainstthemacroscopiccompres- sionstrain,𝜀eng.Theoverallerroroftheelastic-plasticresponseofthe nodalcorrectedbeamRVEiswithinabout10%forallsolidfractions(i.e.

allconsideredr/lratios).Morespecifically,theaccuracyis101%±5%

forr/l=0.19and0.31,and103%±7%forr/l=0.25.Itcanbeconcluded thatthenodalcorrected beammodelprovidesasufficientlyaccurate elastic-plasticmechanicalresponsethathasthesamepredictivequality ofacorrespondingsolidmodel.Atthesametimeitcostsmuchlesscom- putationtimeandprovidesmuchmoredegreesoffreedomconcerning theintroductionofarandomstructure[8,29]aswell asvariationof ligamentshapesintheRVE[18].

3. Discussionofscalinglaws

InthissectionwewillapplythenodalcorrectedbeamRVEproposed andvalidatedintheprevioussectionsforanalyzingtheimpactofthe nodalcorrectiononthescalinglawsforYoung’smodulusandstrength.

Theresultingcurvesarecomparedtoscalinglawsfromliterature.For thenodalcorrectedbeamRVE,thesolidfraction𝜑isderivedfromthe originalgeometrythatcorrespondstothesolidRVE.

Fig. 9a andbrepresent the scalingbehaviorof the macroscopic Young’smodulusandstrengththat arecomputed fromtheRVEnor- malizedtothecorrespondingmaterialpropertiesofthesolidfractionin theformE/ES,and𝜎y/𝜎y,S,respectively.Thecurvesareshownincom- parisonwithscalinglawssuggestedinpreviousworks[8,29],aswellas theoriginalGibson-Ashbyscalinglawsthatserveasthecommonrefer- enceforallmodels.Foropenporefoamsthatimplybendingasmajor deformationmechanism,theleadingconstantsinEqs.(4)and(5)are CE=1andC𝜎=0.3respectively[10].

𝐸𝐸𝑆=𝐶𝐸𝜑2 (4)

𝜎𝑦𝜎𝑦,𝑆=𝐶𝜎𝜑3∕2 (5)

InFig.9a,thescalingbehavioroftheYoung’smodulus,E/ES,calcu- latedfromthedifferentRVEsisplottedagainstthesolidfraction𝜑.The different𝜑valuesaretheresultsofvaryingr/lratioswith0.19,0.25and 0.31,giveninTable1.TheblacksolidlinecorrespondstoEq.(11)in [8]whichdescribesthescalinglawoftheRVEbeammodelundercon- siderationoftheeffectofsheardeformationforthickbeams,i.e.itisthe approximationofthelowerboundforthediamondRVE.Thediamond

(7)

Fig. 7. RVEs for r / l = 0.25 and c R= 1.1 (a) solid model; (b) nodal corrected beam model with the same effective elastoplastic response.

Fig. 8. (a) Macroscopic stress-strain response for RVEs built as solid model, beam model, and nodal corrected beam model for various r / l ratios; (b) RVE reaction force ratios F beam/ F solid

for different r / l values covering the whole range of elastic and elastic-plastic deformation.

Fig. 9. Comparison between the nodal corrected beam model and previous studies for (a) Young’s modulus; (b) yield strength. RVE-SM, RVE-NCBM, and RVE-BM denote the results from the RVE solid model (this work, Fig. 7 a), the RVE nodal corrected beam model (this work, Fig. 7 b) and RVE beam model [29] , respectively. All results are for perfectly ordered diamond structure ( A = 0).

(8)

studiesshowedthatrandomizationofthestructureleadstoafurtherin- creaseincompliance[8,29].Inrecentstudies[14,30],experimentally constructedscalingrelationsaredevelopedforthemacroscopicYoung’s modulusofnanoporousgold,whichsuggestthepowerinEq.(4)being 2.5or2.8withCE=1or0.86.However,theincorporationofthenodal massinthisworkdoesnotleadtoanexponentdifferentto2thatac- cordingto[10]representsthehighestpowerofalltypesofdeformation (tension,compression,shear,bending).Atthispointthequestionre- mainsunsolvedhowhighervaluesintheexponent,asobservedfrom experiments,canbeexplainedbyastructuralmodelsuchastheRVE presentedinthiswork.

