• Keine Ergebnisse gefunden

Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells

N/A
N/A
Protected

Academic year: 2022

Aktie "Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells

Z. Korwek

a

, T. Sewastianik

a

, A. Bielak-Zmijewska

a

, G. Mosieniak

a

, O. Alster

a

, M. Moreno-Villaneuva

b

, A. Burkle

b

, E. Sikora

a,∗

aLaboratoryoftheMolecularBasesofAgeing,NenckiInstituteofExperimentalBiology,PolishAcademyofSciences,02-093Warsaw,Poland

bMolecularToxicologyGroup,BoxX911UniversityofKonstanz,Universitaetsstrasse10D-78457Konstanz,Germany

Keywords:

FADU

␥H2AX DSBs Caspases KU55933

a b s t r a c t

ItisbelievedthatnormalcellswithanunaffectedDNAdamageresponse(DDR)andDNAdamagerepair machinery,couldbelesspronetoDNAdamagingtreatmentthancancercells.However,theanticancer drug,etoposide,whichisatopoisomeraseIIinhibitor,cangenerateDNAdoublestrandbreaksaffecting notonlyreplicationbutalsotranscriptionandthereforecaninduceDNAdamageinnon-replicating cells.Indeed,weshowedthatetoposidecouldinfluencetranscriptionandwasabletoactivateDDRin restinghumanTcellsbyinducingphosphorylationofATManditssubstrates,H2AXandp53.Thisledto activationofPUMA,caspasesandtoapoptoticcelldeath.LymphoblastoidleukemicJurkatcells,ascycling cells,weremoresensitivetoetoposideconsideringthelevelofDNAdamage,DDRandapoptosis.Next, weusedATMinhibitor,KU55933,whichhasbeenshownpreviouslytobearadio/chemo-sensitizing agent.PretreatmentofrestingTcellswithKU55933blockedphosphorylationofATM,H2AXandp53, which,inturn,preventedPUMAexpression,caspaseactivationandapoptosis.Ontheotherhand,KU 55933incrementedapoptosisofJurkatcells.However,etoposide-inducedDNAdamageinrestingTcells wasnotinfluencedbyKU55933asrevealedbytheFADUassay.AltogetherourresultsshowthatKU 55933blocksDDRandapoptosisinducedbyetoposideinnormalrestingTcells,butincreasedcytotoxic effectonproliferatingleukemicJurkatcells.Wediscussthepossiblebeneficialandadverseeffectsof drugsaffectingtheDDRincancercellsthatarecurrentlyinpreclinicalanticancertrials.

1. Introduction

The cell cycle of normal somatic cells is regulated with extremelyhighprecision.Thisisachievedbyanumberofsignal transductionpathways,knownascheckpoints,whichcontrolcell cycleprogressionensuringaninterdependencyoftheS-phaseand mitosis,theintegrityofthegenomeandproperchromosomeseg- regation[1].Thecellcyclecheckpointsarecriticalforprotection fromuncontrolledcelldivisionwhichisthemainfeatureofcancer development.

DNA damage checkpoints are activatedwhen cells undergo DNAreplication(S-phase)orifDNA(G1andG2)isdamagedby reactiveoxygenspecies orgenotoxicandotherinsults.Thesig- nalsof double-strandDNAbreaks(DSBs)aretransducedbythe socalledDNA damageresponse (DDR)pathwayand determine cellfateasoneofthethreeresponses:transientcellcyclearrest

Corresponding authorat: NenckiInstituteof ExperimentalBiology, Polish AcademyofSciences,3PasteurSt,02-093Warsaw,Poland.Tel.:+48225892436;

fax:+48228225342.

E-mailaddress:e.sikora@nencki.gov.pl(E.Sikora).

(repair), stablecellcyclearrest(senescence) orcelldeath(apo- ptosis).DDRismediatedbyDNAdamageproteinsensors,suchas theMRN(Mre11–Rad50–Nbs1)complex,which triggertheacti- vationofasignaltransductionsystemwhichincludestheprotein kinases:ATM(ataxiatelangiectasiamutated),ATR(ATMandrad3- related),Chk1andChk2.Ultimately,theDDRactivatesp53,which contributes to either an apoptotic or senescence response via transactivationof pro-apoptoticproteinsbelongingtotheBcl-2 proteinfamilyorcyclindependentkinaseinhibitorp21,respec- tively(reviewedby[2,3]).

InductionofDSBstriggersphosphorylationofoneofthevari- antsofthenucleosomecorehistone,namelyH2AX,onSer-139.This phosphorylationismediatedbyATM,whichitselfisactivatedby autophosphorylationonSer-1981.Thepresenceofphosphorylated H2AX,named␥H2AX,canbedetectedimmunocytochemicallyin theformofdistinctnuclearfociwhereeachfocusisassumedtocor- respondtoasingleDSB[4].Co-localizedwith␥H2AXareproteins suchasRad50,Rad51,Brca1andthep53bindingprotein1(53BP1), recruitedtotheDSBsite.ConcomitantactivationofATMandH2AX phosphorylationisconsideredtobeareliablehallmarkofDSBs[4].

Recentlyalso53BP1hasbeenrecognizedasaconvenientmarker ofDSBs,formingnuclearfocitogetherwith␥H2AX[5].

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-217198

https://dx.doi.org/10.1016/j.dnarep.2012.08.006

(2)

Thereareanumberofdocumentedgeneticlesionsincheck- pointgenes,orincellcyclegenes,whichresulteitherdirectlyin cancerdevelopmentorinapredispositiontocertaincancertypes andgenomicinstability[6].Ontheotherhand,radio/chemotherapy inducesDNAdamageincancercellswhichthenswitchonDDRthat leadstocellsenescenceorcelldemiseviaapoptosisorthemitotic catastrophe[7].TherearemanyagentsinducingDNAdamagein cancercellsandetoposideisoneofthem.

Etoposidehasbeenusedinthetreatmentofawidevarietyof neoplasms,includingsmall-celllungcancer,Kaposi’ssarcoma,tes- ticularcancer,acuteleukemiaandlymphoma[8].Etoposideisa poisonof topoisomerasetypeII(Top2)[9],which stabilizesthe cleavage complex leading toTop2 mediated chromosome DNA breakage[10].Inmammals,therearetwoisozymesofDNAtopo- isomeraseII,Top2␣andTop2␤bothofwhich,seemtobeinvolved notonlyinreplicationbutalsointranscription[11–13].Thus,it couldbeexpectedthatetoposidecanexertadverseeffectonslowly ornon-proliferatingnormalcellsbyinfluencingbothTop2␣and Top2␤duringtranscription.

