• Keine Ergebnisse gefunden

Kriging and other Estimators of Spatial Field Characteristics (With Special Reference to Environmental Studies)

N/A
N/A
Protected

Academic year: 2022

Aktie "Kriging and other Estimators of Spatial Field Characteristics (With Special Reference to Environmental Studies)"

Copied!
21
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

W O R K I N G P A P E R

K R I G I N G AND OTHER E S T I M A T O R S O F S P A T I A L F I E L D C H A R A C T E R I S T I C S

( W I T H S P E C I A L R E F E R E N C E T O ENVIRONMENTAL S T U D I E S )

.

V . Fedorov

O c t o b e r 1 9 8 7 W P - 8 7 - 9 9

lnternat~onal lnst~tute for Appl~ed Systems Analys~s

A-2361 LaxenburgIAustr~a

EI I IASA

(2)

KRIGING

AND OTHER

ESTIMATORS OF SPATIAL

FJELD

CHARAWERISI'ICS

(WITH SPEIAL

REFERENCE

TO

ENVIRONMENTAL SlVDIES).

O c t o b e r 1 9 6 7 WP-87-99

Working Papers are interim r e p o r t s on work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only limited review. Views o r opinions e x p r e s s e d h e r e i n d o n o t n e c e s s a r i l y r e p r e s e n t t h o s e of t h e I n s t i t u t e or of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 L a x e n b u r g , Austria

(3)

Foreword

During t h e last t w o y e a r s , Valeri Fedorov h a s b e e n bringing h i s v e r y consid- e r a b l e s t a t i s t i c a l t a l e n t s to b e a r on t h e design of environmental monitoring sys- tems a n d on t h e analysis of e x p e r i m e n t a l d a t a in t h e environmental s c i e n c e s . In t h i s p a r t i c u l a r Working P a p e r , Valeri h a s examined t h e c o n c e p t of kriging, a method used t o r e c o v e r s p a t i a l p a t t e r n s from point measurements, f i r s t a p p l i e d in t h e geological s c i e n c e s . Unfortunately, environmental fields usually v a r y in time as well as s p a c e . This l e a d s to s e v e r e difficulties which h a v e n o t b e e n fully r e a l - ized by environmental s c i e n t i s t s . The n a t u r e of t h e s e difficulties i s e l a b o r a t e d in t h i s p a p e r .

R.E. Munn L e a d e r

Environmental P r o g r a m

(4)

KRIGING AND

CYlTtEZ

ESTIMATORS OF SPATIAL FIEU) CHARACl'ERISTICS

(WITH

SPECIAL REFERENCE

TO J3lWIRONMEWTAL

SrUDIES).

K Fedorov

1. Introduction

During t h e l a s t d e c a d e u s e of t h e k r i g i n g method ( o r simply "kriging") in- c r e a s e d g r e a t l y in r e s e a r c h r e l a t e d to t h e a n a l y s i s of s p a t i a l v a r i a b i l i t y of en- v i r o n m e n t a l p a r a m e t e r s ; see f o r i n s t a n c e , B a r n e s (1980), Dennis a n d S e i l k o p (1986), C l a r k et a l . (1986), Endlich et a l . (1986), Finkelstein a n d S e i l k o p (1981), D e r M e g r e d i t c h a n (1979) a n d McBratney a n d W e b s t e r (1981). I t i s d i f f i c u l t to u n d e r s t a n d t h e r e a s o n f o r t h i s i n c r e a s i n g p o p u l a r i t y ( b u t with some o c c a s i o n a l d a r k s p o t s ; see f o r i n s t a n c e , Akima (1974), Armstrong (1984)). I s i t i t s c o m p a r a - t i v e simplicity, s t a t i s t i c a l e f f e c t i v e n e s s , mathematical e l e g a n c y o r t h e mesmerizing impact of t h e word "kriging" (sometimes "universal kriging")? In t h i s p a p e r a n at- t e m p t to c l a r i f y t h e s i t u a t i o n a n d t o u n d e r s t a n d i t s p l a c e in t h e s t a t i s t i c a l t h e o r y of s p a t i a l p a t t e r n a n a l y s i s a n d t h e admissibility of t h e k r i g i n g method in e n v i r o n - mental s t u d i e s i s u n d e r t a k e n .