Fig.9bshowstheresultsforthescalingbehavioroftheyieldstrength 𝜎y,normalizedbytheyieldstrengthofthesolidphase𝜎y,S.Again,the analyticalsolutionforthebeammodelproposedasEq.(9)in[8]pro- videsalowerlimitthatcorrespondstothenumericalresultsfromthe beammodel(RVE-BM).ItcanbealsoobservedthattheGibson-Ashby modelwithC𝜎=0.3resultsinagoodagreementwiththatscalingrela- tion.

Theanalyticalnodalcorrection(blacksolid line)proposedin the workof[8]asEq.(10)formstheupperlimitwhichagreeswellwith theresultsfromtheworkof[29]representedbyrhombussymbolsin Fig.9b.In[8]themacroscopicstrengthfortheRVEbeammodelwas correctedbyreducingtheavailableleverforbendingoftheligament bytheradiusofthenodalmass.In[29]thiseffectwastranslatedinto thebeammodelbyincreasingtheyieldstrengthofthesolidfraction accordingtothisstructuralstrengtheningeffect. Thelatter approach hastheadvantage,thatitdoesnotaffectthestiffnessofthenetwork structure.Forbothoftheworks,thenodalmassistakenaccountasa shorteningoftheeffectivebendingleveroftheligamentsandassuming thatyieldoccursattheedgeformedbytheligamentandthenode.The resultsshowninFig.9bleadtotheconclusionthatthistypeofcorrec- tionprovidesreasonableresultsforsolidfractions𝜑≤0.15.Ithowever significantlyoverestimatestheeffectofthenodalmassonthemacro- scopicstrengthfor𝜑>0.15,whichiswherethenanoporousmetalsare located.Inviewoftheseinsights,wewillrevisittheanalysisof[8]and [29]withsupportofthenodalcorrectedbeammodelinSect.4.2.

TheresultsofthenodalcorrectedbeamRVE-NCBM(blackcircles) initiallyfollowthesolutionfortheupperlimitbutthendeviatebycon- tinuinginamuchlessprogressivewayfor𝜑>0.15.Thisisbecause thattheupperlimitisconstructedundertheassumptionthattheplas- ticdeformationwillalwayshappenattheendoftheligamentthatis analyticallyshortenedforthepresenceofanode.Thismeansthatthe nodalareaforthisupperlimitissettobeinfinitelystrong,e.g.noplastic deformationcanhappenwithinthenodalarea.However,thevisualin- vestigationonthelocalplasticdeformationofthenodalcorrectedbeam modelandsolidmodelindicatesthat,thenodalareaisalsoplastically deformed.Thistrendbecomesmoresignificantwithincreasing𝜑,be- causelargersolidfractionsleadtolessgeometricaldistinction𝑟𝑛𝑟be- tweenthenodalareaandtheligament asshownin Fig.5c.Sothat thenodalcorrectedmodeltendstopredictamuchlowerstrengthata higher𝜑.Afitofthedatausingthescalinglaw,Eq.(5)(greendashed line)leadstoaleadingconstantC𝜎=0.72.Theincreaseoftheleading

curvatureoftheconnectedligaments.TheparameterAdefinesthefrac- tionoftheamplitudeoftheequallydistributedrandomdisplacementin relationtotheunitcellsizeoftheundistorteddiamondunitcell.The effectoftherandomizationlevelonthesolidfraction𝜑,causedbythe spatiallengtheningoftheligaments,hasbeentakenintoaccountinthe followinganalyzisassuggestedby[8,29].Concerningthemacroscopic responseoftheRVE,increasingrandomizationdecreasesthevaluesof Eand𝜎y,aswellasthedegreeoflateralextension.Formoredetailswe referto[8,29].

