• Keine Ergebnisse gefunden

A computational analysis of the platinum-water-vacuum interface

N/A
N/A
Protected

Academic year: 2021

Aktie "A computational analysis of the platinum-water-vacuum interface"

Copied!
386
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Platinum-Water-Vacuum Interface

Dissertation

zur Erlangung des Doktorgrades

des Fachbereichs Chemie

der UniversitatHamburg

vorgelegtvon

Timm Lankau

aus Hamburg

(2)

Prof. Dr. K.Nagorny,Hamburg

Dr. I.L.Cooper,Newcastle

P.D.Dr. K.Drager,Hamburg

(3)

Die Quantensinddocheineho nungsloseSchweinerei.

(4)
(5)

Thesimplebilayermodel ofthe platinum-water-vacuuminterfacecanexplainmostexperimental

results,butfailsondetails. Ourworksuggeststhat cooperativee ects areveryimportantforthe

ne-structureoftheinterface. Theplatinum-water(chapter6)andthehydrogenbond(chapter3)

havebeenfoundto beverymuch alike. Intermolecularelectrontransferasobservedinthe water

trimerhasa strongin uence of theinterfacestructure and canmovethewatermolecules out of

theiridealpositions(chapter 8).

Our newwater-waterinteractionpotential(chapter 4)has beenused to explorethe potential

energysurfacesofthewatertrimer(chapter4)andhexamer(chapter8). Theresultsonthehexamer

suggestthataseamlesstransitionbetweentheplatinumsurfaceandtheicecrystalisnotpossible.

Structuressimilar to theQLL (Quasi Liquid Layer) have been observed, which canexplain the

lowverticaldipole moment of surfacewater, whilecooperativeforcescan be usedto explain the

seconddesorptionpeak(165K) inTDS (ThermalDesorptionSpectroscopy)experiments.

Theweakbondbetweenwaterandplatinumiscontrolledbytwoopposingforces: theCoulomb

repulsionbetweenthe6selectronsoftheplatinumcluster andtheoxygen atomand thebonding

interactionbetweenaplatinum5dorbitalandthefreeelectronpairofthewatermolecule. Ahigh

6spopulation, which repells the water molecule, createsat thesame time astrong bond among

theplatinumatoms. Itisthereforeimpossibletocreateasurfacemodelwithstrongintermetallic

bondsand astrongplatinum-waterbondatthesametime.

Thequalityofthesurfacemodeldependsstronglyonthe6spopulationandsoontheelectronic

stateof themetalcluster. The analysis ofthe platinum-waterbondwould havebeen impossible

without amodi cation of the Huckel theory (chapter 5), which wasused to selectsuitable

can-didatesas surfacemodelsand to understandthe electronicstructure ofthe platinumcluster and

electronmovementsduringtheformationoftheplatinum-waterbond.

The intermetallic bond in the platinum cluster is dominated by the 6s orbitals and the 5d

orbitals have to be considered in full detail only at active surfaceatoms. This assumption was

nallyproofedbythedevelopmentofanew1valenceelectronECP(E ectiveCorePotential)for

bulkandpassivesurfaceatoms (chapter7), which canbeusedtoreduce thecomputationalcosts

(6)

Ein einfaches Doppelschicht-Modell fur dasGrenzsystemPlatin-Wasserkann die meisten

experi-mentellen Ergebnisseerklaren, versagt aberbeider Interpretation von Details. In dieser Arbeit

werdenwirnachweisen,dacooperativeE ektesehrwichtigfurdieFeinstrukturderGrenzschicht

sind. Die Platin-WasserBindung und die Wassersto bruckenbindung sindeinander sehr

 ahnlich

(Kapitel 6)undintermolekularerLadungstransfer,wieerauch imWassertrimerbeobachtetwird,

kanneinzelne WassermolekuleausihreridealenPositionbringen(Kapitel8).

UnserneuesWasser-Wasser-Wechselwirkungspotential(Kapitel4)wurdebenutzt,umdie

Ener-giehyper achedesWassertrimers(Kapitel4)unddesWasserhexamers(Kapitel8)zuuntersuchen.

DieErgebnissefurdasHexamerlassenvermuten,daseinnahtloser 

Ubergangzwischender

Platin-ober ache und einem Eiskristall wie bisher angenommen nicht moglich ist. Strukturen,

 ahnlich

einerzweidimensionalenSchicht ussigenWassersaufEis (engl. QLL,QuasiLiquidLayer),

wur-den an der Grenze zwischen Metall und Eis beobachtet. Solch ein Strukturmodell erklart den

kleinenAnteildesDipolmomentseinesWassermolekulsinderGrenzschichtsenkrechtzur

Metallo-ber ache,wahrenddieobenerwahntencooperativenKrafteerstmalseineDeutungfurdenzweiten

Desorptionspeak(165K) inTDS Experimenten(ThermalDesorptionSpectroscopy)bieten.

DieschwacheBindung zwischenPlatin undWasserkann mit zweieinanderwidersprechenden

Kraftenerklartwerden: DieCoulomb-Abstoungzwischenden6sElektronendesPlatinsunddem

negativgeladenem Sauersto imWassermolekul istdieerste Kraftund diezweite bindendefolgt

ausdem 

UberlappeneinesfreienElektronenpaarsdesWassermolekulsmiteinemPlatin5dOrbital.

Einehohe6sBesetzungsdichte,diedasWassermolekulabstot,ezeugtabergleichzeitigeinestarke

Platin-Platin Bindung. EsgibtentwedereinestarkePlatin-Platin BindungimMetallclusteroder

einestarkeMetall-WasserBindung,aberniebeidesgleichzeitig.

Die 6sElektronendichte erwies sich alsSchlussel zu einem realitatsnahen Ober achenmodell.

Eine Modi kation derHuckel-Theorie(Kapitel5) half uns,dieelektronischeStruktur des

Platin-clustersunddieBewegungderElektronenwahrendderWasseradsorptionzuverstehen. Sowares

unsmoglich,gezieltnachgeeignetenKandidatenfurdieOber achenmodellenzusuchen.

DieMetall-MetallBindungimPlatinclusterwirdvonden 6sOrbitalendominiert, wahrenddie

5d Orbitale nur wichtig sind fur die Bindung des Wassermolekuls an ein aktivesOber 

achena-tom. DieseAnnahmefuhrtezu derEntwicklung einesfunktionierenden1Valenzelektronen ECP

(E ectiveCorePotential), da inZukunft dieUntersuchunggroerOber achenmodelleerm

(7)

1 Introduction 1 1.1 GeneralIntroduction . . . 1 1.1.1 PropertiesofWater . . . 2 1.1.2 PropertiesofPlatinum . . . 4 1.1.3 LiteratureSurvey . . . 4 1.2 Thiswork . . . 10 2 Theory 15 2.1 Hartree-FockCalculations . . . 15

2.2 Mller-PlessetPerturbationTheory . . . 19

2.3 Con gurationInteractionandMulticon gurationSCFTheory . . . 22

2.4 BasisSetsandBasisSetSuperpositionError. . . 23

2.5 TheMorokumaEnergyDecompositionScheme . . . 26

2.6 Pseudopotentials . . . 30

2.6.1 NonRelativisticCorePotentials. . . 30

2.6.2 RelativisticQuantumMechanicsandCorePotentials . . . 34

2.7 Interactionsbetweendi erentelectronicstates . . . 38

2.7.1 IntersectionofPotentialEnergyCurves. . . 38

2.7.2 PhotoexcitationandIntersystemCrossings . . . 39

2.8 Dipole-DipoleInteractionand Polarisation . . . 40

3 QuantumChemistry ofsmall Water Clusters 45 3.1 TheWaterMolecule. . . 45

3.2 WaterDimer. . . 50

3.2.1 SinglePointCalculations. . . 50

3.2.2 PotentialCurvewithaFlexibleGeometry . . . 61

3.2.3 PotentialCurvewithaFixedGeometry . . . 65

3.2.4 CalculationoftheBSSE correctedgeometry ofthewaterdimer . . . 70

3.3 EnergyDecomposition . . . 72

3.4 WaterTrimer . . . 74

3.5 SummaryoftheQuantumMechanicalCalculations . . . 81

4 Classical Water-Water Interaction Potentials 85 4.1 Classi cationoftheDi erentPotentials . . . 85

(8)

4.3.1 An improvedmodel . . . 94

4.3.2 ApplicationofpotentialN onwatertrimers . . . 109

4.4 SummaryoftheCalculationwithaClassicalPotential . . . 114

5 Huckel calculations for the Analysisof Pt n 117 5.1 Theoryof theHuckel-approximationfortheplatinum6selectrons . . . 117

5.2 HuckelcalculationsforPt 3 . . . 119

5.3 AnalysisofthePt 5 pyramid . . . 121

5.3.1 HuckelcalcualtionsfotPt5. . . 122

5.3.2 Theinterfacebetweendi erentECPs . . . 123

5.3.3 5d-6sinteraction inPt 5 . . . 125

5.3.4 Therotationalbarrierin Pt 5 H 2 O . . . 126 5.3.5 SummaryonPt 5 . . . 128

5.4 HuckelCalculationsforPt 9 Cluster . . . 128

5.5 TwoSlabsPt 17 Cluster . . . 130

5.6 TheSecondNextNeighbour . . . 132

5.7 QuantitativeAnalysisoftheHMOCalculations . . . 135

5.7.1 ResultsforthePlatinumDimer . . . 135

5.7.2 ResultsforPlatinumPentamer(Pyramid) . . . 139

5.8 SummaryandConclusionsfromthe6sHuckelcalculations . . . 142

6 Platinum atomcalculations involving18 ValenceElectrons 145 6.1 Oneplatinumatom . . . 146

6.1.1 Theelectronicstatesofplatinum . . . 146

6.1.2 Platinumandasinglewatermolecule. . . 148

6.1.3 TheIn uenceofthePseudoPotential. . . 154

6.1.4 E ectoftheBSSE ontheplatinum-waterinteraction . . . 156

6.1.5 ThePlatinum-Hydrogeninteraction . . . 157

6.1.6 Summaryoftheresultsforsingleplatinumatom . . . 158

6.2 PlatinumDimer . . . 159

6.2.1 Theelectronicstructure oftheplatinumdimer. . . 159

6.2.2 PlatinumDimerandWater . . . 163

6.2.2.1 In uenceofthegeometry . . . 163

6.2.2.2 Thewatermetalinteractionin Pt 2 H 2 O . . . 164

6.2.2.3 In uenceoftheelectronicstateoftheplatinumdimer . . . 167

6.2.2.4 Movementofwateronthesurface . . . 171

6.2.3 Summaryoftheresultsfortheplatinumdimer . . . 175

6.3 Theplatinumtrimer . . . 176

6.3.1 ElectronicstructureoftheequilateralPt 3 -cluster . . . 177

6.3.2 TheinteractionofwaterwithPt3-cluster. . . 178

6.3.2.1 Waterbound tothehollowsiteonthecluster . . . 178

6.3.2.2 Waterbound ontop . . . 181

6.3.2.3 Pt3surfacemodelforthePt(100) surface . . . 183

6.3.3 SummaryoftheresultsforPt 3 . . . 185

(9)