T e c h n i c a l d e t a i l s a n d computing a s p e c t s of t h e k r i g i n g method are a v o i d e d b u t t h e r e a d e r c a n find them f o r i n s t a n c e , in J o u r n a l a n d H u i j b r e g t s (1978), Ripley (1983) a n d Thiebaux a n d P e d d l e r (1987). Tho b i b l i o g r a p h i c o v e r v i e w by Bell a n d R e e v e s (1979) p r o v i d e s a g u i d e t o t h e o r i g i n a l t h e o r e t i c a l l i t e r a t u r e (mainly by K r i g e , M a t h e r o n a n d J o u r n e l ) a n d t h e n u m e r o u s a p p l i e d p a p e r s .

I t i s worthwhile to n o t e t h a t t h e method i s t h e a n a l o g u e f o r s p a t i a l p r o c e s s e s of Wiener-Kolmogorov p r e d i c t i o n t h e o r y . I t "has b e e n d e v e l o p e d a n d u s e d mainly by Matheron a n d h i s s c h o o l in t h e mining i n d u s t r y . H e c h r i s t e n e d t h e method k r i g - ing a f t e r D.G. K r i g e " (Ripley (1983) s e c t i o n 4.4).

U. Linear Estimators. Kriging

L e t some v a l u e y ( z ) b e o b s e r v e d at p o i n t s z l , z z ,

. . . ,z,

E X, w h e r e X i s t w o dimensional in t h e m a j o r i t y of a p p l i c a t i o n s . P o i n t s x i , i = l , n , could b e s p a c e d at t h e i n t e r s e c t i o n p o i n t s of some r e g u l a r g r i d b u t i t i s n o t e s s e n t i a l f o r t h e t h e o r y a n d d o e s n o t c a u s e s e r i o u s d i f f i c u l t i e s f o r modern s o f t w a r e if t h e y are not.

T h e estimation of v a l u e y a t t h e p r e s c r i b e d p o i n t z 0 i s of i n t e r e s t in t h e a n a l y s i s of s p a t i a l p a t t e r n s . F o r t h e p u r p o s e of t h i s p a p e r , i t i s s u f f i c i e n t to con- s i d e r only t h e l i n e a r e s t i m a t o r of y o

=

y ( z o ) :

w h e r e "T" s t a n d f o r t r a n s p o s i t i o n , h E R n ,

=

( y l , y 2 ,

.

.

.

, y,), yi

=

y ( x i )

.

(5)

A p r a c t i t i o n e r wishes to h a v e y^, as c l o s e to i t s t r u e v a l u e y o as possible. In o t h e r words, o n e h a s to minimize some m e a s u r e of d i s c r e p a n c y between

Go

a n d y o :

y o A

=

Arg min !discrepancy (Go, y O) j.

A (2)

The c h o i c e of t h e "distance" i s defined by t h e s t r u c t u r e s of y ( 2 ) . F r e q u e n t l y some c o n s t r a i n t s c a n b e imposed o n X in optimization problem (2).

Two main a p p r o a c h e s c a n b e e a s i l y t r a c e d in t h e c o r r e s p o n d i n g l i t e r a t u r e : t h e f i r s t i s d e t e r m i n i s t i c a n d closely r e l a t e d to c l a s s i c a l function approximation t h e o r y , while t h e s e c o n d i s b a s e d o n t h e assumption t h a t y ( z ) i s g e n e r a t e d by a random field ( s e e f o r i n s t a n c e Katkovnik (1985), Miccheli a n d Wahba (1981) a n d Ripley (1983)).