Forthenodalcorrectedbeammodel,therandomizationcharacter- isticsarealsointroducedtothenodalareasbecausethelengtheningof theelementsappliestoallelementsofthemodel.Thisgivesrisetothe questionifthelengtheningoftheelementscausedbytherandomiza- tionshouldbekeptasisorifitshouldbeavoidedinthenodalareasof thenodalcorrectedbeammodel.Forwhatfollows,weassumethatthe nodalelementpropertiesfollowtherelationshipsthatshowninFig.5. Thismeansthatforagivenratioof𝑙𝑛𝑙𝑛anincreaseintheligament lengthln,causedbytherandomization,leadstoaproportionalincrease inthenodalelementlength𝑙𝑛.Itisthusconsistenttoletthenodalele- mentselongateinthesamewayastheelementsthatformtheligament.

Asthepurposeoftheintroductionofnodalcorrectedbeamelementsex- clusivelyaimsatamechanicallyequivalentbehaviorwithreferenceto thesolidmodel,thecalculationofthesolidfractionremainsunaffected.

AllsimulationsforrandomizedstructuresarecarriedoutforcR=1.1.

EachdatapointplottedinFig.10representstheaverageoffivereal- izations; thesizeof theerrorbar correspondstothestandarddevia- tion.Fig.10ashowstheratioofthemacroscopicYoung’smodulusof thenodalcorrectedbeammodel,ENCBM,tobeammodel,EBM,withre- specttovariousrandomizationlevelsfromA=0thatisperfectordered toA=0.3thatisstronglydisordered.Itisshownthatforallrandom- izationlevelsthestiffnessratioincreasesnearlylinearlywiththesolid fraction,indicatingthecontributionofthenodalmasstothestiffness.

Moreover,withincreasingrandomizationlevelthecurvesshiftrightand down.Therightshiftisduetotheincreaseofsolidfractionthatiscaused bytheincreaseoftherandomizationlevel.Thetrendofslightlyshift- ingdownwardsrevealstheeffectofthedegreeofrandomizationonthe complianceinthenodalareas,whichisslightlyreducingthenodalmass contributiononthemacroscopicelasticity.Thiseffectisabout10%if weconsiderthefullrangefromzerotomaximumrandomization.

The verticalaxisof Fig. 10bdemonstrates theratio of theyield strengthofthenodalcorrectedbeammodel𝜎y,NCBMtothebeammodel 𝜎y,BM withrespecttovariousrandomizationlevels.Thegeneraltrend ofFig.10btoaisopposite,namely,increasingsolidfractionleadstoa relativedecreaseofthecontributionofnodalmasstothemacroscopic strength.Forbetterunderstandingofthis effect,thelinkagebetween thecurrentdiscussiontothediscussionsofFig.5a,bandcisrequired.

InthediscussionofFig.5itwasstatedthatwithincreasingr/lthegeo- metricalgapbetweenacylindricalshapednodeandanactualspherical noderesponseisclosingwithincreasingsolidfraction,i.e.𝑙𝑛𝑙𝑛→1and 𝑟𝑛𝑟𝑛→1.Itcanbealsobeobservedthatthestrengthratiogradually shiftsdownwardsfrom2.5to2forA=0andfrom1.8to1.5forA=0.3.

Becausetheplasticdeformationinitiatesinthetransitionfromthenodal

(9)

Fig. 10. Results for the macroscopic properties of the randomized RVE as ratio of the nodal corrected beam model (NCBM) to the beam model (BM) (a) Young’s modulus; (b) yield strength.

Fig. 11. Determined yield strength of the solid phase vs. ligament size, L . Experimental data are taken from [32,33] ; model data from [29] .

areatotheligament,theeffectonthestrengthreduceswithreducing sizeofthenodalelements.Withincreasingdegreeofrandomization,the correlationbetweenlocalgeometryandmacroscopicstrengthismore andmorereducedandbecomesweakforA=0.3andsolidfractionsof 𝜑≤0.3.