5

6.4.1 ElectronicstructureofthePt

5

-pyramid. . . 187

6.4.2 TheinteractionofthePt 5 -pyramidwithwater. . . 187

6.4.2.1 Dissociation . . . 189

6.4.2.2 Rotation. . . 190

6.4.2.3 Wagging . . . 191

6.4.3 Summaryoftheresultsfortheplatinumpyramid . . . 191

6.5 ThePt 9 -cluster . . . 192

6.6 Theelectronicstructureofthemetalcluster asafunctionofitssize . . . 195

6.7 EHTcalculationsonthePt n H 2 Osystem . . . 197

6.8 Summaryofthecalculationswitha18valenceelectronsplatinumatom. . . 199

7 Calculations with 1-Valence Electronper Platinum 203 7.1 Numericalpropertiesforthenew1-electronECP . . . 204

7.1.1 NumericalResultsforthe6sorbital . . . 205

7.1.1.1 The6sWavefunction . . . 205

7.1.1.2 Radial6sDensity. . . 207

7.1.1.3 Simpli cationoftheRadial6sElectron DensityFunction . . . . 208

7.1.1.4 Thequestforthenew6sWavefunction . . . 209

7.1.2 NumericalResultsforthePt6pOrbital . . . 210

7.1.3 NumericalResultsforthePt6dorbital . . . 211

7.1.4 Summaryandcompilationofall1electronproperties . . . 213

7.2 Principlequestions abouta1electronECP. . . 215

7.2.1 Isitpossibleto usethemethod fromHay andWadt? . . . 216

7.2.2 Whichconditionshasagaussiantypewavefunctionto ful ll? . . . 216

7.2.3 Isapositiveeigenvalueforthe6dorbitalphysicallyreasonable? . . . 217

7.2.4 HowdoesGaussian94calculatetheenergyof theorbitals?. . . 218

7.2.5 Underwhichconditionsisglobal minimumpossible? . . . 219

7.2.6 HowdoesGaussiancalculatetheECP? . . . 219

7.2.7 WhathappensiftheECPvanishesasrbecomesin nite? . . . 221

7.2.8 Whichform hasanECPwithalocalenergyminimumford-electrons? . . 222

7.2.9 Isitpossibleto createalocalminimumwithtwoormorefunctions? . . . 226

7.3 Howdescribethe6delectron? . . . 230

7.3.1 WhatproblemsareconnectedwiththeECPbyZuritaetal.? . . . 230

7.3.2 What'snext? . . . 234

7.3.3 HowdoesU core L controllthedimer'sproperties? . . . 236

7.3.4 Howstrongisthein uence ofU core L onthePtH bond? . . . 239 7.3.5 HowdoesU core L changetheelectronicstructureofPt 5 ? . . . 240

7.3.6 Whathappensiftwodi erentECPsinteract witheachother? . . . 241

7.3.7 IstheLanL1MBclusterasuitablesurfacemodel? . . . 244

(10)

8.1 Formationof(H 2 O) 3 onPt(111). . . 252 8.1.1 Introduction . . . 252 8.1.2 ComputationalProcedure . . . 253

8.1.3 ResultsandDiscussion . . . 254

8.1.4 Conclusions . . . 262

8.2 (H 2 O) 6 onaVirtualMetalSurface . . . 265

8.2.1 Introduction . . . 265 8.2.2 ComputationalProcedure . . . 267 8.2.3 WaterDimer. . . 268 8.2.4 WaterTrimer . . . 270 8.2.5 WaterHexamer . . . 271 8.2.5.1 TheModel . . . 271

8.2.5.2 Thefreewaterhexamer . . . 273

8.2.5.3 Theconstrainedhexamer . . . 273

8.2.5.4 Variationofthesurfacelatticeconstant . . . 275

8.2.6 Discussion . . . 280

8.2.7 FinalConclusions . . . 284

9 Final Conclusionsand Further Proceedings 285 10 Bibliography 295 10.1 Citedliterature . . . 295

10.2 Programsusedforthiswork . . . 311

11 Appendix 313 11.1 Abbriviations . . . 313

11.2 BasissetandECPSusedwith inthiswork . . . 316

11.3 SelectedWaterMonomerData. . . 319

11.4 ResultsfromSingle PointCalculationsfortheWaterDimer . . . 320

11.5 In uenceoftheBSSEontheMonomer'sGeometry . . . 323

11.6 ChangingW3andBendingtheHydrogenBond . . . 326

11.7 EnergiesoftheMorokumaEnergyDecompostion fortheWaterDimer . . . 326

11.8 Di erentwater-waterinteractionpotentialsfromtheliterature . . . 329

11.9 GeometryoptimisationofwaterclusterswithinpotentialN. . . 341

11.9.1 Direct conversion . . . 342

11.9.1.1 TrimerI . . . 342

11.9.1.2 TrimerII . . . 343

11.9.1.3 TrimerIII . . . 344

11.9.1.4 TrimerIV . . . 345

11.9.2 Conversionofrotationalinto cartesiancoordinates . . . 345

11.9.3 Optimisationof(H 2 O) 6 . . . 348

11.10 TheC++Gaussian 94interface . . . 348

11.11 HuckelcalculationsforPt 9 . . . 354

11.12 HuckelcalculationsforPt 17 . . . 355

(11)

1.1 Structureofice 1h. . . 3

1.2 Idealbilayerstructure. . . 5

1.3 Scienti cenvironmentofthiswork. . . 11

2.1 In uenceoftheBSSEontheinteractionenergy. . . 25

2.2 Formationofatrimer. . . 26

2.3 Interactionandmixing ofthemonomer'sorbitals. . . 28

2.4 Dipole-dipole interaction.. . . 42

3.1 Sketchofthemolecularorbitalsofwater.. . . 48

3.2 Geometryofthewaterdimer. . . 50

3.3 Variablesofthedimer. . . 51

3.4 Compositionofthewaterdimer'sMOs.. . . 55

3.5 In uenceoftheelectrostaticinteractionsontheorbital energies.. . . 55

3.6 MO5a'ofthewaterdimer. . . 56

3.7 MO6a'ofthewaterdimer. . . 56

3.8 MO7a'ofthewaterdimer. . . 56

3.9 MO8a'ofthewaterdimer. . . 56

3.10 Electrondensityin thesymmetryplane. . . 56

3.11 Formationofthewaterdimer. . . 57

3.12 InteractionenergyandBSSE. . . 62

3.13 Minimain gure3.12. . . 62

3.14 Energycomposition,notBSSE corrected.. . . 62

3.15 Changingofr OH withd OO . . . 62

3.16 Changingofchargesduringdimerisation. . . 62

3.17 Correlationenergyvs. d OO . . . 62

3.18 Geometryofapossibleionpair. . . 63

3.19 Energyduringtheprotontransfer. . . 65

3.20 Protonchargeduringprotontransfer.. . . 65

3.21 Chargretransferq duringprotontransfer. . . 65

3.22 Interactionenergywithrigidgeometries. . . 66

3.23 Detailsfrom gure3.22. . . 66

3.24 Comparisonofthechargetransfer. . . 66

3.25 Di erencebetweena exibleandarigidmonomergeometry. . . 67

3.26 Detailsfrom gure3.25. . . 67

(12)

3.29 Repulsionbetweenwatermolecules. . . 69 3.30 Oxygen-oxygenrepulsiona OO . . . 69 3.31 Hydrogen-Hydrogenrepulsiona HH . . . 69

3.32 Local minimumof H-Hrepulsion. . . 69

3.33 Arti cialBSSEminimumofa HH . . . 69

3.34 BSSEcorrectedminimumgeometry. . . 71

3.35 GeometryoftrimerI. . . 74

3.36 GeometryoftrimerII. . . 74

3.37 GeometryoftrimerIII. . . 74

3.38 GeometryoftrimerIV. . . 74

3.39 ThreepossibleconformersoftrimerIIIwiththeirMP2energiesin Hartree. . . 76

3.40 3a'orbital oftrimerI. . . 80

3.41 FormationoftrimerIIIfrom dimers. . . 80

4.1 Geometriesofwatermonomersfordi erentinteractionpotentials.. . . 86

4.2 Local minimumof theBNS-a OO curve. . . 90

4.3 DampingfunctionfortheCoulombinteraction. . . 90

4.4 In uence ofthedamping.. . . 90

4.5 CompositionoftheCoulombenergy. . . 90

4.6 OHinteractionenergiesinOH . . . 92

4.7 PolarisationenergyoftheCFMSmodel. . . 92

4.8 Dimerisationcurve-TIPS2. . . 93

4.9 OOrepulsion-TIPS2. . . 93 4.10 HH repulsion-TIPS2. . . 93 4.11 Variationof -TIPS2. . . 93 4.12 Variationof -TIPS2. . . 93 4.13 H 2 Ogeometryfortheclassicalpotential . . . 96

4.14 Sketchesofselecteddimergeometries.. . . 99

4.15 Dimerisationcurve-Pot. E. . . 100

4.16 OOrepulsion-Pot. E. . . 100

4.17 HH repulsion-Pot. E. . . 100

4.18 Variationof -Pot. E.. . . 100

4.19 Variationof -PotE. . . 100

4.20 Di erentrepulsionfunctions.. . . 100

4.21 PotentialenergysurfacepotentialEfor and ; d OO =2.8514  A/minima.. . . 101

4.22 PotentialenergysurfacepotentialEfor and ; d OO =2.8514  A/maxima. . . 101

4.23 Energypro le,path1-5-3,Pot. E. . . 102

4.24 Energypro le,path4-1,Pot. E.. . . 102

4.25 Energycomposition,path1-5-3,Pot. E. . . 102

4.26 Energycomposition,point5,Pot. E. . . 102

4.27 Dimerisationcurve-Pot. N. . . 105

4.28 OOrepulsion-Pot. N. . . 105

4.29 HH repulsion-Pot. N. . . 105

(13)