In both c a s e s , t h e most c r u c i a l assumptions are r e l a t e d to t h e "smoothness" of s u r f a c e y ( 2 ) . In t h e d e t e r m i n i s t i c c a s e , t h e s e assumptions usually c o n c e r n t h e d e r i v a t i v e s of y ( 2 ) . When y ( z ) i s g e n e r a t e d by a random field, assumptions con- c e r n i n g i t s c o r r e l a t i o n s t r u c t u r e are mainly used.

This p a p e r c o n c e r n s t h e latter case. The s q u a r e r i s k ( d i s c r e p a n c y m e a s u r e )

w h e r e p ( y o , y ) i s t h e d e n s i t y (assuming i t s e x i s t e n c e ) of t h e random v e c t o r ( y o , y ) E R n + I , will b e used as a c r i t e r i o n of t h e optimality of

Go.

I t i s known t h a t t h e l i n e a r e s t i m a t o r (1)-(3) i s t h e b e s t o n e only if y ( z ) i s a Gaussian random field.

In o t h e r cases. i t i s r e f e r r e d to as t h e best L i n e a r e s t i m a t o r . O b s e r v a t i o n s w i t h k n o w n m e a n - c o v a r i a n c e s t r u c t u r e .

L e t u s assume t h a t :

( a ) for a n y z a n d z ' t h e mean m ( z ) = E [ y ( z ) ] a n d t h e c o v a r i a n c e C ( z ,z ')

=

E [ ( y ( 2 ) - ( z ) ) ( y (2')-m ( z ' ) ] are known. In matrix n o t a t i o n , t h i s means p a r t i c u l a r l y t h a t

are given.

From definition (3) a n d (4), i t follows t h a t :

v2(X)

=

COO

+

m t

-

2 h T ( ~ 1 0 + m o m )

+

XT(Cil+mm T)X

.

(5)

The minimization of (5) l e a d s to t h e best L i n e a r ( u n c o n s t r a i n e d ) e s t i m a t o r :

A

Xl

=

(Cll+rnrn T)-l (ClO+rnrnO) , ( 6 )

T -1

u2(i1)

=

min u2(X)

=

Coo

+

m

-

(Col+m Tko)(Cll+mm ) (Clo+m Tm 0)

.

(7)

A

When l i n e a r c o n s t r a i n t s are imposed:

F X = L ,

w h e r e F i s a (k x n ) - m a t r i x a n d L i s a (k x1)-vector, t h e n t h e solution of X2 of (5) i s defined by t h e system:

(6)

where p c o r r e s p o n d s t o Lagrangian multiples.

The v a r i a n c e of t h e prognosis i s equal to:

v2(X2)

= v 2 ( i 1 ) +

+ T [ ~ T ( ~ l l + m m T ) - l ~ ] - l + , ( 1 0 )

T -1

where .I. = F T ( c l l +mm ) (COl + m om ) -L

.

The l a s t t e r m in ( 1 0 ) i s positive d u e t o positive definiteness of t h e matrix F T ( c l l + m m T ) - l ~ .

In o t h e r words, when demanding t h e fulfillment of some p r o p e r t i e s f o r ( t h e fulfillment of ( 8 ) ) , o n e s a c r i f i c e s i t s p r e c i s i o n in t h e s e n s e of (3):

v2(K1)

s

v 2 ( K 2 )

.

( 1 1 )

U n k n o w n m e a n s t r u c t u r e , k r i g i n g .

Formulae ( 6 ) , ( 7 ) a r e of t h e o r e t i c a l i n t e r e s t b u t f o r a p r a c t i t i o n e r t h e i r use- f ulness i s v e r y r e s t r i c t e d . Knowledge of both m ( z ) a n d C ( z ,z ') i s more o f t e n a n e x c e p t i o n t h a n a f r e q u e n t l y m e t situation. T h e r e f o r e , a number of a t t e m p t s t o con- s t r u c t e s t i m a t o r s t h a t d o not u s e m ( 2 ) a n d C ( z , z ' ) o r at l e a s t p a r t of t h i s informa- tion h a v e r e p e a t e d l y been u n d e r t a k e n . One of them i s k r i g i n g , w h e r e knowledge of m ( z ) i s not n e c e s s a r y . Unfortunately o n e h a s t o p a y f o r t h i s by t h e additional as- sumption:

(b) t h e mean of y ( z ) d o e s n o t depend upon z , e.g., m ( z )

=

m 0 , and by t h e fol- lowing c o n s t r a i n t imposed o n A :

k

In terms of ( 8 ) , t h i s means t h a t F = I T i s t h e v e c t o r ( l x k ) with a l l elements equal to 1 a n d L = m o . Constraint ( 1 2 ) p r o v i d e s a n unbiasness of t h e c o r r e s p o n d i n g esti- m a t o r X T y :

From ( 9 ) a n d ( 1 2 ) i t follows t h a t t h e k r i g i n g e s t i m a t o r i s t h e solution t o t h e following l i n e a r system

which d o e s n o t include v e c t o r m

The r e s t r i c t e d n a t u r e of assumption (b) w a s evident at t h e y e r y beginning of kriging h i s t o r y a n d t h e so-called u n i v e r s a l k r i g i n g e s t i m a t o r Auk w a s p r o p o s e d (Huijbregts a n d Matheron ( 1 9 7 1 ) ) , which was based o n t h e assumption:

(b') t h e mean of y ( z ) c a n b e p r e s e n t e d in t h e form m ( z )

=

1 9 ~ f ( z ), where f ( z ) i s a v e c t o r ( k x l ) , k

<

n , of a p r i o r i known functions. To o b t a i n t h e unbiased e s t i m a t o r , o n e h a s t o impose t h e following c o n s t r a i n t :

E [ x ~ ~ ]

=

X T F ~ I Y

=

f T ( z ) ~ , f o r a n y z E X ,

(7)

w h e r e

F =

L P ( z 1 ) , f ( z 2 ) * .

. .

# f ( ~ , ) l

From (9) a n d (14) i s follows t h a t t h e u n i v e r s a l k r i g i n g e s t i m a t o r

Xuk

i s t h e solu- tion of t h e system:

which similarly to (13) d o e s n o t include v e c t o r m

.

The e s t i m a t o r

iuk

i s unbiased if ( b ' ) i s fulfilled b u t v 2 ( i ) S v2(Xuk ).

F o r t h e u n i v e r s a l k r i g i n g e s t i m a t o r , (10) c a n b e t r a n s f o r m e d to

v 2 ( i u t )

=

Coo -

c ~ ~ c ~ ; ~ C ~ ~ +

+

~ ( z o ) - ~ c , i ~ c ~ o l ~ ( ~ , i ~ ~ ~ ) - ~ L P ( z o ) - ~ ~ ~ ~ ~ o ~

(16) Kriging i s m o r e a t t r a c t i v e t h e o r e t i c a l l y when ( a ) i s c h a n g e d i n t o t h e following

assumption (Huijbuegts a n d Matheron (1971)):

w h e r e i t i s assumed t h a t only t h e i n c r e m e n t s of t h e random field admit t h e f i r s t a n d s e c o n d o r d e r moments. From t h e o r y , i t i s known t h a t t h e r e are cases when t h e s e moments d o not e x i s t f o r y ( z ) itself while t h e y e x i s t f o r t h e c o r r e s p o n d i n g increments. Function 7 ( z , z ') i s c a l l e d a s e m i v a r i o g r a m a n d

2 7 ( z ,z')

=

[m ( z )

-

m ( z ')12

+

C ( z ,z )

+

C ( z ' , z ') - 2 C ( z ' , z J ) ,

if mean m ( z ), v a r i a n c e C ( z ,z ) a n d c o v a r i a n c e C ( z ,z') e x i s t . Usually in p r a c t i c e o n e believes in t h e i r e x i s t e n c e .

In applied s t u d i e s using kriging, a u t h o r s p r e f e r to work with t h e semivariogram 7 ( z ,z') i n s t e a d of t h e familiar c o v a r i a n c e C ( z ,z') although i t d o e s n o t make a c c e p t a n c e of t h e r e s u l t s a n y e a s i e r ( s e e t h e n e x t s e c t i o n ) .