4.2. Analysisofexperimentaldata

Toevaluatetheperformanceofthenodalcorrectedbeammodelthe sizedependentyieldstrengthoftheligamentsisdeterminedfromlit- eraturedataonmacroscopiccompressionofnanoporousgoldsamples withdifferentligamentsize.

Intheworkof[29],thescalingrelationforthemacroscopicyield strengthwasusedasthestartingpointforfittingthetruestress-strain curvesobtainedfrommacroscopiccompressingnanoporousgoldsam- pleswithvariousligamentsize[31,32]usingtheRVEmodel.Theout- comesthatwerefromthefittingwereadatasetofyieldstrengthsforthe solidphase𝜎y,Sindependenceofligamentsize,representedbyhollow circlesinFig.11.Thisdatasetisplottedagainstresultsfromtheworks of[32,33]assolidblacksymbolsinFig.11,thatweredeterminedus- ingindependentapproaches.Roschningetal.’sresultsareofthesame magnitudeasthosedatareportedinthereferencedliteratures,butone resultforthe50nmligamentsizeappearedtobeanoutlierwhichcould notbeexplainedby[29].Theonlydifferencecomparedtotheother datawasthatithadthehighestsolidfractionofallsamplesof𝜑=0.3.

Were-analyzedthedatawiththenodalcorrectedRVEfollowingthe sameapproachproposedby[29]witharandomizationlevelofA=0.23 andaligamentaspectratioofr/l=0.25.Theresults,shownassolidred symbolsinFig.11,leadtoanelevationofRoschningetal.’sresults.The nodalcorrectedbeamRVEseemstoprovideanoverallcloseralignment withtheresultsfrom[32,33].Inparticular,thepreviousoutlierisnow closertotheoveralltrend.

Thedifferentelevationintheyieldstrengthforthedifferentdata pointscan beunderstoodwiththehelpofFig.9b.Thenodalcorrec- tionappliedin[29]wasbasedonacorrectiontermwhich– asaresult oftheassumedrigidityofthenodalmass– increasinglyoverestimates thegeometricalstrengtheningforincreasingsolidfraction.Becausethe materialsyield strengthandthegeometrical strengtheningeffect are multiplicativewithrespecttothemacroscopicstrength,areductionof thegeometricalstrengtheningeffecttotheaccuratevaluemustbecom- pensatedbyanincreasedyieldstrengthofthesolidfraction,𝜎y,S.The higherthesolidfraction,themoretheidentifiedyieldstrengthisele- vated. Consequently,theoriginaloutlier,whichhasthehighestsolid fraction,getsmostlyelevated.

5. Conclusions

Inthecurrentwork,anewbeammodelingconceptfornanoporous metalshasbeenproposedforpredictingthemacroscopicelastic-plastic responsebyincorporatingtheconnectingnodalmassinthejunctions ofthenetworkstructure.Thenodalcorrectedbeammodeliscalibrated basedonthemechanicalresponseforbendingofabeamtetrahedron structureinrelationtoitscorrespondingsolidmodelbyadjustingthree additionalparametersspecificallyassignedtothenodalarea.Anexcel- lent agreementbetween thenodalcorrectedbeamandsolidRVEfor elasticmodulus andyieldstrength hasbeenachieved, whichis con- ducted withoutlosing theadvantage of thehighcomputationaleffi- ciency.

Thenodalcorrectionleadstoanincreaseinthemacroscopicstiff- nessandstrengthofthebeammodel.Theleadingconstantintheresult- ingscalinglawforYoung’smodulusisCE=0.57and,comparedtothe beammodelwithoutnodalcorrection,aboutafactoroftwolarger.It ishoweverstilllessstiff thantheoriginalGibson-Ashbymodelthathas aleadingconstantofCE=1.Theincorporationofthenodalmassdoes notchangetheexponentof2inthescalinglaw.