4.32 PotentialenergysurfaceofpotentialNfor and ;d

OO

=2.9834 

A/minima. . . . 106

4.33 PotentialenergysurfaceofpotentialNfor and ;d OO =2.9834  A/maxima. . . . 106

4.34 Detailsofminimum3,Pot. N. . . 107

4.35 Energypro lepath1-5-3,Pot. N. . . 107

4.36 Energycompositionpath1-5-3,Pot. N. . . 107

4.37 Energycompositionpoint5,Pot. N. . . 107

4.38 Reactionpath1-5-3,Pot. E. . . 107

4.39 Reactionpath1-5-3,Pot. N. . . 107

4.40 Geometryofthecyclictrimers. . . 111

4.41 Formationofacyclictrimer. . . 113

4.42 Ringclosureof (H 2 O) 3 . . . 113 4.43 Globalminimumof(H 2 O) 3 . . . 113 4.44 Transitionstate.. . . 113

4.45 Potentialenergyfunction. . . 113

5.1 Pt 3 cluster. . . 120

5.2 Pt 3 Huckelorbital energies. . . 121

5.3 Pt 5 pyramid, topview. . . 122

5.4 VariationofthebondintegralH   .. . . 124

5.5 Variationof ofthetopatom. . . 124

5.6 5d-6sinteractioninPt 5 . . . 126 5.7 Mirrorplanesin Pt 5 H 2 O. . . 127

5.8 Mixingofthenonbonding6s orbitals. . . 127

5.9 Rotationin Pt 5 H 2 O/singletstate. . . 127 5.10 Rotationin Pt 5 H 2 O/tripletstate. . . 127 5.11 Pt 9 cluster,topview. . . 128

5.12 Pt 17 cluster,topview. . . 131

5.13 Surfacemodelcluster. . . 133

5.14 E ectofthesecond nextneighbour( =0.2). . . 133

5.15 S  calculatedwithG94andthebest t. . . 138

5.16 EHTresultsforPt 0 2 . . . 138

6.1 Electronicstatesofaplatinumatom . . . 148

6.2 HFresultsforPt H 2 O. . . 149 6.3 HFresultsforPt H 2 O. . . 149

6.4 Platinumstatescloseto negativecharge. . . 149

6.6 Pt H 2 Ogeometry. . . 150 6.5 FormationofPt H 2 O. . . 151 6.7 6a'orbitalofPt H 2 O. . . 152 6.8 7a'orbitalofPt H 2 O. . . 152 6.9 10a'orbitalofPt H 2 O. . . 152

6.10 Movementofthetotalelectrondensity. . . 152

6.11 Waterwagglemovement. . . 154

(14)

2

6.14 

6s

orbital(LUMO) inthe 1 S 1 Sdimer. . . 160 6.15  6s orbital(HOMO)inthe 3 D 3 D dimer. . . 160 6.16 Dissociationofthe 1 S 1 Sdimer. . . 162 6.17 Dissociationofthe 1 S 3 D dimer. . . 162

6.18 Di erentgeometriesforPt 2 H 2 O. . . 163

6.19 GeometryA:Bondingorbitala 1 symmetry. . . 165

6.20 GeometryA:Bondingorbitalb 2 symmetry. . . 165 6.21 Zero 5d -3a 1 overlap. . . 165

6.22 GeometryC:Bondingorbital(water3a 1 ). . . 166

6.23 GeometryC:Bondingorbital(water1b 1 ). . . 166

6.24 GeometryG:Bondingorbital(water3a 1 ). . . 166

6.25 GeometryG:Bondingorbital(water1b 1 ). . . 166 6.26 ElectronmovementinPt 2 H 2 O. . . 167 6.27 Dissociationofgeometry A. . . 169 6.28 Dissociationofgeometry C. . . 169 6.29 Dissociationofgeometry G. . . 169

6.30 Di erentdissociationcurves. . . 169

6.31 RotationaroundthePtObond. . . 171

6.32 Waggingofthewatermolecule. . . 171

6.33 Pt 2 -GeometryA toD. . . 171

6.34 ShiftalongthePtPtbond, startgeometryA,distance. . . 172

6.35 ShiftalongthePtPtbond, startgeometryA,energy. . . 172

6.36 ShiftalongthePtPtbond, startgeometryA,wagging. . . 172

6.37 ShiftalongthePtPtbond, startgeometryC,length. . . 172

6.38 ShiftalongthePtPtbond, startgeometryC,energy. . . 172

6.39 WaggingoftheH 2 Oingeometry A,bondlength. . . 173

6.40 WaggingoftheH 2 Oingeometry A,totalenergy. . . 173

6.41 GeometryCto F,6spopulation. . . 174

6.42 GeometryCto F,totalenergy. . . 174

6.43 Connectionbetweendi erentgeometriesandstates.. . . 175

6.44 HuckelresultsforequilateralPt 3 . . . 177

6.45 ThehollowsiteofPt(111). . . 180

6.46 DissociationenergiesHF/MP2. . . 180

6.47 RHFenergyandHF6spopulation. . . 180

6.48 MP2energyandMP26spopulation. . . 180

6.49 MP2energyandgroundstatecoeÆcient. . . 180

6.50 Rotationofthehollowsitewater. . . 180

6.51 GeometryIV. . . 181

6.52 GeometryII.. . . 181

6.53 GeometryIII. . . 181

6.54 Dissociationofgeometry II. . . 182

6.55 RotationofH 2 Oin geometryII.. . . 182

6.56 Movementofthewatermolecule. . . 182

6.57 RotationofH 2 Oin geometryIII. . . 182

(15)

3 2

6.59 Huckelorbitalenergies. . . 183

6.60 GeometryofPt 5 H 2 O. . . 186

6.61 HuckelresultsforPt 5 . . . 187 6.62 Bondingorbitalin Pt 5 H 2 O(H 2 O3a 1 ). . . 189 6.63 Bondingorbitalin Pt 5 H 2 O(H 2 O1b 1 ). . . 189 6.64 DissociationPt 5 H 2 O.. . . 189 6.65 RotationofH 2 OaroundthePtObondin Pt 5 H 2 O. . . 190 6.66 WaggingofH 2 OinPt 5 H 2 O. . . 190 6.67 OptimizedPt 9 H 2 O.. . . 192 6.68 Bondingorbitalin Pt 9 H 2 O(H 2 O3a 1 ). . . 193 6.69 Bondingorbitalin Pt 9 H 2 O(H 2 O1b 1 ). . . 193

6.70 Bandstructureofsmallplatinumcluster.. . . 196

6.71 Pt 5 H 2 Obindingenergy(EHT). . . 197

6.72 ChargeonPt5in Pt 5 H 2 Ofordi erentvaluesofd PtPt (EHT). . . 197

6.74 EHTresultsfotPt n H 2 O(n=1,2,5). . . 198

6.75 EHTresultsforPt 9 H 2 O.. . . 198

6.73 TotallysymmetricEHMOsin Pt 5 H 2 O . . . 198

7.1 6sorbital,LanL2ECP,cutalongthexaxis. . . 206

7.2 6sorbital,5d 9 6s 1 ,di erentECPs,cutalongthexaxis. . . 206

7.3 Radial6selectrondensityfordi erentECP. . . 207

7.4 Replacementpolynominalsfordi erenttransitionpoints(r 0 ). . . 208

7.5 New6s wavefunction, nalversion. . . 209

7.6 New6s radialelectrondensity, nalversion. . . 209

7.7 6pradialdensityfunction (LanL2). . . 212

7.8 6ptargetradialfunctionandbest t. . . 212

7.9 OriginalLanL26pradialdensityand thenewone. . . 212

7.10 Newandoriginalradial6pwavefunction. . . 212

7.11 6d xz radialelectrondensity. . . 214

7.12 Di erent6d xz radialfunctions.. . . 214

7.13 Radial6d xz electrondensity(4 gaussians). . . 214

7.14 6d xz wavefunctioncutalongtheXZ axis.. . . 214

7.15 6d xz densityfunctions. . . 214

7.16 Test ofequation 7.29withGaussian94.. . . 218

7.17 Globalminimumwithapositiveenergyeigenvalue. . . 218

7.18 Plotofequation7.39,V max =1.0.. . . 221

7.19 Plotofequation7.39, =0.1. . . 221

7.20 Individualenergycontributions;equation7.39, =0.1,V max =2.5. . . 222

7.21 ECPwithlocalminimum;E T =0.23, =0.12, =0.016,d=2:5310 5 . . . 222

7.22 Localminimumforn=6,7and8. . . 224

7.23 Minimumenergydi erencefora nitepotential. . . 224

7.24 asafunctionofE. . . 226 7.25 R versusd A . . . 227

(16)

A A 7.28 R asafunctionofd A and A . . . 230

7.29 Fitforthenewfterm(test2).. . . 232

7.30 Fitforthenews-f term(test2). . . 232

7.31 Fitforthenewp-fterm(test2). . . 232

7.32 Fitforthenewd-fterm(test2). . . 232

7.33 Dimerisationenergyfromtest1andtest3.. . . 232

7.34 Fitforthenews-dterm(test3). . . 233

7.35 Fitforthenewp-dterm(test3). . . 233

7.36 U core L in the3di erenttests. . . 233

7.37 6sorbital. . . 235 7.38 6porbital. . . 235 7.39 6dorbitals.. . . 235 7.40 Gaussian94input. . . 236 7.41 2 nd testforU core L ( =0.02).. . . 237 7.42 Order2: E TOT foranoptimizedbondlengthof2.3578  A. . . 237

7.43 In uence ofd A onthebondlengthfor xedvaluesof A .. . . 238

7.44 In uence ofd A onthedimer'senergyfor xedvaluesof A . . . 238

7.45 Order3: Optimizedbond lengthis2.3578  A.. . . 238

7.46 In uence ofd A ontheoptimizedbond length . . . 238

7.47 Twoenergydiscontinuitiesobservedfor =0.42a.u.. . . 239

7.48 In uence ofU core L onthepotentialenergysurface( =0.42).. . . 239

7.49 PtHbondlength. . . 239 7.50 TotalenergyE TOT ofPtH. . . 239 7.51 CollapsofPtH ( A =0.46). . . 240

7.52 BondlengthandE TOT inPt + 5 . . . 241

7.53 Chargeonthetopplatinumanddipole momentin Pt + 5 . . . 241

7.54 E TOT oftheLanL1MBcluster. . . 243

7.55 ChargesontheLanL1MBcluster. . . 243

7.56 Dipole momenttheLanL1MBcluster. . . 244

7.57 Dissociationcurves. . . 245

7.58 In uence ofthesymmetry. . . 245

7.59 Rotationalbarriere-unsymmetriccase.. . . 246

7.60 Rotationalbarriere-symmetriccase. . . 246

7.61 RotationalbarriereatMP2level. . . 247

7.62 Dissociationat MP2level. . . 247

8.1 FragmentofthePt(111)surfacewithwaterbilayer. . . 253

8.2 Platinumand awaterdimer -principal geometries. . . 255

8.3 ClusterI:Pt 2 (H 2 O) 3 . . . 256 8.4 ClusterII:Pt 3 (H 2 O) 3 . . . 257 8.5 ClusterIII:Pt 3 (H 2 O) 3 . . . 258 8.6 ClusterIV:Pt 2 (H 2 O) 3 . . . 258