To summarize t h i s s u b s e c t i o n , o n e c a n s a y t h a t k r i g i n g i s a p a r t i c u l a r c a s e of l i n e a r e s t i m a t i o n t h e o r y o r , to b e m o r e s p e c i f i c , some g e n e r a l i z a t i o n of t h e Wiener-Kolmogorov f i l t e r .

P r o b a b l y i t i s also worthwhile to n o t i c e t h a t a u n i v e r s a l k r i g i n g e s t i m a t o r c a n b e c o n s t r u c t e d in t h e framework of t h e g e n e r a l i z e d least s q u a r e method ( s e e sec- t i o n IV) when t h e model

i s c o n s i d e r e d u n d e r t h e assumption t h a t t h e c o v a r i a n c e s t r u c t u r e of t h e random error E ( Z ) i s known.

The simple k r i g i n g e s t i m a t o r c a n b e c o n s i d e r e d a l s o as a p a r t i c u l a r case of t h e m o v i n g a v e r a g e ( s e e , f o r i n s t a n c e , Katkovnik (1985)):

(8)

w h e r e weights Xi a r e defined by (3).

Clbservations w i t h u n k n o w n m e a n - c o v a r i a n c e s t r u c t u r e

Assumption ( a ) ( o r t h e t h e o r e t i c a l l y slightly milder assumption (a')) i s d r a s t i - cally r e s t r i c t i v e in p r a c t i c e f o r environmental analysis. In t h e publications r e l a t - ed t o kriging, t h e author_ could not find a n y a p p r o a c h o t h e r t h a n using t h e empiri- c a l estimates

6

( z ) a n d C ( z , z ') in p l a c e of m ( z ) and C ( z , ~ ' ) .

P r o b a b l y t h i s recommendation i s worthwhile in engineering s c i e n c e s w h e r e t h e r e e x i s t s t h e possibility of r e p e a t i n g similar e x p e r i m e n t s a n d w h e r e o n e c a n u s e so-called l e a r n i n g samples t o r e s t o r e m ( z ) a n d C ( z , z ' ) and t h e n t o u s e krig- ing. But in t h i s case t h e simpler and well established technique c a n b e used. F o r instance, instead of ( I ) , (8) o n e c a n u s e t h e estimator:

$ = X o + X T y t h a t in c a s e of (3) i s defined by t h e following formulae:

and

If t h e l e a r n i c g sample i s sufficiently l a r g e a n d o n e c a n f o r g e t t h e uncertain- t i e s of

6

( z ) and C ( z ,z ') t h e n (1.7) is b e t t e r t h a n kriging.

In environmental a p p l i c a t i o n s a n d by t h e way, in g e o s t a t i s t i c s ( t h e homeland of t h e kriging method), i t i s more r e a l i s t i c to u s e t h e t e r m o b s e r v a t i o n s t h a n ez- p e r i m e n t s . T h e r e f o r e , t h e problem of a good learning sample becomes h e r e espe- cially a c u t e and usually t h e r e i s no hope t h a t t h e e r r o r s of estimates $ ( z ) and C ( z ,z ') c a n b e neglected.

In t h i s c a s e , t h e a v e r a g e in formulae (7) and (10) (where all a p r i o r i unknown values are s u b s t i t u t e d by t h e i r estimates) h a s t h e conditional c h a r a c t e r :

E [ ( Q --y)2/ learning sample]

=

v2(j;)

Of c o u r s e t h e t o t a l variance, taking into a c c o u n t t h e randomness of l e a r n i n g sample, will b e g r e a t e r t h a n v 2 ( ~ ) defined e i t h e r by (7) or (10). To some e x t e n t t h e y c a n b e considered as e s t i m a t e s of the Low b o u n d s for t h e c o r r e s p o n d i n g to- t a l v a r i a n c e s .