Withrespecttomacroscopicplasticdeformation,thecorrectionsug- gestedin[8,29]significantlyoverestimatestheeffectofthenodalmass for solid fractionsabove 15%. Itwas found, thatthescaling lawof Gibson-Ashbyverywellfitsthedatafromthesimulationswiththenodal correctedRVE,whentheleadingconstantissettobeC𝜎=0.72.Thisdif- ferenceto[8]isnowunderstoodasaconsequenceoftheoverestimation

(10)

SupportwasprovidedbyDeutscheForschungsgemeinschaftwithin SFB986‘‘Tailor-MadeMulti-ScaleMaterialsSystems:M3”,projectB4.

AppendixA.Nomenclatures

Parameters Descriptions 𝜑 Solid fraction

w Transverse loading displacement

R Nodal radius

l n Length between nodal center and the end of the ligament attached to the node

𝑟 𝑛 Larger cross-section radius of beam element in the nodal area (adjustable)

𝑙 𝑛 The length between the node center and the end of the ligament (adjustable)

r Ligament radius

l Ligament length

c R Constant governing nodal mass

R Nodal radius

E S Young’s modulus 𝜈 Poisson’s ratio 𝜎y,S Yield strength

k solid Stiffness of the solid tetrahedron F solid Solid tetrahedron strength k beam Stiffness of the beam tetrahedron F beam Beam tetrahedron strength

𝐸 𝑛 Young’s modulus for the beam elements of nodal area (adjustable) a 0, a 1, and a 2 Constants for fitting functions Eqs (1) –(3)

𝜀 eng RVE macroscopic compression engineering strain C Eand C 𝜎 Constants of Gibson-Ashby model

A Randomization parameter

E NCBM Macroscopic Young’s modulus of nodal corrected beam model E BM Macroscopic Young’s modulus of beam model

𝜎y,NCBM Macroscopic yield strength of nodal corrected beam model 𝜎y,BM Macroscopic yield strength of beam model

References

[1] Weissmüller J , Newman RC , Jin H-J , Hodge AM , Kysar JW . Nanoporous Met- als by Alloy Corrosion: Formation and Mechanical Properties. MRS Bulletin 2009;34(08):577–86 .

[2] Balk TJ , Eberl C , Sun Y , Hemker K , Gianola D . Tensile and compressive microspeci- men testing of bulk nanoporous gold. JOM 2009;61(12):26–31 .

[3] Biener J , Hodge AM , Hayes JR , Volkert CA , Zepeda-Ruiz LA , Hamza AV , et al. Size ef- fects on the mechanical behavior of nanoporous Au. Nano Lett 2006;6(10):2379–82 .

[12] Liu R , Antoniou A . A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Materialia 2013;61(7):2390–402 .

[13] Hu K , Ziehmer M , Wang K , Lilleodden ET . Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour. Philosophical Magazine 2016:1–14 .

[14] Badwe N , Chen X , Sieradzki K . Mechanical properties of nanoporous gold in tension.

Acta Materialia 2017;129:251–8 .

[15] Farkas D , Caro A , Bringa E , Crowson D . Mechanical response of nanoporous gold.

Acta Materialia 2013;61(9):3249–56 .

[16] Ngô B-ND , Stukowski A , Mameka N , Markmann J , Albe K , Weissmüller J . Anomalous compliance and early yielding of nanoporous gold. Acta Materialia 2015;93:144–55 . [17] Ngô BND , Roschning B , Albe K , Weissmüller J , Markmann J . On the origin of the anomalous compliance of dealloying-derived nanoporous gold. Scripta Materialia 2017;130:74–7 .

[18] Jiao J , Huber N . Deformation mechanisms in nanoporous metals: Effect of ligament shape and disorder. Comput Mater Sci 2017;127:194–203 .

[19] Lührs L , Soyarslan C , Markmann J , Bargmann S , Weissmüller J . Elastic and plastic Poisson’s ratios of nanoporous gold. Scripta Materialia 2016;110:65–9 .

[20] Saane SSR , Mangipudi KR , Loos KU , De Hosson JTM , Onck PR . Multiscale modeling of charge-induced deformation of nanoporous gold structures. J Mech Phys Solids 2014;66:1–15 .