The majorside effect of radio/chemotherapy, including that elicitedwiththeuseofetoposide,isleucopeniacausedbydrug cytotoxicitytomyeloidcellsandmaturelymphocytes.Themain mechanism of thecytotoxic effect of etoposide might be apo- ptosisoftheimmune cells[14].Veryrecently,theinductionof

␥H2AXhasbeenobservedinperipheralbloodlymphocytesirra- diatedinvitro[15]andtherelationbetweenDNAdamagefociand withapoptosisofrestinglymphocytesfromirradiatedpatientswas revealed[16].However,toourknowledge,therearenopublica- tionsshowingarelationbetweenetposide-inducedDNAdamage, DDRandapoptosisofrestinglymphocytes.Weexpectedthatthe DNAdamageresponseandsubsequentapoptosismighttakeplace inprimary non-proliferatinghuman Tcells treatedwithetopo- side.Indeed,weshowinthispaperthatthetreatmentofTcells withetoposidecausedDNAdamageandinducedactivationofthe DNAdamage signalingpathwayfollowed byp53-and caspase- dependentapoptosis.PretreatmentofcellswiththeATMinhibitor, KU55933,successfully blockedDDR,butdidnotinfluenceDNA damage level measured by the FADU technique. In a seminal paperdescribingKU55933itwasshownthattheATMinhibitor sensitizedHeLacellstothecytotoxiceffectsofetoposideasmea- suredbytheclonogenicityassay[17].Weshowsurprisingly,that KU55933protectsTcellsagainstapoptosisindicatingitsoppo- site action onnormal resting cells and on proliferatingcancer ones.

2. Materialsandmethods 2.1. Cellculture

HumanTcellswereisolatedfrombuffycoatsofbloodsamples obtainedfrominformedhealthyvolunteerdonors,inaccordance withlocalethicalregulations,andprovidedbyDomesticBloodCen- ter,Warsaw,Poland.IsolationwasperformedusingtheRosetteSep HumanTCellIsolationCocktail(StemCellTechnologies,Vancou- ver,Canada),accordingtothemanufacturer’sinstruction.Thecell purity wasusually more than 95%(estimated byflow cytome- try).Cells wereseededat adensity of1×106 cells/mlin RPMI 1640mediumsupplementedwith10%FBS,2mMl-glutamineand antibioticsandkeptinhumidifiedatmosphere(37Cand5%CO2 intheair).

JurkatE6.1cellsobtainedfromECACC(EuropeanCollectionof CellCulture)wereculturedinRPMI1640mediumsupplemented with10%FBS,2mMl-glutamineandantibioticsandkeptinhumid- ifiedatmosphere(37Cand5%CO2intheair).Thecellswereseeded 24hbeforetreatmentatadensityof4×105cells/ml.

Etoposide (Sigma–Aldrich, Poznan, Poland) and KU 55933 (TocrisBioscience,Bristol,UK)weredissolvedinDMSOandadded tothemediumtoagivenfinalconcentration.KU55933wasadded tothemediumfor2hbeforeetoposidewithoutmediumexchange.

TheDMSOconcentrationincellculturedidnotexceed0.1%,which didnotinfluencecellsurvival.

2.2. Transcriptiondetection

DetectionofnewlysynthesizedRNAwasestimatedusingthe Click-iT® RNA HCS Assays (Invitrogen). T cells (1×106) were treated with transcription inhibitors either 10␮M ␣-amanitin (Sigma–Aldrich) for 17h or 40␮M 1-␤-d-ribofuranoside (DRB) (Sigma–Aldrich) for 1h before theaddition of 1mM 5-ethynyl uridine (EU) for 1h at 37C. Afterwards cells were fixedwith 3.7%formaldehydeinPBSfor15minandpermeabilizedwith0.5%

Triton-X100inPBSfor15min.EUincorporationwasdetectedusing theClick-iT®reactioncocktailcontaininggreen-fluorescentAlexa Fluor®488azide.Afterthewashingstep,meanfluorescenceofcells wasmeasuredusingFACSCalibur(BDBiosciences,Warsaw,Poland) andCellQuestProsoftware(BDBiosciences,Warsaw,Poland).

2.3. Apoptosisdetection

Externalizationof phosphatidylserine (PS)totheouterlayer ofcellmembranewasexaminedbybindingofAnnexinVinthe presenceof7-AAD,adyewhichstaineddeadcells.Theassaywas performedusingthePEAnnexinVApoptosisDetectionKitI(BD Biosciences, Warsaw,Poland).Cellswerewashed,suspended in theAnnexinVbindingbufferandstainedwithPE(Phycoerythrin) conjugatedwith Annexin V and 7-AADfor 15min at RT.Flow cytometricanalyseswereperformedusingFACSCaliburandthe CellQuestProanalysissoftware.

2.4. Immunocytochemistry

Cellswerewashedandfixedwith2%PFAfor20min,atRT.Cells werewashedtwiceandattachedtotheSuperfrost® PlusMicro- scopeSlides (Thermo Scientific, Braunschweig, Germany) using thecytospincentrifuge.Afterwardstheywerepermeabilizedwith 70%ethanolovernightat−20C.Next,cellswereblockedwith5%

bovineserumalbumin(BSA)inPBScontaining0.5%Tween-20and 0.1%TritonX-100for30min.Afterwashingcellswereincubated withprimaryanti-p-ATMSer1981(Abcam,Cambridge,UK),anti-

␥H2AX,(Abcam),anti-53BP1(NovusBiologicals,Cambridge,UK) andanti-Ki-67(Dako,Gdynia,Poland)antibodiesdiluted1:500in 1%BSA/PBS(0.5%Tween-20and0.1%TritonX-100)for2handthen withtheanti-mouseAlexa488/anti-rabbitAlexa555secondary antibodies(Invitrogen,Warsaw,Poland),1:500in1%BSA/PBS(5%

Tween-20and0.1%TritonX-100)for1h.DNAwasstainedwith DRAQ5(BiostatusLimited,Leicestershire,UK)diluted1:400inPBS for10minandthecoverslipsweremounted.Stainingswerevisu- alizedwithaLeicaTCSSP5laserscanningconfocalmicroscopewith a63×(1.4NA)PlanApoobjective.Forfluorescenceintensityeval- uationatleast50cellsfromeachexperimentwereanalyzedusing theLASAFsoftware(LeicaMicrosystems).

2.5. DNAcontentmeasurement

ForDNAcontentanalysiscellswerewashedinPBS,fixedwith 70%ethanolandkeptovernightin−20C.Afterwashingcellswere stainedwithPIsolution(3.8mMsodiumcitrate,50␮g/mlRNAseA, 500␮g/mlPI,inPBS)for30min.Flowcytometryanalysisof10,000 cellswasperformedusingFACSCaliburandtheCellQuestProsoft- ware.