The plight becomes worse when t h e same set of d a t a y

=

( y 1 , y 2 ,

. . .

, yn ) i s used both f o r t h e estimation of C,,, C,, a n d kriging. In t h a t c a s e , t h e a u t h o r h a s failed to find in t h e l i t e r a t u r e any s e r i o u s t h e o r e t i c a l r e s u l t s on t h e evaluation of t h e b i a s a n d t h e v a r i a n c e of t h e kriging estimators.

A sensitivity analysis examining how t h e estimate

Gut =

;&y will c h a n g e f o r given small p e r t u r b a t i o n s in Cll and Clo was d o n e by Warnes (1986). But i t i s a nu- m e r i c a l analysis of t h e s t a b i l i t y of system (15), r a t h e r t h a n a s t a t i s t i c a l analysis of t h e c o r r e s p o n d i n g e s t i m a t o r . which, f o r instance, must d e t e r m i n e how much t h e v a r i a n c e of

cut

will c h a n g e u n d e r small random p e r t u r b a t i o n s of t h e aforemen- tioned m a t r i c e s .

To conclude t h i s s e c t i o n , o n e c a n s a y t h a t in t h e c a s e of a p r i o r i unknown Col a n d Cll, t h e k r i g i n g a p p r o a c h g i v e s some h i n t s o n h o w to choose w e i g h t s for t h e

Linear e s t i m a t o r

x~~

b u t i t g i v e s n o s e r i o u s g u a r a n t e e of t h e i r o p t i m a l i t y .

(9)

III.

Examples

In a l l t h r e e examples presented h e r e , attention will b e focussed on t h e most sensitive a s p e c t of kriging : fitting of y ( z ,z ') o r C ( z ,z ') , leaving aside o t h e r a s p e c t s of t h e problem.

1. D i s t r i b u t i o n of r e s i d u a l c o n t a m i n a t i o n from a t m o s p h e r i c n u c l e a r t e s t s (Barnes (1980)).

Thi e ample i l l u s t r a t e s how t h e sernivariogram w a s estimated using d a t a on isotope

FZ4k

f o r one ground z e r o site. Smallboy. The d a t a w a s e x t r a c t e d from a more extensive study r e l a t e d t o t h e analysis of residual contamination a f t e r atmos- p h e r i c nuclear tests. The final objective w a s t o evaluate t h e contours of 241 activity. All experimental and geographical details c a n b e found in (Barnes (198&

and in t h e r e f e r e n c e s given t h e r e . In t h e cited r e p o r t it w a s assumed t h a t t h e observed value y ( z ) i s a random spatially weak stationary field, e.g., E [ y ( z ) ]

=

m and y ( z , z ')

=

y ( h ), where h

=

d ( z -z ') '(2 -z ')

This assumption i s essential because f i r s t l y it allows one t o estimate y ( z , z 8 ) and secondly i t makes i t possible to u s e simple kriging (m ( z ) = m , s e e assumption (b) from t h e previous section). The consistency of t h e assumption with r e a l i t y can b e evaluated, at l e a s t p a r t l y , with t h e help of Figure 1. Here, t h e "observed"

values ?(A) are plotted by numbers which correspond to t h e directions presented at t h e top-right c o r n e r of Figure 1 .

The "observations" were calculated by t h e following p r o c e d u r e (Barnes (1980)): "All points within a small angle of t r u e east-west of a given point are put in t h e "east-west" class and points t h a t a r e "approximately" h away of a given point are put in t h e distance h class. The size of small angle and t h e closeness of t h e distance approximation c a n b e controlled by t h e u s e r t o r e d u c e t h e e r r o r intro- duced by t h e s e approximations".

The dashed line in Figure 1 c o r r e s p o n d s t o t h e final approximation of y ( h ) and i t i s clear t h a t both anisotropy and possible d r i f t were ignored. Barnes did not mention how ?(A) w a s fitted t o t h e d a t a , but what i s evident i s t h a t i t does not follow t h e points at a l l , e x c e p t maybe in t h e interval 0

c

h S 1000ft.