8.7 ClusterVandclusterVI . . . 259

(17)

8.10 Waterdimer. . . 269

8.11 C 3h Watertrimer.. . . 270

8.12 WaterHexameronthevirtualSurface(d1=2.8  A). . . 272

8.13 Waterdimersinthesurface-constrainedhexamer. . . 273

8.14 Freewaterhexamer. . . 274

8.15 EnergyofFormationE HEX ofthewaterhexamerunder surfaceconstraints. . . 275

8.16 PairinteractionenergiesE DIM inthewaterhexamer(classicalpotential). . . 277

8.17 Height(h)ofringasfunctionofsurfacelatticeconstantd1. . . 277

8.18 Anglew1 asafunction ofsurfacelatticeconstantd1. . . 278

8.19 Anglew2 asafunction ofsurfacelatticeconstantd1. . . 278

8.20 Anglew3 asafunction ofsurfacelatticeconstantd1. . . 280

9.1 Modelfortheplatinum-waterinteraction. . . 288

11.1 Variablesofthewaterdimer.. . . 326

11.2 BendingofW3. . . 326

11.3 Test oftheBNSwater-waterinteractionpotential. . . 330

11.4 Test oftheST2water-waterinteractionpotential. . . 331

11.5 Test oftheRowlinsonwater-waterinteractionpotential. . . 332

11.6 Test oftheDernalandFowler water-waterinteractionpotential. . . 333

11.7 Test oftheTIPS2water-waterinteractionpotential. . . 334

11.8 Test oftheTIP4Pwater-waterinteractionpotential. . . 335

11.9 Test oftheSPC water-waterinteractionpotential.. . . 336

11.10 Test oftheSPC/Ewater-waterinteractionpotential. . . 337

11.11 Test oftheTIPSwater-waterinteractionpotential. . . 338

11.12 Test oftheTIP3Pwater-waterinteractionpotential. . . 339

11.13 Test oftheCFMS water-waterinteractionpotential(I).. . . 340

11.14 Test oftheCFMS water-waterinteractionpotential(II). . . 341

11.15 Pt 9 cluster,topview. . . 354

11.16 Pt 17 cluster,topview. . . 356

(18)
(19)

1.1 Propertiesofwater. . . 2

1.2 Propertiesofice. . . 3

1.3 Propertiesofplatinum. . . 4

1.4 MultilayerPeaks . . . 6

2.1 In uenceoftheexcitationonthecorrelationenergyofwater. . . 23

2.2 Expectation valueofhr 2 iin bohrfordi erenturaniumorbitals. . . 37

3.1 Optimizedwatergeometries. . . 46

3.2 Compilationofthemainresultsforwater. . . 47

3.3 Harmonicvibrationalfrequenciesofwatercalculatedwith aDZPbasisset.. . . 49

3.4 Thermodynamicpropertiesofwater. . . 49

3.5 RHFresultsforwater. . . 50

3.6 GroundstatecoeÆcientsfromdi erentcorrelationcalculations. . . 50

3.7 Resultsforthewaterdimerfrom previousworks. . . 51

3.8 Optimizedgeometriesforthewaterdimer. . . 53

3.9 Remarkstotable 3.8 . . . 54

3.10 In uenceoftheBSSEontothemonomer'sgeometry. . . 54

3.11 Comparissonwiththeliterature.. . . 59

3.12 Calculatedharonic frequenciesofthewaterdimer[cm -1 ]. . . 60

3.13 Frequencyshiftscausedbythedimerisationofwater. . . 60

3.14 Correlationlevelandd OO , =0 Æ . . . 63

3.15 Comparisonofdi erentionpairsanddimer atL3=1.0  A. . . 64 3.16 ResultsforH 3 O + andOH . . . 64

3.17 In uenceoftheBSSEonthevariablesofthewaterdimer. . . 68

3.18 Minimumgeometryandenergyatthedi erentsteps. . . 71

3.19 FinalparameterforV CH . . . 72

3.20 Energycompositionnear theminimumin kcal/mol. . . 72

3.21 De nitionofthetrimergeometries. . . 75

3.22 Geometricaldetailsofthetrimers.. . . 75

3.23 Previouslypublishedresultsforthewatertrimer. . . 76

3.24 Analysisoftheinteractionenergy. . . 77

3.25 ElectronaÆnityandionisation energyofwater. . . 78

3.26 Correlationofchargetransferandstability.. . . 79

3.27 E NPA inkcal/mol . . . 81

(20)

4.2 PotentialsA-F. . . 97

4.3 Optimizedgeometriesofbothminimaonthedimer'spotentialenergysurface. . . 97

4.4 ErrorsforpotentialE . . . 98

4.5 Stationarypointsin gure4.21. . . 99

4.6 Characteristicpointsof gure4.22,d OO =2.8514  A. . . 103

4.8 Characteristicpointsof potentialN(referto gure4.32and4.33fordetails). . . 104

4.7 ErrorsforpotentialN. . . 104

4.9 ParameterforpotentialN. . . 109

4.10 Variancesof potentialN. . . 109

4.11 AbsolutvaluesforpotentialN.. . . 109

4.12 Globalminimafordimers. . . 109

4.13 OptimisationoftrimersI toIVusingpotentialN. . . 110

4.14 Compostionofthetrimerisationenergycomposition duringtheoptimisation. . . 111

4.15 Z-matricesforcyclicwatertrimers. . . 112

5.1 HMOsfortheequilateraltriangle.. . . 120

5.2 HMOsfortheright-angledtriangle. . . 121

5.3 HuckelorbitalsforPt5. . . 123

5.4 PopulationanalysisPT + 5 . . . 123

5.5 CoeÆcientsofthemolecularorbitalsinPt 9 . . . 129 5.6 ChargesonthePt 9 cluster. . . 129 5.7 6spopulationinthePt 9 cluster. . . 129

5.8 OccupiedorbitalsofthePt17clusterandpopulationanalysis. . . 131

5.9 ChargesonthePt 17 cluster. . . 132

5.10 Q cent ondi erntmetalcluster.. . . 132

5.11 OrbitalenergiesanddegeneraciesoftheHMOcalcualtions. . . 135

5.12 HuckelparametersfromECP-FHcalculationsonPt 0 2 andPt + 2 . . . 138

5.13 ResultsfromECP-HFcalculations. . . 139

6.1 ECPsusedin chapter6. . . 146

6.2 Energiesfrom di erentquantum chemistrycodesforplatinum. . . 147

6.3 platinumwateradduct-equilibrium geometries . . . 149

6.4 Platinumwateradduct-extremaofasystematicchangeof . . . 154

6.5 Comparisonofdi erentECPs. . . 155

6.6 BSSEin 1 Pt H 2 Oat MP2level. . . 156 6.7 ParametersforV BSSE . . . 156 6.8 Propertiesof 2  + PtHfordi erentECPs . . . 157

6.9 MullikenPopulationfromLanL2DZcalculations. . . 157

6.10 Propertiesoftheplatinumdimer. . . 161

6.11 1 S 1 Sdimer andwater. . . 164

6.12 3 D 1 S dimerandwater. . . 164

6.13 ChargesandchargetransferinPt 2 H 2 O. . . 167

6.14 Theplatinum-waterbondasafunction ofthe6spopulation . . . 168

6.15 MullikenoverlappopulationinPt 2 H 2 O. . . 174

(21)

3 6.17 MP26spopulationin Pt 3 . . . 178 6.18 Overlappopulationin Pt 3 . . . 178

6.19 OptimizedstructuresforPt 3 H 2 O.. . . 182

6.20 Geometriesfortheright-angledPt 3 -triangle. . . 185 6.21 OptimizedPt 5 H 2 Ocluster. . . 188

6.22 Localminimain thePt5H2Odissociation. . . 190

6.24 GroundstatecoeÆcientc 0 versuscluster size. . . 193

6.23 ElectronicpropertiesofthePt 9 H 2 Ocluster. . . 194 6.25 SmallPt n Cluster,singuletwavefunction,MP2optimizedstructure. . . 195

7.1 simp inGaussian94inputformat. . . 210

7.2 Resultsforthenew6pwavefunction. . . 211

7.3 LanL2eigenvalues. . . 216

7.4 6dorbitalwithaaugmentedbasisset. . . 217

7.5 Localminumcreatedwithvariousexponetsn. . . 225

7.6 Resultsford A .. . . 228

7.7 Parametersof Zuritas'sECP. . . 231

7.8 Einergyeigenvaluesform test1. . . 231

7.9 Resultsfrom test2. . . 232

7.10 Resultsfrom test3. . . 232

7.11 Mullikenpopulationatthetopin Pt + 5 . . . 240 7.12 Pt + 5 propertiescalculatedwithasecondorderECPfunction.. . . 241

7.13 Pt 5 pyramidewithdi erentECPatthetop. . . 242

7.14 OrbitalcoeÆcientsinPt 5 . . . 243

8.1 SelectedresultsforPt H 2 O. . . 254 8.2 ResultsforPt (H 2 O) 2 . . . 255

8.3 SelectedValuesforlargerplatinum-waterclusters . . . 263

8.4 Water-Waterinteractionparameters. . . 268

8.5 Calculatedpropertiesofthewaterdimer.. . . 269

8.6 Calculatedpropertiesoftheplanarfpppgwatertrimer. . . 271

8.7 Globalminimaofthepotentialenergycurvesfortheconstrainedwaterhexamer. . . 276

8.8 MultilayerPeaks. . . 283

9.1 Pt n H 2 Owithdi erentECPs. . . 292

11.1 DZPbasissetforH 2 O. . . 316

11.2 TZVPbasissetforH 2 O. . . 316

11.3 LanL2DZPtbasisset. . . 317

11.4 LanL1MBPtbasisset. . . 317

11.5 LanL2DZPtECP. . . 317

11.6 LanL1MBPtECP. . . 318

11.7 NewbasissetforPt. . . 318

11.8 NewECPforPt. . . 318

(22)

11.11 Dimerwithastraighthydrogenbond(W3=90 Æ

). . . 321

11.12 Dimers withabendedhydrogenbond. . . 322

11.13 Dimerwitha xedwatergeometry (r

OH =0.9572  A,^ HOH =104.52 Æ ). . . 323

11.14 In uence oftheBSSE onthemonomer'sgeometry(I). . . 324

11.15 In uence oftheBSSE onthemonomer'sgeometry(II). . . 324

11.16 In uence oftheBSSE onthemonomer'sgeometry(III). . . 325

11.17 In uence oftheBSSE onthemonomer'sgeometry(IV). . . 325

11.18 Morokumaenergydecomposition(d

OO

)-allenergiesin kcal/mol. . . 327

11.19 Morokumaenergydecomposition( )-allenergiesin 10 3

Hartree. . . 328

11.20 Morokumaenergydecomposition( )-allenergiesin10 3

Hartree. . . 329

11.21 BasissetforthePt

9

Huckelcalculation. . . 354

11.22 BasissetforthePt

17

Huckelcalculation. . . 357

11.23 Functionsusedforthecalculationof

R

. . . 359

11.24 FunctionsusedforthecalculationofE 00

(23)

Introduction

1.1 General Introduction

Waterisprobablyoneofthemostcommonandbestanalysedchemicalsubstancesonthisplanet.