(3)

2.6. Westernblottinganalysis

WholecellproteinextractswerepreparedaccordingtoLaemmli [18].Equalamountsofproteinwereseparatedelectrophorectically in8or12%SDS-polyacrylamidegelsandtransferredontonitrocel- lulosemembranes.Membraneswereblockedwith5%non-fatdry milkdissolvedinTBScontaining0.1%Tween-20for1hatRTand incubatedovernightat4Cwithoneoftheprimaryantibodies:

anti-ATM(1:500)andanti-H2AX(1:500)(Millipore);anti-p-ATM Ser1981(1:1000)andanti-␥H2AXSer139(1:1000)(Abcam);anti- p53(1:500)andanti-p21(1:250)(SantaCruzBiotechnology,Santa Cruz,USA);anti-p-p53Ser15(1:500),anti-Puma(1:1000), anti- caspase-3(1:500),anti-caspase-9(1:500);anti-caspase-8(1:500) (Cell Signaling, Boston, USA); anti-Poly(ADP-ribose)polymerase (PARP) (1:1000) (Enzo Life Sciences, Exeter, UK); anti ␤-actin (1:50,000)(Sigma–Aldrich).Specificproteinsweredetectedafter 1h incubation at RT with one of the horseradish peroxidase- conjugatedsecondary antibodies(1:2000) (Dako), using anECL system (GE Helthcare, Buckinghamshire, UK), according to the manufacturer’sinstructions.

2.7. Flowcytometrymeasurementofcaspase-2

Caspase-2activationwasmeasured24hand48haftertreat- ment with etoposide and/or KU 55933 by the CaspGLOWTM Fluorescein Active Caspase-2 Staining Kit (BioVision, Milpitas, USA).3×105ofcellsweresuspendedin300␮lofmediumand1␮l ofFITC–VDVAD–FMKwasadded.Thencellswereincubatedfor1h at37Cwith5%CO2.Aftertwowashesfluorescencewasanalysed byFACSCaliburwiththeCellQuestProsoftware.

2.8. FluorimetricdetectionofalkalineDNAunwinding(FADU) method

Amodifiedandautomatedversionofthe‘fluorimetricdetec- tionofalkalineDNAunwinding’methodwasemployedtomeasure thelevelofDNAdamageandrepairincellstreatedwithetoposide and/orKU55933.ThelevelofDNAstrandlesionswasanalyzed 30minaftercelltreatmentasdescribedpreviously[19].Themea- surementofDNAstrandbreaksbyFADUisbasedonthepartial denaturation(“unwinding”)ofdouble-strandedDNAundercon- trolledalkalineandtemperatureconditions.DNAstrandbreaksare siteswheretheunwindingofDNAcanstart.Briefly,afterinfliction ofDNAdamage,celllysiswasperformed.Unwindingwastermi- natedbyaddinganeutralizingsolution.Toquantifytheamountof DNAremainingdouble-stranded,acommerciallyavailablefluores- cencedye(SybrGreen®)wasusedasamarkerfordoublestranded DNA.

2.9. Statisticalanalysis

DatawereevaluatedusingtheMann–Whitneytest.

3. Results

3.1. EtoposideinducesapoptosisofrestingandproliferatingT cells

Previously it was shown by Tanaka et al. [20] that human lymphoblastoidcells,whichareintheG1phaseofthecellcycle, preferentially underwent apoptosis following treatment with etoposide(ETO).Wewereinterestedwhethercellswhichremain outof thecellcycle(G0phase)arealsosensitivetoETOtreat- ment.Tothisend,weperformedexperimentsonhumanTcells, whicharerestingcellsand,forcomparison,weusedproliferating lymphoblastoidleukemicJurkatcells.Wedecidedtoperformour

studiesusinganisolated pure(morethan95%)population ofT cells,insteadofperipheralbloodlymphocytescommonlyusedfor dosimetry,whicharethemixtureofcellsofdifferentfunctions, lifespanandpropensitytoundergoapoptosisinvivoandunder culturecondition.Moreover,Tcellsderivedfromhealthypeople aretrulyintheG0phase.

Toshowthisweperformedfollowinganalyses.Firstwechecked DNAcontentin restingTcells andJurkat cellsbyflow cytome- try.TheresultspresentedinFig.1Ashowthatthevastmajority ofrestingT cellswerein G0/G1phase (96%),whilstwithinthe population of Jurkat cells only abouthalf of them werein the G0/G1phase.Previously,weshowedthatPHAstimulationinduced proliferationofrestingTcells[21].However,DNAcontentmea- surementdoesnotdiscriminatebetweencellsintheG0andG1 phase.Thus,weperformedadditionalanalysis,namelytheKi67 expressionwasmeasuredbyimmunocytochemistryinrestingand PHA(0.5␮g/ml)stimulatedTcells.Ki67isacommonmarkerof proliferatingcells.AscanbeseeninFig.1B,beforestimulationall cellswereKi67-negative,whilstafterPHAstimulationsomecells wereKi67-positive.

WemeasuredtheapoptoticindexofnormalTcellsandJurkat cells treatedfor 24hwithetoposideatdifferentconcentrations rangingfrom1to20␮M.Apoptosiswasdetectedbyflowcytometry usingtheAnnexinV/7-AADassay.Theapoptoticindexwasdefined asthesumofthepercentageofcellswhichwereAnnexinV-pos- itiveand7-AAD-negative(earlyapoptosis,membraneintegrityis preserved)andthosewhichwereAnnexinV-and7-AADpositive (endstageofapoptosisandcelldeath).Fig.2Ashowscumulative valuesoftheapoptoticindexforrestingTcells.Asexpected,the highestapoptosislevelwasobservedincellstreatedwith20␮M ETO,howevera10␮Mdrughasalreadyinduceddeathinasub- stantialamountofrestingTcells(25%). Accordingly,for further experimentsweused10␮METO(ifnotstatedotherwise)asithas beensuggestedpreviouslythatthiscelltreatment(10␮M,24h) mimicsoneofthetherapeuticregimes[22].

When we measured the apoptotic index in Jurkat cells it appearedthattheyweremuchmoresensitivetoETOtreatment.

Namely,already5␮METOinducedapoptosisin40%ofcellsand 10␮METOwastwicemorecytotoxic.Thetimecourseof10␮M ETOcytotoxicityalsoindicatedhighersensitivityofleukemicthan normalnon-proliferatingTcellstoETOtreatment(Fig.2AandB).

3.2. EtoposideinducesDNAdamageinrestingandproliferating (Jurkat)Tcells

We were interested whether ETO induced apoptosis by introducingDNAbreaksleadingtoDDRinnormalrestinghuman TcellsandproliferatingJurkatcells.First,wecheckedDNAlesions byusingtwodifferentmethods,namely“fluorimetricdetectionof alkalineDNAunwinding”andimmunocytochemicaldetectionof DNAdamagefoci.