[21] Soyarslan C , Husser E , Bargmann S . Effect of Surface Elasticity on the Elastic Re- sponse of Nanoporous Gold. Journal of Nanomech Micromech 2017;7(4):04017013 . [22] Husser E , Soyarslan C , Bargmann S . Size affected dislocation activity in crystals: Ad- vanced surface and grain boundary conditions. Extreme Mech Lett 2017;13:36–41 . [23] Bargmann S , Soyarslan C , Husser E , Konchakova N . Materials based design of structures: Computational modeling of the mechanical behavior of gold-polymer nanocomposites. Mech Mater 2016;94:53–65 .

[24] Lührs L , Müller B , Huber N , Weissmüller J . Plastic Poisson’s Ratio of Nanoporous Metals: A Macroscopic Signature of Tension-Compression Asymmetry at the Nanoscale. Nano Lett 2017;17:6258–66 .

[25] Pia G , Delogu F . Mechanical behavior of nanoporous Au with fine ligaments. Chem Phys Lett 2015;635:35–9 .

[26] Ziehmer M , Hu K , Wang K , Lilleodden ET . A principle curvatures analysis of the isothermal evolution of nanoporous gold: Quantifying the characteristic length-s- cales. Acta Materialia 2016;120:24–31 .

[27] Mangipudi KR , Epler E , Volkert CA . Topology-dependent scaling laws for the stiff- ness and strength of nanoporous gold. Acta Materialia 2016;119:115–22 . [28] DassaultSystèmes. Abaqus Documentation 2014 .

[29] Roschning B , Huber N . Scaling laws of nanoporous gold under uniaxial compression:

Effects of structural disorder on the solid fraction, elastic Poisson’s ratio, Young’s modulus and yield strength. J Mech Phys Solids 2016(92):55–71 .

[30] Zabihzadeh S , Van Petegem S , Holler M , Diaz A , Duarte LI , Van Swygenhoven H . Deformation behavior of nanoporous polycrystalline silver. Part I: Microstructure and mechanical properties. Acta Materialia 2017;131:467–74 .

[31] Wang K , Weissmüller J . Composites of Nanoporous Gold and Polymer. Adv Mater 2013;25(9):1280–4 .

[32] Wang K , Kobler A , Kübel C , Jelitto H , Schneider G , Weissmüller J . Nanoporous–

gold-based composites: toward tensile ductility. NPG Asia Mater 2015;7(6):e187 . [33] Jin H-J , Kurmanaeva L , Schmauch J , Rösner H , Ivanisenko Y , Weissmüller J .

Deforming nanoporous metal: Role of lattice coherency. Acta Materialia 2009;57(9):2665–72 .

Referenzen

ÄHNLICHE DOKUMENTE

Methods Mechanical properties of PDMS are adjusted by adding different siloxanes, NPSNPs and further additives.. The NPSNPs have to be functionalized for embedding them into

”"“" ° enormous waste takes place, although if a chargeis madein accordance wit‘1 the quantity delivered it is said to provide an excuse for pe130ns to limit themselvesin

Within these multilayer coatings, parameters like the number of layers or interfaces, often characterized by the bilayer period Λ (the sum of the layer thicknesses of two

According to the de fi nition of the cross hardening part in the formulation of the material model, it is expected to see the expansion of yield surface in the parallel and

Fracture appearance of failed unnotched small punch disks tested at different temperatures and the corresponding fracture surfaces: (a) 25 1C, ductile failure with (d) presenting

In this section we present the formability prediction of cross hardening plasticity in comparison to non-cross hardening mate- rial models. We start with Marciniak-Kuczy ń sky-type

The goal of our experiments was therefore to investigate the influence of the pulse duration (between 10 ps and 100 ps) and the number of applied pulses on the material

Given the abundance of non-muscle myosin II in the cap cells, we hypothesized that the greater increase in the length of the cap cells as compared to the neurons in our shape