Theoceans, whichcover70.8% ofthe planet'ssurface,store 97.3%of allwater(1.38510 9

km 3

).

Platinumontheother hand is veryrare (0.01ppm[1]). This workso focuses ontheinteraction

betweenthecommonandthenoble.

Platinum is a very important catalysist. The rst reaction studied in detail, which served

for the de nition of acatalysis, wasthe hydrogen combustion (2 H

2 +O 2 ! 2 H 2 O) [2{5]. A

stoichometricmixtureofhydrogenandoxygendoesnotreactuntilasmalldoseofplatinumpowder

isadded. Then, themixturereactsvividly andanexplosion canbeobserved. Theplatinumdust

loweredthebarrierofactivatione ectivelyforthereactiontostart.

Today,oneofthemostimportantapplicationsofplatinumisthepuri cationofexhaustfumes

frommotorvehicles[6]. Platimumcatalysistheoxidationofcarbonmonoxidandhydrocarbonsto

carbondioxide,butmoreimportantisthereductionof nitrogenoxides.

2CO + 2NO ! N

2

+ 2CO

2

Water is next to carbon dioxide the most important product of the combustion and large

amountsofwaterarealsoatthesurfaceoftheplatinumcatalysist.

C x H 2x+2 + 3x+1 2 O 2 ! xCO 2 + (x+1)H 2 O

Thesewatermoleculescompetewiththeotheroxidesintheexhaustfumesforactivesurfacesites

onthecatalystandhavesoamajorimpactonthequalityofthecleaningprocess. Electrochemical

experiments showed, that the rate of the O

2

reduction and H

2

ionisation reaction on platinum

electrodesdependsstonglyontheorientationofthewatermolecules [7].

Regardingthe economicaland environmental importance of theplatinum-waterinteraction it

isnotsurprising,thattheworkonthistopicstartedearlyand rstresultshavebeenpublishedby

General Motors[8].

Theoreticalworkaspublished withinthisthesiswillhelp ustounderstandtheinteraction

be-tweenplatinumandwaterbetter,whichwillhopefullyendinthedevelopmentofbettercatalysists

(24)

BernalandFowlershowed,thatthestructureofanindividualwatermoleculedoesnotchange

much with the phase of the substance [9]. The free water molecule has C

2v

symmetry and the

structure ofthe moleculecanbe explainedwellwiththe VSEPRmodel (V alence ShellElectron

PairRepulsion)[10{12]. Theoxygenatom(sp 3

hybridisation)hasatetrahedralenvironment:Two

sp 3

hybridorbitalsform thebondsto thehydrogen atoms(r

OH

)whilethe remainingtwohybrid

orbitalsfromtheloneelectronpairs. Theloneelectronpairs,needingslightlymorespacethanthe

chemicalbonds, force thehydrogen atoms closerto eachother and thebond angle ! is therefore

smallerthanthatfoundin anidealtetrahedreon(109.47 Æ

).

Waterisachemicalsubstancewith

extraor-property value ref.

M 18:0151 g/mol [1] r OH 0:9572  A [16] ! 104:52 deg [16]  1:85 D [17] I X 2:9376 10 40 g 1 cm 2 [16] I Y 1:0220 10 40 g 1 cm 2 [16] I Z 1:9187 10 40 g 1 cm 2 [16] 1:45  A 3 [15] E ION 11:53 eV [15] E AFF 1:07 eV [15] E HO H 498 kcal/mol [15] E O H 427:5 kcal/mol [15] T F 0:0 Æ C [1] T B 100:0 Æ C [1]

Table1.1: Propertiesofwater.

dinaryphysicalproperties(table1.1). The

boil-ing(T

B

)and thefreezingpoint(T

F

)aremuch

higher than the values for the other hydrogen

chalcogenids (eg H 2 S: -85.6 Æ C and -60.3 Æ C).

Thehightransitiontemperaturesarecausedby

stronghydrogen bondsamong the water

mole-cules[13]. Di erentelectronegativitiesfor

oxy-gen(3.5)andhydrogen(2.1)causepolar

oxygen-hydrogen bonds and so create a large dipole

moment (). Coulomb forces can be used for

a rst attemp to explain the strong hydrogen

bond between a positively charged hydrogen

atomandaloneelectronpairontheoxygen,but

quantumchemistryprovidesfarbettermethods

(chapter3,page45).

The covalenthydrogenbonds [14] canform

arigid,tetrahedralnetworkand sothebasisof

ice. Thisnetworkkeepsthewatermoleculesfurtherapartthanin theliquidphase,wherethermic

motionsallowthe watermolecules to collideand formso distorted microcluster. Thedensityof

thelowpressureice phasesIhandIc (table1.2)isthereforesmallerthanthedensityoftheliquid

(=0.99978gcm -3

atthetriplepoint[15]). Thestructureofthesetwoicephasescanbeexplained

wellwithasetofrulesoriginallydevelopedbyBernal,FowlerandPauling(BFPrulesorice

rules)[9,13]:

 Thewatermoleculeinice resemblesthewatermoleculein thegasphase.

 Eachwatermoleculeis orientedsothatits twohydrogenatoms aredirected approximately

toward two of the four oxygen atoms which surround it tetrahedrally, forming hydrogen

bonds.

 Onlyonehydrogenatomispositionedbetweeneachneighbouringoxygen-oxygenpair.

 Underordinaryconditionstheinteractionofnon-adjacentmoleculesisnotsuchastostabilize

appreciably any one of the many con gurations satisfying the preceding conditions with

(25)

Only theoxygens of the water molecules are drawn anddi erentgrey shadesin gure1.1 mark

di ernt layers of water molecules in the crystal. The structure of ice Ih canbe visilized by the

condensationof waterhexamers. These waterhexamer are ringsin thechair conformation. One

hexamerismarkedlightgreyasanexamplein thecentreofthe gure.

Paulingsuggested1935,thatnexttothe

hexag-Figure1.1: Structureofice1h. [18] onalice phase(iceIh)withanother icephasewitha

cubiccrystal system(ice Ic)should bepossible[13].

Ice Ic can created by the condensationof water

va-pors between 120 Æ

C and 140 Æ

C [1]. Table 1.2

showsacompilationofthestrcturalcharacteristicsof

bothlowpressureice phases.

InbothicephasesIcandIharethepositionsofthe

hydrogens disordered. The hydrogen is attached to

eitherwatermoleculesharingahydrogenbond. The

bonds among the water molecules oscilate therefore

betweenhydrogenbondingandcovalency,depending

onthe distance of the hydrogen from theoxygen atom 1

. If the ice crystal is cooled to very low

temperatures,themovementofthehydrogensfreezesandthehydrogensstayinrandompositions.

ice phase Ih Ic

crystalsystem hexagonal cubic

spacegroup P63/mmc Fd3m

celldimensions a

[pm] a=450 c=732 a=635

moleculesperunitcell 4 8

nearestneighbours 4 4

distanceto thenextneighbour[pm] 275 275

O O Oangle[deg] 109.3,109.6 109.6

hydrogenposition disordered disordered

Density a [gcm -3 ] 0.93 0.94 a 110K,athmosphericpressure

Table1.2: Propertiesofice. [18]

Protonorderedicephasesarepossibleandstillsubjectofcurrentresearch[19,20]. Acomplete

ordering of protons can be used to align the dipole momentsof the water molecules parallel to

eachother (ferroelectricity) [1, 21]. Ferroelectric ice phasesshowa spontaneous polarisation and

strongelectric eldscan beobservedbetweenoppositesidesoftheice crystal.

OneofthemanywaystoobtainferroelectriciceistheepitaxialgrowthonPt(111)[20,22]. The

platinumsurfaceisbelivedtoordertheprotonsinthe rstlayerofwater. Carefulcondensationof

1

Protontransfer similarto theGrotthus mechanism [23, 24] isimpossibleinice between30to 190

K [25]. The potential, in which the proton moves, is not periodic, since the proton structure inice is

disordered,andlongdistanceprotontunnelingfortheGrotthusmechanismdemandsaperodicpotential.

ProtontransferiniceisthemovementofaDdefect(twohydrogenatomsareononeoxygen-oxygenbond)

(26)

ferroelectricbulkicephasehasbeenreached. WitekandBuchshowed,thatonlythe rstbilayer

gowthswith orientatedhydrogensand that theprotons in thesecond layerarenotorientated to

minimizetheelectrostaticenergy[26]andbreaksothestandardrulesforhydrogenbonds[27].

1.1.2 Properties of Platinum

Three countriescover98%of theworldsdemand forplatinummetals (South Africa45%,former

UdSSR 45%,Canada8%). OnlytheMerensky-MineinSouth Africa(SouthAfricacovers65%of

theworldsplatinumdemand.) isexploitedforplatinumsolely,ineveryothercaseistheplatinum

re nedfrom impuritiesofotherores[1].

Platinumisasilverwhite,ductilemetalwitha

cu-property value number 78 isotopes 6 mass 195.08g/mol con guration [Xe]4f 14 5d 9 6s 1 electronegativity 2.2 d Pt Pt 2.77  A T F 1769 Æ C T B 4170 Æ C E ION 9.0eV

Table1.3: Propertiesofplatinum[1].

bicclosedstructureandcanbedissolvedeasilyinaqua

regiaand slowly in hydrochloricacidin the presence

ofair. PtCl 2 4 + 2e ! Pt + 4Cl E 0 =0:75V PtCl 2 6 + 2e ! PtCl 2 4 + 2Cl E 0 =0:77V

Platinumdissolves also readily in fused alkali oxides

andspeciallyinalkaliperoxides. Itisalsoattackedby

uorineandchlorineatredheat andreactsalsowith

elemetal P, Si, Pb, As, Sb, S and Se under reducing

conditions.