TheFADUmethodservestoquantifytheformationandrepair ofbothsingleanddoubleDNAstrandbreaks.Thisisaverysensi- tiveandquantitativemethod[19,23].Sincethismethoddoesnot discriminatebetweenprimaryandapoptoticDNAlesions,weonly analysedcellsaftertreatmentwithetoposideforashortperiodof time(30min).Thismethodwasusedjusttoshowwhetheretopo- sidewasabletoinduceconcentration-dependentDNAdamagein restingTcellsandcyclingJurkatcells.Lowfluorescenceintensities indicatedalargenumberofDNAstrandbreaks.Indeed,thismethod revealedthatETOaffectedDNAinbothnormalandleukemiccells.

HoweverlowerfluorescencecouldbeobservedinJurkatcellsafter treatmentwithallofthetestedconcentrations(Fig.3).Inthecase of10␮METOitwasabout30%oftheinitialfluorescencevaluein comparisonwithabout90%innormalrestingTcellsprovingthat restingTcellswerelesssensitivetotheDNAdamagingagentthan

(4)

Fig.1. NormalTcellsarerestingones.

(A)DNAcontentofTcellsandJurkatcellswereanalyzedbyflowcytometry.Percentageofcellsindifferentphasesofthecellcycleareindicated.(B)RestingTcellsafterPHA stimulationenteredthecellcycleaswasevidencedbyKi67staining.Theresultsarerepresentativeofatleast10measurements.Barscorrespondto20␮M.

Fig.2. ApoptoticindexofETO-treatedTcellsandJurkatcells.

(A)Dose-dependenceofapoptoticindexmeasured24hafterETOtreatmentandtimecourseofapoptosisinTcellstreatedwith10␮METO.(B)Dose-dependenceofapoptotic indexmeasured24hafterETOtreatmentandtimecourseofapoptosisinleukemicJurkatcellstreatedwith10␮METO.ApoptoticindexwasestimatedbytheAnnexinV/7- AADflowcytometryassay.Thebarsshowmeans±SDvalues.ApoptoticindexwasobtainedfromfourindependentexperimentsinthecaseofJurkatcellsandfromfour differentdonorsinthecaseofTcells.

(5)

Fig.3. DNAlesionsinducedbyETOinTcellsandJurkatcellsmeasuredbyFADUassay.

TcellsandJurkatcellsweretreatedwithETOatdifferentconcentrations.DNAlesionsweremeasuredafter30min.Thevaluesaremeans(±SDobtainedfromsixdonorsand sixmeasurementsinJurkatcells).

proliferatingJurkatcells.Toconfirmtheseresultsweusedanother methodwhichdetectsonlyDNAdoublestrandbreaks(DSBs)typi- calforETOaction,thatisphosphorylationofH2AXonSer-139.Fig.4 shows␥H2AXfociobservedunderaconfocalmicroscope.Asitcan beseenETOinducedformationof␥H2AXfocivisibleinJurkatcells already1haftertreatment.ContrarytoJurkat,restingTcellshad muchlessDSBsvisualizedas␥H2AXfociinducedbyETO.How- ever,24haftertreatmentwithETOmanycellsstainedfor␥H2AX wereintensivelygreen,butnofociwereobserved.Thiseffectisvery spectacularespeciallyinrestingTcellsthenucleiofwhichwerenot asfragmentedasthoseofJurkatcells.Asitwasreportedpreviously [24,25],thiseffectischaracteristicforDNAdamageinapoptotic cells,whichdisplaymuchstrongerphosphorylationofH2AXand moreintensefluorescencethantheoneobservedinthecaseofpri- marylesions.Altogether,ourresultsevidencedthatproliferating JurkatcellsweremoresensitivetoETOthannormalrestingTcells.

Moreover,inbothtypesofcellsDNAdamageinducedbyETOtrig- geredtheDDRfollowedbyapoptoticcaspasesactivation(chapter belowandsupplementaryFigure1).

3.3. KU55933inhibitsATMandDNAdamageresponseinresting Tcells

UpontheoccurrenceofDSBs ATMisactivatedbyautophos- phorylation. Recently, an ATP-competitive inhibitor, KU 55933 (KU), that inhibits ATM was identified and its specificity was

demonstratedbytheablationofphosphorylationofarangeofATM targets,includingp53,H2AXandothersinducedbyDNAdamage.

[17].

WewereinterestedwhetherATMinhibitionwouldaffectthe propensity of resting T cells to undergo DNA damage-induced apoptosis.Accordingly,wepretreatedTcellswith10␮MKUfor 2handthen10␮METOwasaddedtothemedium.First,using theconfocalmicroscopywecheckedthepresenceofphosphory- latedATMinETO-treatedcells,includingthosepretreatedwithKU (KU+ETO). ResultspresentedinFig.5revealedthatindeedETO inducedaccumulationofp-ATMSer1981whichwaspreventedby KU.

Next,wecheckedbyWesternblottingthelevelofATMandsome otherkeyproteinsoftheDDRpathwayuponETOand/orKUtreat- mentofrestingTcells.Asitisshown inFig.6A,ETOincreased thelevelofp-ATMSer1981already1haftertreatmentfollowed byanincreaseinitssubstrates,namely␥H2AXandp-p53Ser15.

Inductionoftotalp53anditsphosphorylationinETO-treatedcells wasfollowedbyincreasedlevelsofitsdirecttarget,namelythe proapoptoticPUMA.Asexpectedtheotherp53target,p21,which is a cellcycleinhibitor wasnotdetectedin non-proliferatingT cells.KUeffectively preventedtheinductionofp-ATMSer1981, p-p53 Ser15 and PUMA for at least 48h after ETO treatment.

Alsothe␥H2AXlevelinKU+ETOtreatedcellswassubstantially lowerfor aslong as12hafterKU+ETOtreatment. Collectively, we can assume that activationof ATM and phosphorylationof

Fig.4. ␥H2AXstaininginnormalrestingTcellsandleukemicJurkatcellstreatedwithETO.CellsweretreatedwithDMSOor10␮METOandstainedfor␥H2AX(green)and DNA(red).Representativeconfocalimagesareshown.Barscorrespondto10␮m.

(6)

Fig.5. KUpreventsphosphorylationofATMinducedbyETOinrestingTcells.

Tcellsweretreatedwith10␮METOfor6h.KUwasaddedtotheculturefor2hbeforeETO.(A)ATMfluorescencerevealedbyconfocalmicroscopyofcellsimmunostainedby antibodyagainstp-ATMSer-1981.DNAwasstainedwithDRAQ5.Theresultsarerepresentativeof3independentexperimentsperformedonTcellsisolatedfrom3donors.

Atleast50cellsfromeachgroupwereanalyzed.Barscorrespondto10␮m.(B)QuantificationofATMfluorescence(means±SD;***p<0.001).

Fig.6. InhibitionofATMbyKUleadstoattenuationofDDR(A)andprotectionfromapoptosisinrestingTcells(B).

TcellswerepretreatedwithKUfor2handthencultivatedwithorwithout10␮METOupto48h.Theblotisrepresentativeof3independentexperimentsperformedonT cellsderivedfrom3donors.

(7)

thedownstreamproteinsweresuccessfullyreducedbyKUtreat- ment.

However, KU had no influence on the DNA damage level introducedbyETOasmeasuredbyFADUassay(Supplementary Figure2A).

3.4. KU55933diminishedapoptosisofrestingTcellstreatedwith etoposide

AsPUMAisamediatorofapoptosiswecouldassumethatKU protectscellsalsoagainstETO-inducedapoptosis.Thusweveri- fiedthisbyothermarkers.Fig.6BshowsthatthePARPproteolysis detectedinETO-treatedcells 24hand48hafterETO-treatment wasdiminishedinKU+ETO-treatedcellsandhardlyvisibleinKU- treatedcellssuggesting,atleast,areducedlevelofapoptosisin KU+ETOtreatedcellsincomparisonwithETO-treatedcells.The samecouldbeconcludedfromthecomparisonofthe␥H2AXlevel.

PhosphorylatedH2AXisamarkerofDNAdamagewhichappears withinsecondsafterDNAbreak[4,26].However,itcanalsoreflect DNAfragmentationoccurringduringapoptosis[25,27],whichis ATM-independent[28,29].Actually,already after24hand later, concomitantlywiththeincreasedlevelof␥H2AX,weobserveda dropinp-ATMSer1981andtypicalATM“ladder”forapoptosisin ETO-treatedcellssuggestingthat␥H2AXcanbeaverysensitive markerofapoptoticDNAdegradationwhichoccursindependently ofearlyDDRactivation.Thesamesuggestionhasbeenmadepre- viouslybyotherresearchers[29].

Collectively, ETO induced symptoms of apoptosis such as:

increasedlevelofPUMA,cleavageofPARPandATM,andH2AX phosphorylationinrestingTcells.Allthesesymptomswerealmost completelysuppressedbyKUwhenchecked24hand48hafter KU+ETO-treatment.

TofurtherverifywhetherKUblocksapoptosiswecheckedthe apoptotic index(Fig.7A)andkey apoptoticcaspases uponnor- malTcelltreatmentwithETOandKU+ETO(Fig.7BandC).Asit canbeseen(Fig.7A)theapoptoticindexincreasedabout4times 48h aftercell-treatmentwith ETO.In cells pretreated withKU followedbyETOtreatmenta substantialreductionoftheapop- toticindexwasobservedincomparisonwithjustETOtreatedcells (p<0.001).Wealsocheckedthekeycaspasesinvolvedinapoptosis, namelycaspases-2,3,8and9.ResultsobtainedbyWesternblot- tingrevealedthatthelevelsofcleavedcaspases-3,8and9(Fig.7B) werehigherinETO-thaninKU-orKU+ETO-treatedcells.KUalso loweredthenumberofcellswithactivecaspase-2asmeasuredby flowcytometry(Fig.7C).

Thus,wecansummarizethatKUattenuatesactivationofATM andDDRsignaltransduction,whichinturnsubstantiallydimin- ishescaspase-dependentapoptosisinETO-treatedrestingTcells.

AsithasbeenshownpreviouslythatKUdidnotinhibitapo- ptosis,butquitetothereverse,itincrementedtheapoptoticeffect ofDNAdamagingagentsinmanycancercells[17],wepretreated Jurkatcells withKUand checkedtheapoptoticindex24hafter ETO-treatment.TreatmentwithKUaloneinducedapoptosisin40%

ofJurkatcellsandtheapoptoticindexwasincreasedseveraltimes incellstreatedwithKU+ETO(SupplementaryFigure1).

3.5. InhibitionoftranscriptionattenuatesDDRresponseinTcells treatedwithetoposide

It couldbeexpectedthat ETOexertsitscytotoxicactivityin restingTcells byinfluencing transcription.Toverifythis,inthe followingexperimentsweusedtranscriptioninhibitors,namely␣- amanitinandDRB,whichdonotinduceDNAdamagebythemselves [30]. Bothofthem inhibitedtranscription,although ␣-amanitin wasmoreeffective.Cellspretreatedwitheither␣-amanitin(17h) or DRB (1h)displayed lower level of DNA damageinduced by

ETO (measured as53BP1 foci) and had substantially decreased DDRresponse consideredas thelevelsof p-ATM Ser 1981and p-p53Ser15,measuredafter3hofETOtreatment(Fig.8).Accord- ingly, it can be assumed that ETO activity is associated with transcription.However,theinhibitorsdidnotprotectcellsagainst ETO-inducedapoptosismeasuredatlongertimes(24hafterETO- treatment).Moreoverlongerincubationwiththeinhibitors(41h for␣-Amanitinand25hforDRBinducedapoptosisbythemselves (SupplementaryFigure2B).

4. Discussion

Theaimofourstudywastoanswerthefollowingquestions:

(i)whether theDNA damagingagent,etoposidewould beable toevokeDDRandDDR-dependentapoptosisinnon-proliferating normalhumanTlymphocytes,and(ii)whetherinhibitionofATM wouldaffectthepropensityofnormalcellstoundergocelldeath.

Previouslyithasbeenshownthattheinhibitoroftopoisomerase I,caphotectin,activatesATManddownstreamproteinsinnormal humanperipheralbloodlymphocytesbyinhibitionoftranscription [30].WeshowedthatETO,thewellrecognizedinhibitoroftopo- isomeraseII,alsoaffectedtranscription,andthuswehypothesized thatitwouldactivateDDRinrestinghumanTcells.Indeed,weshow inthispapertheactivationofATMandofp53inTcellsupontreat- mentwithETO,followedbyapoptosis.AsexpectedKUsubstantially reducedthelevelofp-ATMSer1981andp-p53Ser15.Sordetetal.

[30]alsoreportedthatblockingATMautophosphorylationbyKU reducedthelevelofdownstreamproteinphosphorylationinnor- malhumanperipheralbloodlymphocytes.Howevertheydidnot addressthequestionofthepropensityofcellspretreatedwiththe ATMinhibitortoundergoapoptosis.