Pt(0)compoundsarewellknownandthesynthesis

ofmanyclustercompoundswithdirectplatinum-platinumbondsstartsfromPt(PPh

3 )

4

[28].Huge

amountsof molecularhydrogencanbesolvedin platinumand themetalactivatesthe

hydrogen-hydrogenbond,which explainsitscatalyticactivityinhydrogenationreactions.

Platinumis chemicallymuchmorereactivethancommonly asumed: Morethan70

oxidation-reductionreactionsarecatalyzedbyplatinumanditisnowpossibletopredictcatalytic activities

from thethermochemicalpropertiesofthereactingcouples[29].

1.1.3 Literature Survey

Theplatinum-waterinterfacehasbeenexaminedwithvariousexperimentaltechniquesrangingfrom

UHV (Ultra High V acuum) to electrochemicalexperiments. Bothexperimentsdi er principally

in the number of water molecules. But, it is possible to vary the electric eld at the surface

systematicallyin electrochemicalexperimentsand notin UHV experiments. Theelectric eld at

the surface is varied in UHV experiments by the coadsorption of polar or ionic species, which

makesthe ne tuning of the eld strength diÆcult. On the other hand, UHV experimentsgive

informationsonthemicroscospicscale,whereaselectrochemicalexperimentsgiveintegralvaluesfor

thedoublelayer[30]. Variousstructuremodelshavebeenproposedfortheelectrochemicalbilayer

toexplainthevalueofthedi erentialcapacityasafunctionoftheexcesscharge,butthenumber

ofexperimentalparametersadjustedtoreproduceexperimentaldataquaestionsthevalidityofthe

model[24,30{33].

Weaver et al. exploited the similarityof both experimental methods forthe analysisof the

(27)

1. Ebene

2. Ebene

Bilayer - Zelle

Platin - Zelle

Figure1.2: Idealbilayerstructure.

means ("UHV electrochemical modeling") [34, 35]. They showed, that both methods complete

eachother verywell.

Early UHV experiments [36, 37] on the adsorption of water on platinum(111) reported a

p( p 3 p 3)R30 Æ

surfacestructure of adsorbed water molecules and suggestedthe formation of

iceorderedin domainsof30 40 

Ain lenght.

A waterbilayerstructure [38,39]( gure 1.2)hasbeenproposed asthe basisof thegrowthof

iceonhexagonalmetallatices. Theicephaseonplatinumisbelievedtohavethesamehexagonal

symmetryasthesurfaceandthewaterhexamermarkedin gure1.1formsthebasisofthebilayer

structure[40]. Thestructureofthiswaterbilayersisgenerallyexplainedin termsofanextension

to surfaces [39] ofthe Bernal-Fowler-Paulingrules (ice rules)[9, 13]. Speci cally [39],each

watermoleculeis assumedbound byat leasttwobonds (which may be hydrogen bonds toother

watermoleculesoroxygenlonepairbondstothesurface)whilemaintainingatetrahedralbonding

con guration. Thewaterisassumedboundto thesurfaceviaonelonepairorbital ontheoxygen

andallfreelonepairorbitalsonoxygenstaynearlyperpendiculartothesurface.Inanidealin nite

bilayer,allwatermoleculeshavetheirdipolemomentspointingawayfromthesurface(" ipup"),

whereasina nitecluster,watermoleculeswhose dipolemomentspointtowardthesurface(" ip

down") mayoccurat theedge of thecluster [39, 41, 42]. Experimental results[43] suggestthat

theedgesofice-likeclustersonPt(111)areconstructedfrom ipupmoleculestogetherwithwater

moleculeswith oneOHbondparallel tothemetalsurface,in contrastto the op downgeometry

predicted at the edges by the BFP rules. Such a water species has been observed on Pt(100)

[44] and experimental evidence suggests that such aspecies may also exist on Pt(111) [45, 46].

It has notbeen possibleto rule outsuch a structure byapplication of ultraviolet photoelectron

spectroscopy(UPS)toPt[6(111)(100)][37].

Doering and Madey [39] concludedusing the surfaceextended ice rule set, that the

small-est stable water cluster on a hexagonal metal surface should be the water nonamer. Such an

(H

2 O)

9

clusterhasbeenobservedonRu(0001)aspartofp(6 p 36 p 3)R0 Æ superstructure[39,47],

whereasexperimentalresultssuggest,thatthesmallestclusterpossibleonplatinum(111)isa

three-dimensionalwatertrimer[45].

In the initial stages of growth, awater moleculehas twopossible adsorption sites: attached

eitherdirectlyaboveaplatinumonthesurfaceortoawatermoleculealreadyboundtothesurface

[46,48]. Thecoexistenceofbothspecies(i.e. awatermoleculedirectlyboundtothesurfaceanda

watermoleculeattachedtoanotherwatermolecule)iscommonlyexplainedintermsoftheenergy

of isolated bonds, although the importance of cooperative forces has been suggested previously

[42,45,49]. Thestrengthoftheplatinum-waterbondcorrespondstothatoftwotothreehydrogen

(28)

platinum(111) surfaceallow us to distinguishdi erentwater species, but thediscussion remains

controversial.ThemostrecentdatafromOgasawara etal. [56]showsthreeprominentpeaksat

155K,165Kand200K.The rstpeak(at155K)wasassignedtoicesublimation,thesecond(at

165K) to waterin thesecond adsorptionlayerand thethird (at200K) to waterdirectly bound

to thesurface. Whilethe rst twopeaks havebeen positively identi ed, theorigin of the third

remainsamatterofdiscussion[53,54]. Theformationofthesecondpeakat165Kcanbeobserved

at coveragesas low as0.13to 0.27monolayer(ML),where 1ML refersto oneidealbilayer[39].

TheseTDSresultsareconsistentwithotherexperimentalresults[43,45,46,48,57,58],whichalso

supporttheformationofwaterclustersatlowsurfacecoverage.

Thesecondpeak 2

(165K)isthemultilayerpeakintheTDS

surface ltm T [  A] [K] Ni(111) +0:19 170 Cu(111) +0:08 150 Rh(111) 0:16 190 Ru(0001) 0:19 212-220 Re(0001) 0:28 180 Pt(111) 0:30 170 Ag(111) 0:50 150

Table1.4: MultilayerPeaksdata

fromrefs. [38,47] spectrum. A watermoleculefrom thetopshouldthereforebe

in achemicalenvironmentsimilar toaniceIhcrystal.

Di er-ences in the desorptiontemperaturehaveto betherefore the

result ofthe latticedistortion of theice crystal,becausethis

moleculehasnodirectcontactwiththemetalunderneath. A

measure for this distortion is thelattice-mismatch (ltm)

(ta-ble 1.4). A negative value indicates the contraction of the

ice lattice and apositive its expansion. The highest

desorp-tiontemperatureshouldthereforebefoundforthemetalwith

thesmallestvaluefor thelattice-mismatch (copper), but was

foundforruthenium. Thisshiftofthemaximumpeakposition

andthehigherbondingenergycomparedwithicesublimation

suggest, that the simplebilayermodel from Doering and Madey may need furtherre nement

[42,59].

Thetheoretical work published on the metal-waterinterface canbeseperatedinto two main

groups: The rst group focuses on electrochemicalaspects of thesubject. Molecularmechanics

(MC)andmoleculardynamics(MD)calculationsareusedtomodeltheplatinum-electrolyte

inter-face. The secondapproachconcentratesmoretheUHV aspects. Quantum chemical calculations

on various level of theory examine the interaction of one water molecule with a metal cluster

[54,60{72].

Bothquantumchemistryandexperimentagreethatthewatermoleculeisonlyslightlydisturbed

uponadsorptiononPt(111)[41,45,46,48,58,73{75]anddissociationhassofaronlybeenobserved

experimentallyonpre-coveredsurfaces[76{79],whichallowsustouserigidwatergeometrieswithin

thecomputationalsimulations.

FirstquantumchemicalresultshavebeenpublihedbyHollowayandBennemannusingthe

EHT (Extended Huckel Theorie) for the calculation(1980, [64]). Theyused a Pt

5

pyramid to

modelthesurfaceandreportedabondingenergyof0.5 eVwiththewatermoleculein anon-top

position withaplatinum-oxygendistance of 2.3 

A. These calculationsservedasthebasisforthe

developmentforclassicalplatinum-waterinteractionpotentialusedforMDcalculations.

EightyearslaterEstiuetal. [65]reportedanewsetofEHTcalculationswithadi erntsetof

Huckelparametersand largermetalclusters (Pt

18 , Pt

19

andPt

25

). Theplatinum-waterdistance

2

Theprecisevalueofthedesorptiontemperaturedependsslightlyontheexperimentalconditions

(29)

was xedat1.7Aasaresultofearliercalculations(bondingenergy=0.94eV[60]). Theyreported

bondingenergiesof0.42eVforthePt(111)surfaceand0.57eVforPt(100). Inbothcaseswasthe

watermoleculein anon-toppositionwithitsmolecularplaneperpendicularto thesurface.

M 

ulleretal. usedtheKohn-Shamshemewithalocaldensityapproximation[70]toperform

cluster calculations(Pt

10 H

2

O) on theadsorption of water onPt(111) [54, 63, 68]. This group

reported a bonding energy of 0.53 eV with a platinum-oxygen distance of 2.5 

A. M

uller

pro-posedalsoaquantumchemicalmodelfortheplatinum-waterbond[68] basingonhisworkonthe

aluminium-waterinteraction [70],which waslaterused byRibarsky et al. for thecopper-water

bond[71]: The3a

1

and the 1b

1

orbitals, which do notcontributemuch to thebonds within the

watermolecule,interactwith lledplatinum5dorbitals. ThelowlyingLUMOinteractsthenwith

both lled orbitalsresultingfromtheplatinum-wateroverlapandlowerssothetotalenergy. The

occupationoftheformeremptyLUMOleadstoanchargetransferfromthewatermoleculetothe

metalcluster. Thisinteractionmodelisthequantumchemicalequivalenttotheelectrostatic

polar-isationandtheauthors thereforecalltheLUMOapolarisationfunction. Theygivethefollowing

equationforthepolarisationenergyE

E = hPOLj ^ VjLi 2  POL  L (1.1)

jPOLiistheLUMO,whichactsas apolarisationfunction,andjLithefreeelectronpairofthe

watermolecule. Twoprincipalfeaturesoftheplatinum-waterbondfollowfromequation1.1,which

arenotmentionedinreference68:

1. ThebindingenergyofthewatermoleculedependsonitsorientationrelativetojPOLi,since

E is proportionalto the square of the overlapbetweenthe platinum5d orbitals and the

freeelectronpairofthewatermoleculehPOLj ^

VjLi.