Our results revealed that KU protected T cells against ETO- inducedcaspasesactivationandapoptosis.Toourknowledgethis isthefirstsuchreport.Eventhoughitisratherunlikelythatres- tingTcellscanundergosenescenceasweshowednop21induction, wecheckedSA-␤-galactosidaseactivity,whichisawellrecognized markerofcellularsenescence[31].Theresults,asexpected,were negative(notshown).Instead,weshowedthatKUblockedallcru- cialcaspases,andmoreimportantly,weobservedanincreasedlevel ofPUMAinETO-treatedcellsbutnotinKU+ETO-treatedcells.Asit hasbeenshownpreviously,“noPUMAnodeath”,asthisproteinis necessaryforbothp53-dependentandp53-independentcelldeath [32].AlltheseresultsprovedthatKUreducedthelevelofETO- induceddeathofrestingTcells.Thisisquiteoppositetowhatis observedincancercells.Indeed,weshowedthatKUinducedapo- ptosisandincrementedtheapoptoticindexinJurkatcellstreated withetoposide.TherearealsootherreportsshowingthatKUsen- sitizescancercellstoradio-andchemotherapytreatment[33–35]

and to various DDR-inhibitory drugs, including those targeting ATM,whichareinpreclinicalandclinicaldevelopment[3].More- over,aswassuggestedbyJackson andBartek[3]this approach couldselectivelytargetcancercells.Firstly,differentDNA-repair pathwayscanoverlapinfunction,andsometimessubstitutefor eachother.Inhibitionofagivenpathwayshouldinsomecaseshave agreaterimpactoncancercellsthanonnormalcells,whichcon- trarytocancercells,haveallpathwaysunaffected.Secondly,cancer cellsareproliferatingmorerapidlythanmostnormalcellsandthe SphaseisaparticularlyvulnerabletimeforDNA-damagetooccur.

IndeedweshowedthatJurkatcellsweremuchmoresensitiveto ETO-inducedDNAdamageandthefollowingapoptosisthannor- malrestingTcells.Thus,theantiapoptoticactivityofKUinnormal cellswithinducedDNAdamagesupportstheideaofdeveloping abranchofATMinhibitorswhichcouldactselectivelyoncancer cells.However,itisvery wellknownthatATMdeficiency leads toataxia-telangiectasia(A-T),agenomicinstabilitywithhallmarks

(8)

Fig.7. InhibitionofATMprotectsrestingTcellsagainstDNAdamage-inducedapoptosis.

TcellswerepretreatedwithKUfor2handthencultivatedwithorwithout10␮METOfor24hand48h.(A)ApoptoticindexestimatedbyAnnexinV/7-AADflowcytometry assay.Upperpanelshowsarepresentativedensityplot.Bargraphshowsdataanalyzedfrom10independentexperimentsonTcellsfrom10donors(means±SD;***p<0.001).

(B)Levelsofcaspase-3,8,9measuredbyWesternblotting.Representativeblotsareshownfrom3experimentsperformedonTcellsfrom3donors.Arrowsindicatethefull lengthprocaspasesandtheircleavedforms.Molecular-massmarkersareshownontheleft.(C)Cellspositivefortheactiveformofcaspase-2asmeasuredbyflowcytometry.

Theresultscomefrom3independentexperimentsperformedonTcellsisolatedfrom3donors(means±SD).

ofneurodegeneration,immunodeficiencyandradiationsensitivity [36]suggestinghigherpropensityofA-Tcellstoundergoapopto- sis.Interestingly,othersshowedthatATMdeficiencyresultedina significantresistanceoflymphoidcellsderivedfromA-Tpatients

toFas-inducedapoptosisandthesameeffectcouldbeachievedby ATMinhibition(KU)inestablishedcelllines[37]advocatingthat thepropensitytoapoptosisofnormalcellswithATMdeficiencyis stillawaitingelucidation.

(9)

Fig.8. InhibitionoftranscriptionreducesDDRinETO-treatedrestingTcells.

(A)TranscriptionlevelafterTcelltreatmentwithinhibitors.Tcellswereuntreatedortreatedwith1-␤-d-ribofuranoside(DRB;1h,40␮M)or␣-amanitin(17h,10␮M) beforetheadditionof5-ethynyluridine,theincorporationofwhichwasdetectedandisexpressedasfluorescenceintensity.(B)DNAdamageinTcellstreatedwithETO reducedbytranscriptioninhibitors.CellswerepretreatedwiththeinhibitorsasindicatedinAandfollowedby3htreatmentwithETO.Then,cellswerestainedforp53BP1.

The53BP1fociinatleast60cellspereachtreatmentwerecountedunderconfocalmicroscope.(C)InhibitionofDDRbytranscriptioninhibitorsinTcellstreatedwithETO.

TheleveloftotalandphosphorylatedATMandp53proteinsweremeasuredincellstreatedasin(B).Representativeresultsfortwoindependentexperimentsareshown.

BlockingapoptosisincellstreatedwithanagentinducingDNA damageraisesthequestionwhetherthecellswhichsurvivedcould have unrepaired DNA damage. Actually, we showed using the FADUassay,thatKUdidnotinfluenceDNAprimarylesionsinT cells, althoughthis wasmeasuredonly ina shorttime, namely after30minofETOtreatment.However,onecannotexcludethat cellswhichsurvivedtheKU+ETO-treatmentcouldhaveunrepaired DNAduetoattenuationoftheDNArepairmachinery.Thustheben- eficialactionofKUindiminishingapoptosisinnormalTcellsmay beweakenedbypossibleadverseeffectssuchasdelayedapopto- sisorincreasedgenomicinstabilityduetothepersistenceofDNA damage.ItwasdocumentedthatATM[38]andH2AX[39]arecrit- icalforfacilitatingtheassemblyofspecificDNA-repaircomplexes ondamagedDNA.Ontheotherhand,itcanbeimaginedthatinan organism,duetothesupportivesurveillance,thecellscouldsur- vivelongerandhaveenoughtimeforDNArepair,especiallythat KUcompeteswithATPand itsinhibitoryactiononATMshould bereversible[17].Recently,ithasbeenshown thatallproteins neededfortherepairof␥-irradiationinducedDNA-damage,that canbedetectedbythealkalinecometassay,arealreadypresentin G0cellsatsufficientamountsanddonotneedtobeinducedonce lymphocytesarestimulatedtostartcycling[40].

5. Conclusions

ItiscommonlyacceptedthatDNAdamageresponseoperates atthecell cyclecheckpointsofproliferatingcells and itcanbe thetargetforchemotherapy.Ontheotherhanddataconcerning DDRinnormalnon-proliferatingcellsareveryscarce,althoughthe harmfuleffectelicitedbyradio/chemotherapyonrestingTcellshas beenreported.Accordingly,theaimofourstudywastoanswerthe followingquestions:(i)whethertheDNAdamagingagent,etopo- sideisabletoevokeDDR-dependentapoptosisinnon-proliferating normalhumanTlymphocytes,and(ii)whetherinhibitionofATM, whichisthekeyenzymeinDDRaffectsthepropensityofnormal cellstoundergocelldeath.

Weshowforthefirsttimethatetoposide,whichisatopoiso- meraseIIinhibitorinducedDNAdamageresponseviainfluencing transcription andthe subsequentapoptosisinnormal restingT cells. Both DDRand apoptosiswere blocked byATM inhibitor, KU 55933. The resultis intriguingin the light of the fact that thisinhibitorsensitizescancercellstoanticancerdrugtreatment.

Nonetheless,itcouldnotbeexcludedthatblockingDDRinnormal cellsdoesnotprotectagainstDNAdamagewhichmayeitherper- sistinnon-proliferatingcellsorinducedelayedapoptosis.Thus,to

judgewhetherATMinhibitorsdonotcausesideeffectsadditional studiesonclinicalmaterialareneeded.

Acknowledgements

Thiswork wassupported bythe NationalCenter ofScience (grant0727/B/P01/2011/40).

AppendixA. Supplementarydata

Supplementary data associated with this article can be found,intheonlineversion,athttp://dx.doi.org/10.1016/j.dnarep.

2012.08.006.

References

[1]L.H.Hartwell,T.A.Weinert,Checkpoints:controlsthatensuretheorderofcell cycleevents,Science246(1989)629–634.

[2]F.d’AddadiFagagna,Livingonabreak:cellularsenescenceasaDNA-damage response,Nat.Rev.Cancer8(2008)512–522.

[3]S.P.Jackson,J.Bartek,TheDNA-damageresponseinhumanbiologyanddisease, Nature461(2009)1071–1078.

[4]W.M.Bonner,C.E.Redon,J.S.Dickey,A.J.Nakamura,O.A.Sedelnikova,S.Solier, Y.Pommier,GammaH2AXandcancer,Nat.Rev.Cancer8(2008)957–967.

[5]L.B.Schultz,N.H.Chehab,A.T.D.Malikzay,Halazonetis,p53bindingprotein1 (53BP1)isanearlyparticipantinthecellularresponsetoDNAdouble-strand breaks,J.CellBiol.151(2000)1381–1390.

[6]Z.Storchova,D.Pellman,Frompolyploidytoaneuploidy,genomeinstability andcancer,Nat.Rev.Mol.CellBiol.5(2004)45–54.

[7]I.B.Roninson,E.V.Broude,B.D.Chang,Ifnotapoptosis,thenwhat?Treatment- inducedsenescenceandmitoticcatastropheintumorcells,DrugResist.Updat.

4(2001)303–313.

[8]K.Kobayashi,M.J.Ratain,Pharmacodynamicsandlong-termtoxicityofetopo- side,CancerChemother.Pharmacol.34(Suppl.)(1994)S64–S68.

[9]J.L.Nitiss,TargetingDNAtopoisomeraseIIincancerchemotherapy,Nat.Rev.

Cancer9(2009)338–350.

[10]C.C.Wu,T.K.Li,L.Farh,L.Y.Lin,T.S.Lin,Y.J.Yu,T.J.Yen,C.W.Chiang,N.L.

Chan,StructuralbasisoftypeIItopoisomeraseinhibitionbytheanticancer drugetoposide,Science333(2011)459–462.

[11]N.Mondal,J.D.Parvin,DNAtopoisomeraseIIalphaisrequiredforRNApoly- meraseIItranscriptiononchromatintemplates,Nature413(2001)435–438.

[12]B.G.Ju,V.V.Lunyak,V.Perissi,I.Garcia-Bassets,D.W.Rose,C.K.Glass,M.G.

Rosenfeld,AtopoisomeraseIIbeta-mediateddsDNAbreakrequiredforregu- latedtranscription,Science312(2006)1798–1802.

[13]J.L.Nitiss,DNAtopoisomeraseIIanditsgrowingrepertoireofbiologicalfunc- tions,Nat.Rev.Cancer9(2009)327–337.

[14] K.Nagami,Y.Kawashima,H.Kuno,M.Kemi,H.Matsumoto,Invitrocytotoxicity assaytoscreencompoundsforapoptosis-inducingpotentialonlymphocytes andneutrophils,J.Toxicol.Sci.27(2002)191–203.

[15]E. Markova, J. Torudd, I. Belyaev, Long time persistence of residual 53BP1/gamma-H2AXfociinhumanlymphocytesinrelationshiptoapoptosis, chromatincondensationandbiologicaldosimetry,Int.J.Radiat.Biol.87(2011) 736–745.

[16] E.C.Bourton,P.N.Plowman,D.Smith,C.F.Arlett,C.N.Parris,Prolongedexpres- sionofthegamma-H2AXDNArepairbiomarkercorrelateswithexcessacute

(10)

andchronictoxicityfromradiotherapytreatment,Int.J.Cancer129(12)(2011) 2928–2934.

[17]I.Hickson,Y.Zhao,C.J.Richardson,S.J.Green,N.M.Martin,A.I.Orr,P.M.Reaper, S.P.Jackson,N.J.Curtin,G.C.Smith,Identificationandcharacterizationofanovel andspecificinhibitoroftheataxia-telangiectasiamutatedkinaseATM,Cancer Res.64(2004)9152–9159.

[18]U.K.Laemmli,Cleavageofstructuralproteinsduringtheassemblyofthehead ofbacteriophageT4,Nature227(1970)680–685.

[19]M.Moreno-Villanueva,R. Pfeiffer, T.Sindlinger, A.Leake, M.Muller,T.B.

Kirkwood,A.Burkle,Amodifiedandautomatedversionofthe‘Fluorimetric DetectionofAlkalineDNAUnwinding’methodtoquantifyformationandrepair ofDNAstrandbreaks,BMCBiotechnol.9(2009)39.

[20]T.Tanaka,H.D.Halicka,F.Traganos,K.Seiter,Z.Darzynkiewicz,Inductionof ATMactivation,histoneH2AXphosphorylationandapoptosisbyetoposide:

relationtocellcyclephase,CellCycle6(2007)371–376.

[21] A.Brzezinska,A.Magalska,E.Sikora,ProliferationofCD8+incultureofhumanT cellsderivedfromperipheralbloodofadultdonorsandcordbloodofnewborns, Mech.AgeingDev.124(2003)379–387.

[22]ISchonn,JHennesen,D.C.Dartsch,Cellularresponsestoetoposide:celldeath despitecellcyclearrestandrepairofDNAdamage,Apoptosis15(2)(2010) 162–172.

[23]M.Moreno-Villanueva,T.Eltze,D.Dressler,J.Bernhardt,C.Hirsch,P.Wick,G.

vonScheven,K.Lex,A.Burkle,TheautomatedFADU-assay,apotentialhigh- throughputinvitromethodforearlyscreeningofDNAbreakage,Altex28(4) (2011)295–303.