2. E isinverselyproportionalto theenergydi erencebetweenbothorbitals. Thelargerthe

cluster becomes, the smaller becomes the HOMO-LUMO gap and so the energy di erence

betweenjPOLiand L,because

L

isindependentoftheclustersize.

Theimportanceof polarisationfor theplatinum-waterbondsuggests,that cooperativeforces

are important for the structure and energy of theplatinum-water interface. The signi cance of

hydrogen bonding and polarisatione ects hasbeendiscussed previously [45, 56, 64, 68, 71, 75],

but, to ourknowledge, hasnot been studied in great detail. Kutnetsov et al. published 1989

CNDO/2 (Complete Neglect of Di erential Overlap) for water clusters bonded to 1b (Cu, Ag,

Au)and2bgroup(Zn, Cd,Hg)elements[67].

Modernquantumchemicalcalculationsontheplatinum-waterinterfacesuggestthatthe

molec-ularplaneof thewatermoleculelies parallelto thesurface[54, 63,68]. These resultsagree with

workfunctionmeasurements[45,52, 58,73] onwater-coveredplatinumsurfaces,which showthat

that acontribution of about 0.2 D of the water dipole moment (free watermolecule 1.84 D) is

normaltosurface[58],butcontradicttheicerulesforsurfaces,whichexplainverywellotherUHV

dataliketheLEED(LowEnergyElectron Di raction)results. Theorientationofthehydrogens

inwatermoleculewithadirectbondtothemetalsurfaceunderneathshouldthereforeberegarded

asunsetteled.

Thenumberofatomsandmoleculesintheelectrochemicalinterfaceinhibitstheapplicationof

quantumchemicalmethodsandotherhavetobeused. MonteCarlosimulations(MC)[80{83]and

(30)

mirror images for the simulation of themetal-water interaction. They assumed an ideal, highly

polarizablemetal surface. The image charges had thereforethe samesize asthe charges onthe

watermolecules(TIPS2potentialforbulkwater),butweredi erentinsign. Thesecalcualtionsfor

anunchargedmetalwallresultedinerroneouswaterorienationscloseto thewall. The rstlayer

watermoleculesbondedwithonehydrogenatomtothemetalsurfacewhiletheotherpointedinto

the bulk water. Despite this principle problem these calculations indicate that polarisationand

manybodye ectswithinthemetalhaveasigni cantin uenceonthestructureofthemetal-water

interface, while Kohlmeyer et al. [84] published molecular dynamics calculationsshowing that

theinclusion ofpolarisationintothewater-waterinteractionpotentialhasonlylittlein uenceon

the results of the siumulation. MC calculations with a more elaborate set of potential energy

functions [80,81]reproducecorrectlytheorientationof the rstlayerwatermoleculesclosetoan

unchargedcopperwall.

MD calculations [84{102] form the second group of computational methods applied to the

electrochemical metal-water interface. The potential energy functions used for the metal-water

interaction canbesubdividedinto twogroups: First,potentialsexploiting electrochemicale ects

suchasmirrorchargesandsecond,potentialstryingto mimicchemisorptiondatafrom quantum

chemicalcalculations.

Hautmanetal. [91]publishedMDcalculationsforunchargedmetalwallsusingthe rstgroup

of metal-waterpotentialswith apeculiar result: Although the rstpeakof thehydrogendensity

lies0.2 

Aclosertothemetalsurfacethanthe rstpeakoftheoxygendensity(ref. 91 g. 2)the

dipole momentsofthewatermoleculespointpreferentiallyawayfrom thesurface(ref. 91 g. 3).

The authors explain this e ect with the largercharge (factor 2) on theoxygen atoms thanon

thehydrogenatomsresultingin anoverallnegativechargeat themetalsurface.

ZhuandRobinson[92]reportedMDcalculationsofwaterbetweentwosolid,insulatingwalls.

Theinteractionbetweenthewallandthewatermoleculesisdescribedwithagas-crystalpotential

excluding mirror charges. They conclude form their calculations that thewater molecules close

to the surface orientate the hydrogen atoms towards the solid and notinto the bulk water. In

a second paper Zhu and Philpott[93] showed, that theorientation of thewater molecules

to-wardsthesurfacedependsstronglyonthechosenpotentialenergyfunctionsnowincludingmirror

charges. Theycompare twopotentialenergyfunctions foravarietyof metalsurfaces di eringin

an anisotropicLennard-Jonesenergy term (V

an

) actingon the hydrogens. Thepotentialenergy

functions containingV

an

resultin watermoleculesbondingtoaPt(100)surfaceviaonehydrogen

atomsimilartothebondinggeometriesreportedbyGardneretal. [82,83]whereasthepotential

energyfunction withoutV

an

producesnoplatinum-hydrogenbonds.

ThesecondclassofMDcalculationsusesindividualpotentialenergyfunctionsforthehydrogen

atoms and the oxygen atom to calculate the metal-water binding energy. The parameters of

thesefuctionshavebeenchosenbyHeinzingerandSpohr[94{96]toreproduceExtended-Huckel

results[64]andexperimentaldata. Later, thesepotentialenergyfunctions havebeenextendedby

Berkowitzetal. aboutasurfaceterm,whichincludesthesymmetryofthemetalsurface[97,98].

Spohrs[94{96,99{101]resultsfortheunchargedplatinum-waterinterfacemaybesummarized

asfollows:

 Theoxygenandthehydrogenatomdensityshowstrongoszilationsclosetothesurface,but

(31)

watermolecules closetothe surface. These twopeakssuggesttheexistence ofwaterlayers

similarto thebilayerstructureobservedforwaterinUHV experiments.

 Thewatermoelcules,whichcause the rstpeak in thoxygen atomdensitypro le(directly

attached tothesurface), stayattheirposition duringtheMD run,whereasmoleculesfrom

thesecondpeakarelesstightbound andmovefreelywithinthelayer[102].

 Atlowcoveragesofwater()thewatermoleculesinthe rstlayerareorientatedinatilted

position withtheir dipolemoment pointingawayfrom thesurface(# =75 Æ

, # istheangle

between the surface normal and the dipole moment). Both hydrogen atoms of the water

molecule are at the samedistance from the surface[95]. Such anorientationof the water

molecules is expected for a bonding bonding mechanism viaa lone electronpair, which is

surprising,sincetheplatinum-waterpotentialfavoursanadsorptiongeometrywiththewater

moleculesdipolemomentperpendiculartothesurface 3

. Astronghydrogenbondingnetwork

isassumedtostabilizethisgeometry. Thesameprinciplegeometrye ectshavebeenobserved

bySpohr[100,101]alsoforHg(111).

Asincreasesfrom0.2to0.8movethehydrogenatomscloserotthesurfaceuntil nallythe

molecularplaneofthewatermoleculeisparallel tothesurface.

Theelectrochemicalresultssuggest,thathydrogenbondingwithintheinterfaceisessentialfor

avaliddescriptionoftheplatinum-waterinterface. Thetransition betweenbothelectrochemistry

and UHV experiments is done by the reductionof thewater molecules used for the simulation.

Insteadofbulkwatercomenowsmallwaterclustersintofocus. Liuetal. [103]pointedout,that

water-waterinteractionpotentials,which reproducewellthepropertiesof bulkwatertend tofail

onsmallwaterclusters.

The water dimer is probably thebest analysed watercluster of all. It wasnotonly the rst

watercluster subjectof ab initio calculations[104] butis alsocommonlyused asbenchmarktest

fornewcalculations. It isthereforepossibleto ndreferencevaluesin theliteratureforthewater

dimeroneverypossibleleveloftheory[105{131]. Theglobalminimumhasalineargeometrywith

C

S

symmetry withthe nonbonding hydrogens onoppositesites ofthe oxygen-oxygenbond. The

optimizedoxygen-oxygendistanceisabout3 

Aandthebondingenergyabout5kcal/mol.

Sch 

utzet al. suggestedanameningsystemforthenon-bondinghydrogensinthecyclicwater

trimer,whichfully describesthegeometryof thecluster[132]: Thenonbondinghydrogencanbe

either above (up, "u"), parallel to (planar, "p") or under (down, "d") the oxygen plane, while

thebondinghydrogens restin the oxygen plane. Ifthe oxygen planebisects thewatermolecule,

thegeometry ismarked withan"b". Theglobalminimumof thepotentialenergy surfaceof the

watertrimerhasacyclicgeometry. Earlycalculationsonthewatertrimersuggest,thatthefuuug

water trimer is less stable than the ideal linearstructure [133], but already the fpppg trimer is

morestable thanthelinearone. Thelineartrimeragaintransformssmoothlyintoacyclicfuudg

geometry,whichmarksthe globalminimum[128,131,132,134{150]. Thegeometry ofthe water

3

Thisorientationre ects the results of the Huckel calculations usedfor thecreation of the potential

energy functions. The Huckel calculations for Pt

5 H

2

O favour the same geometry and the observed

equilibriumgeometrymaybetheresultofthemissinginteractionsbetweensurfaceatomsandthehydrogens

(32)

(2 n

n!2,wherenisthenumberofwatermolecules inthecluster)[103,150{156].

18stationarypointshavebeenfoundonthepotentialenergysurfaceof thewatertrimer[142,

145]. Thefpppgtrimerhasaslightlysmallerbondingenergythanthefuudg(E<0.5kcal/mol)

[132] and is a stationary pointwith aHessian index of 3. Most of thepublished resultsfocuses

onthefuudgtrimerandonlyfewarticlesconcentrateonthefpppg[132,140,142,144,157{159],

despitethefact,thatthefpppgandthefudpgtrimerarepossibleintermediatesinthemovement

ofthehydrogens[132].

Thecomputational analysis of watercluster gained moreinterest recently, becausethese

mi-crocrystalscanbeusedtoinvestigatephasetransitions[160]. But,thetransitionfromsmallwater

cluster to largeris notstraight forwardand thewaterhexamer seperates thewater clusters into

twodomains.