[24]H.D.Halicka,X.Huang,F.Traganos,M.A.King,W.Dai,Z.Darzynkiewicz,His- toneH2AXphosphorylationaftercellirradiationwithUV-B:relationshipto cellcyclephaseandinductionofapoptosis,CellCycle4(2005)339–345.

[25]T.Tanaka,A.Kurose,X.Huang,W.Dai,Z.Darzynkiewicz,ATMactivationand histoneH2AXphosphorylationasindicatorsofDNAdamagebyDNAtopo- isomeraseIinhibitortopotecanandduringapoptosis,CellProlif.39(2006) 49–60.

[26]T.Tanaka,D.Halicka,F.Traganos,Z.Darzynkiewicz,CytometricanalysisofDNA damage:phosphorylationofhistoneH2AXasamarkerofDNAdouble-strand breaks(DSBs),MethodsMol.Biol.523(2009)161–168.

[27] G.Mosieniak,M.Sliwinska,K.Piwocka,E.Sikora,Curcuminabolishesapo- ptosisresistanceofcalcitriol-differentiatedHL-60cells,FEBSLett.580(2006) 4653–4660.

[28]C.Lu,F.Zhu,Y.Y.Cho,F.Tang,T.Zykova,W.Y.Ma,A.M.Bode,Z.Dong,Cellapo- ptosis:requirementofH2AXinDNAladderformation,butnotfortheactivation ofcaspase-3,Mol.Cell23(2006)121–132.

[29]B.Mukherjee,C.Kessinger,J.Kobayashi,B.P.Chen,D.J.Chen,A.Chatterjee,S.

Burma,DNA-PKphosphorylateshistoneH2AXduringapoptoticDNAfragmen- tationinmammaliancells,DNARepair(Amst.)5(2006)575–590.

[30]O.Sordet,C.E.Redon,J.Guirouilh-Barbat,S.Smith,S.Solier,C.Douarre,C.

Conti,A.J.Nakamura,B.B.Das,E.Nicolas,K.W.Kohn,W.M.Bonner,Y.Pommier, Ataxiatelangiectasiamutatedactivationbytranscription-andtopoisomerase I-inducedDNAdouble-strandbreaks,EMBORep.10(2009)887–893.

[31] E.Sikora,T.Arendt,M.Bennett,M.Narita,Impactofcellularsenescencesigna- tureonageingresearch,AgeingRes.Rev.10(2010)146–152.

[32] J.Yu,L.Zhang,PUMA,apotentkillerwithorwithoutp53,Oncogene27(Suppl.

1)(2008)S71–S83.

[33] I.G.Cowell,B.W.Durkacz,M.J.Tilby,Sensitizationofbreastcarcinomacells toionizingradiationbysmallmoleculeinhibitorsofDNA-dependentpro- teinkinaseandataxiatelangiectsiamutated,Biochem.Pharmacol.71(2005) 13–20.

[34] S.E.Golding,E.Rosenberg,N.Valerie,I.Hussaini,M.Frigerio,X.F.Cockcroft, W.Y.Chong,M.Hummersone,L.Rigoreau,K.A.Menear,M.J.O’Connor,L.F.

Povirk,T.vanMeter,K.Valerie,ImprovedATMkinaseinhibitorKU-60019 radiosensitizesgliomacells,compromisesinsulin,AKTandERKprosurvival signaling,andinhibitsmigrationandinvasion,Mol.CancerTher.8(2009) 2894–2902.

[35]F.S.Shaheen,P.Znojek,A.Fisher,M.Webster,R.Plummer,L.Gaughan,G.C.

Smith,H.Y.Leung,N.J.Curtin,C.N.Robson,TargetingtheDNAdoublestrand breakrepairmachineryinprostatecancer,PLoSONE6(2011)e20311.

[36]Y.Shiloh,ATMandrelatedproteinkinases:safeguardinggenomeintegrity,Nat.

Rev.Cancer3(2003)155–168.

[37]V.Stagni,M.G.diBari,S.Cursi,I.Condo,M.T.Cencioni,R.Testi,Y.Lerenthal,E.

Cundari,D.Barila,ATMkinaseactivitymodulatesFassensitivitythroughthe regulationofFLIPinlymphoidcells,Blood111(2008)829–837.

[38]A.A.Goodarzi,A.T.Noon,D.Deckbar,Y.Ziv,Y.Shiloh,M.Lobrich,P.A.Jeggo, ATMsignalingfacilitatesrepairofDNAdouble-strandbreaksassociatedwith heterochromatin,Mol.Cell31(2008)167–177.

[39]A.Celeste,S.Petersen,P.J.Romanienko,O.Fernandez-Capetillo,H.T.Chen,O.A.

Sedelnikova,B.Reina-San-Martin,V.Coppola,E.Meffre,M.J.Difilippantonio, C.Redon,D.R.Pilch,A.Olaru,M.Eckhaus,R.D.Camerini-Otero,L.Tessarollo,F.

Livak,K.Manova,W.M.Bonner,M.C.Nussenzweig,A.Nussenzweig,Genomic instabilityinmicelackinghistoneH2AX,Science296(2002)922–927.

[40]C.Mayer,O.Popanda,O.Zelezny,M.C.vonBrevern,A.Bach,H.Bartsch,P.

Schmezer,DNArepaircapacityaftergamma-irradiationandexpressionpro- filesofDNArepairgenesinrestingandproliferatinghumanperipheralblood lymphocytes,DNARepair(Amst.)1(2002)237–250.

Referenzen

ÄHNLICHE DOKUMENTE

We first analyzed whether the expression of total H2AX was altered, and did indeed find that this molecule was reduced in CD8 + CD28 ) T cells when compared to CD8 + CD28 + T cells.

TP53 mutEWS-FLi1gene fusion Measure for G1 or S arrest after drug-induced DNA damage response is given by the change of cells in G0/1 or S phase after doxo treatment compared

http://genomics.senescence.info/genes/. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Association between TP53 and

In summary, these data demonstrated that the efficient targeting of ATM achieved using a shRNA expressing lentiviral vector (pLV-ATMi) leads to clearly enhanced

Despite the induction of p21 by Dusp18 knockdown, the cell cycle sorting analysis of siRNA- transfected HCT116 and U2OS cells indicated that there was an increase in the fragment of

Since knockdown of Mdm2 also resulted in decreased γH2AX levels upon cisplatin treatment (Figure 5.2), we were wondering whether G2E3 could be a new regulator of p53 (like CHIP)

Moreover, using MCFs as in in vitro model, here, we demonstrate that TET3 additionally impacts DNA damage response (DDR) mechanisms via orchestrating checkpoint-assisted

In a previous report (Cobb et al., 2005) we showed, using ChIP, that γH2A occurs at high levels at stalled replication forks. The nearly exclusive dependence of this