Twoprinciples control the structure of water clusters: First, the numberof hydrogen bonds

in the cluster should be ashigh aspossiblefor a maximum energy gain. And second, repulsive

interactionsbetweennonbondinghydrogensandgeometricalstrainswithin thewaterringsshould

be as low as possible at the same time. Small water cluster (H

2 O)

n

with n 5 5 are therefore

commonly assumed to becyclic planar [103, 128,133, 161{170], while large clusters with n = 7

havethree dimensional structures [160,170{178]. Thewater hexamer markstheborder between

both regions and is the smallest water cluster with a three dimensional equilibrium structure.

Severalgeometrieswithsimilarenergies(E<1kcal/mol)havebeenfoundforthewaterhexamer

[128,148,149,179{182]. Themultitude ofenergeticallysimilarisomersmakesthewaterhexamer

anewbenchmarksystemformethods,whicharegoingtobeapplied tolargerclusters.

Althoughthecyclic water hexamerforms thebasisof theice structure[18, 183,184]andhas

beenobservedasastructuralelementin liquidwater[185],hasthemoststablewaterhexamer in

the gas pase a cage structure [186, 187]. The energy di erencebetweenthe cyclic and the cage

hexamer is small and it has not been possible to observethe free hexamer experementaly until

recently[187].

Quantumchemicalcalculations[128,148,149,179{182,188]onthecyclicwaterhexameragree

reasonably well on the geometry of the cluster, but disagree heavily on the total energy of the

cluster. The moststable ring hasa "chair"conformation(S

6

symmetry) with straighthydrogen

bonds and the oxygen-oxygen distance between direct neighbours varies between 2.708 

A and

2.855 

A. Themain propertiesof thecluster's geometry canbereproduced withsimple methods,

whereasreliableenergycalculationsrequiresophisticatedones. Published valuesforthebonding

energyofthecyclicwaterhexamervarybetween 37.99kcal/moland 56.00kcal/mol(withone

exception: 66.66kcal/mol[181])dependingonthelevelofcomputation.

1.2 This work

Twocomputerexperimentsareusedcommonlyforthesimulationoftheplatinum-waterinterface:

First,quantumchemicalcalculationswithasinglewatermoleculeandsecond,moleculardynamics

simulationswith various potential energy functions. Between theese two extremes is this work

placed: Acomputationalanalysisofwaterclustersattachedtoaplatinumsurface.

Figure 1.3 shows, howthe calculationof water clusters on aplatinum surface(Pt

n (H

2 O)

m

in thecenterof thesketch)is embededin its scienti cenvironment. As mentionedin section1.1

(33)

Pt

n

-(H

2

O)

m

6s electron

density

cooperative forces

in the water cluster

cooperative forces

in the Pt-H

2

O bond

Transformation

possible ?

natural geometry

under surface conditions

quantum chemistry

Pt

n

-H

2

O

quantum chemistry

Pt

n

quantum chemistry

(H

2

O)

m

classical interaction

potentials (H

2

O)

m

molecular dynamics

electrochemistry

potential ener

gy functions

potential energy functions

bulk properties vs. small cluster

polarisation

strong vs. weak bonds

Figure1.3: Scienti cenvironmentofthis work.

[101]. Thepotentialenergy functionused forthesecalculationsbase onextendedHuckel

calcula-tionsusing aPt

5 H

2

Opyramid withthe watermoleculeat the topassurfacemodel (Pt(100)).

Suchaclusterhasnoothersurfaceatomsthantheonebondingthewatermoleculeandthe

repre-sentationoftheinteractionsbetweenthewatermoleculeandthenon-bondingsurfaceatomsseems

tobepoorfortheequilibriumgeometry. Anotherproblemarisesfromthewater-waterinteraction

potential usedfor thesimulation. Most ofthe usedpotentialshavebeenoptimizedto reproduce

properties of bulk water. Many-body forces are important for bulk water, where an individual

watermoleculeisevenlysurroundedbyotherwatermoleculesandthewatermolculecantherefore

bethought captured in a homogenous matrix. Simple, pair wise additive interaction potentials

cansimulate agreat share of these forces bytheir parametrisation and good bulkvalues canso

beeasilycomputed. Inasmallclusterisawatermoleculenotevenlysurroundedbyitspeers and

'bulkpotentials'failthereforetoreproducethepropertiesofsmallwatercluster.

Thisworkstartedwithaquantumchemicalrevisionofthewaterdimerandtrimertoobtaina

setofbasisdataforsmallwatercluster. Aselectionofclasicalwater-waterinteractionpotentials,

used byother groupsformolecular dynamics simulations,wasunable to reproducethe quantum

chemicalresults.

Quantum chemical calculationson large water clusters are computationally expensive and a

classicalwater-waterinteractionpotentialwouldallowusto ndgoodstartinggeometriesforthe

quantumchemicalanalysis. Therefore,wecreatedanewwater-waterinteraction potential,which

inludespartiallycooperativeforces byitsparametrisation.

(34)

tronicstateofthecluster,asthebondbetweenthemetalatomsisformedmainlyviathe6sorbitals,

whointeractwiththepartially lled 5dband.

Thequantumchemicalinvestigationoftheplatinum-waterbondshowed,thatthisbonddepends

also on the 6s population in the metal cluster, but in the other direction: A strong

platinum-platinumbondandastrongplatinum-waterbondexcludeeachother.Theconstructionofaworking

surfacemodelproofedtherefore tobe much morecomplicated thanexpected. Polaristion e ects

causedbytheelectricdipole eld ofthewatermoleculecanleadto asuddenredistributionofthe

6selectronsandchange sotheelectronicstructureoftheclusteraswellasthetotalenergy.

Atthispointwestartedthedevelopmentofourown1-valenceelectronECPforplatinum. The

aim was not so much the reduction of the computational costs but to minimize the number of

electronic states close to the ground state. As the density of electronic states becomes smaller,

suddenchangesoftheelectronicstructureoftheclusterbecomelesslikelyandthescanningofthe

potentialenergysurfaceeasier.

Both,the1-andthe18valenceelectronECPcalculations,wouldhavebeenmuchmorediÆcult

withouttheapplicationoftheHuckeltheorytotheplatinum6sorbitals. Huckeltheoryallowedus

toidentifysuitableelectronicstatesforthesurfacemodelandtounderstandtheelectronmovements

within thecluster.

The platinum-water bond was found to be similar to the hydrogen bond in water clusters

and cooperativee ects are therefore likely tobefound in the interactionbetweenwater andthe

platinumsurface. Inspired by Ogasawara weusedPt

3 (H

2 O)

3

asmodel fortheadsorption of

wateronPt(111)[42,56]. Thesecalculationsshowedthatcooperativee ects,similartothee ects

observedinthewatertrimer,haveastrongin uenceonthegeometryandtheenergyofthewater

cluster.

Cooperative forces in the platinum-water bond can turn a water molecule out of its ideal

orientation. Doering andMadey suggestedawaterbilayersimilarto thestructureof ice Ihto

grow on the metal surface [39]. In this model every water molecule is tetrahedraly surrounded

by bonding partners and the hydrogens of the water molecules directly attached to platinum

pointawayfrom thesurface. Ourquantumchemicalcalcualtionsontheotherhand showed,that

the energy to movethe hydrogens upordown is verysmall and the prefered angle betweenthe

molecular plane of the water molecule and the platinum-oxygen bond depends strongly on the

chosenmethod for thecomputation. We used thereforeour ownclasical water-waterinteraction

potentialto analysethepreferdgeometry ofawaterhexamerunder surfaceconditions.

Thefollowinglist sumarizestheindividual chaptersofthisworkandtheircontents.

Chapter1 containstheliteraturesurveyaswellasanintroductionto thiswork.

Chapter2 compiles briefsummaries of themethods used for this work. Theories, who are

notdescribedinstandardquantumchemistrytextbooks,aredescribedingreater

detailthanproceduresandformulae,whicharepartof thosetextbooks.

Chapter3 focusesonthequantumchemistryofsmallwaterclusters. Thewaterdimerserved

asbenchmarktestforthecomputationalmethod(DZPbasisset,MP3,fullBSSE

correction),whichwaslaterusedfortheanalysisofcooperativeforcesinthewater

(35)

throughthepotentialenergysurfaceofthewaterdimer andselectedpointsfrom

thetrimersurface(chapter3)and rstapplicationsofthenewpotential.

Chapter5 demonstratestheapplicationoftheHuckeltheorytotheanalysisofsmallplatinum

clusters. Theresultsofthesecalculationsarelaterusedin thechapters6and7.

Chapter6 isacompilationofthequantumchemicalcalculationsforPt

n andPt n H 2 O(n=

1,2,3,5,9)usingtheLanL2DZECP(18velenceelectrons)fromHayandWadt

[189]. Thischapterexaminesthecorrelationoftheplatinum-waterbondstrength

andtheelectronic stateofthemetalcluster.

Chapter7 summarizesthe development ofa new 1valence electronECP for platinum and

itsapplication fortheanalysisofPt

5 H

2 O.

Chapter8 combinesallresultsobtainedsofarandfocussesonwaterclustersontheplatinum

surface. The rst section of Chapter 8combines the resultsfrom chapter 3 and

6forthe analysis ofcooperativee ects in Pt

3 (H

2 O)

3

while the second section

usestheresultsfromthechapters4,6and7toinvestigatethewaterhexameron

avirtualmetalsurface.

Chapter9 isthesummary ofsummariesandsuggestsfurtherproceedings.

Chapter10 liststheliteraturereferencesandprogramsusedforthiswork

Chapter11 Appendix

Attention: The atomic energy unit Hartree is abbreviated with 'H'

(36)

Referenzen

ÄHNLICHE DOKUMENTE

Stockholm Environment Institute, Stockholm, Sweden (1997). Water scarcity indicators; the deception of the numbers. Review and classification of indicators of green water

Enclosed by this shorter discussion is the main body of the review dealing in turn with(!) identifiability and experimental design, (2) the generation of preliminary

In both phases, gaseous and liquid, we observed molecules with combinations of benzene rings and ester bonds as well as highly reactive functional groups like oxiranes,

The boron atom of the borylene ligand is sp 2 -hybridized and features an anionic iodo and a neutral 4-Pic substituent, similar to other base-stabilized bory- lene ligands [18 –

A sequence of existing biochemical water quality models of increasing complexity and diversity will be presented and compared with the same data sets. Primary consideration is

3.19 E Stone-Wales int,graphene+H 2 versus separation between hydrogen molecule and graphene plane with Stone-Wales -defect for eight distinct hexagon-z molecule configurations on

3.2 Enhancement above the Arabian Sea and India Three days backward trajectories were calculated for both flight tracks of outward and return flight over the Arabian Sea.. The

describes an organizational scheme for interaction design patterns to support the process of implementing a complete pattern language covering all the different levels of the solution