From t h e definition of t h e semivariogram, it follows t h a t in t h e c a s e when t h e d r i f t of m ( z ) can b e ignored and y ( z ) i s weakly spatially s t a t i o n a r y , then

y ( h )

=

C'

-

C ( h ) , where C

=

C ( z , z ) and C ( h )

=

C ( z , z 8 ) .

I t seems t h a t f o r t h e physical phenomenon (distribution of contamination) con- sidered by Barnes, C ( h ) 2 0 f o r a l l h and lim C ( h )

=

0 (implicitly t h i s i s

h -+-

assumed, see p.6 of cited p a p e r , where various t y p e s of y ( h ) are considered).

T h e r e f o r e , f o r t h e u p p e r bound of y ( h ), one h a s

S?P

7 ( h

=

C ,

e.g., t h e plateau of y ( h ) ( o r "sill") h a s to b e equal to t h e v a r i a n c e C of observed values. From Figure 1 it follows t h a t C N 3400. Unfortunately, t h e s c a l e of t h e v e r t i c a l a x i s w a s not a c c u r a t e l y defined. Does it correspond t o y ( h ) o r t o 2 y ( h ) ? S o i t could b e t h a t C a! 1700, but this would not change t h e situation, i.e., where one cannot b e s u r e t h a t t h e inaccuracy of ?(A) defined by t h e dashed line in Fig- u r e 1 is not less than 30%. How c a n i t violate t h e r e s u l t s of t h e kriging p r o c e d u r e ? I s t h e r e any hope f o r i t s optimality? O r maybe i t i s a v e r y indirect way to con- s t r u c t a mediocre moving a v e r a g e estimator with v e r y r e s t r i c t i v e intermediate assumptions?

(10)

0 500 loo0

1m m 2.m

m,

D l STANCE (feet) h

Figure 1: Pointwise e s t i m a t e s for t h e semivariogram 7 ( h ) , B a r n e s (1980).

P r o b a b l y i t i s b e t t e r to u s e t h e moving a v e r a g e d i r e c t l y b e c a u s e i t n e e d s simpler computing a n d more s t r a i g h t f o r w a r d a n d e x p l i c i t assumptions a b o u t t h e na- t u r e of y (3: ).

2. K r i g i n g a n a l y s i s of the r e g i o n d p a t t e r n s of t h e chemical c o n s t i t u e n t s of p r e c i p i t a t i o n .

In t h e r e p o r t o n "Statistical analysis of p r e c i p i t a t i o n chemistry measure- ments" by Endlich et al, (1986), Ch. 4, t h e kriging a p p r o a c h was a p p l i e d t o interpo- late t h e y e a r l y medians of t h e daily l a b o r a t o r y

pH

a n d a n a l y t e c o n c e n t r a t i o n s at e a c h s i t e a n d f o r t h e y e a r l y t o t a l deposition of H a n d o t h e r a n a l y t e s . To p e r f o r m k r i g i n g t h e a u t h o r s s e p a r a t e d 'long-term s p a t i a l a n d temporal t r e n d s from y e a r - t o - y e a r fluctuations". The q u a d r a t i c s p a t i a l polynomial plus t h e l i n e a r time t r e n d w e r e used t o a p p r o x i m a t e t h e logarithms of t h e s e t r e n d s . The f i t t i n g technique was t h e o r d i n a r y l e a s t s q u a r e method. The r e s i d u a l s (observed v a l u e s minus t h e least s q u a r e estimates) were t a k e n as inputs f o r kriging. T h e i r v a r i a t i o n s f r o m year-to-year were a s s u m e d to be i n d e p e n d e n t , a n d t h e c o v a r i a t i o n s t r u c t u r e was

" a s s u m e d to be both s t a t i o n a r y (independent of Location) a n d i s o t r o p i c ( i n - a e p e n d e n t of direction)"

(11)

The semivariograms were evaluated by a l i n e a r model:

y ( h )

=

I9,

+

b 2 h

.

Fitting w a s done by t h e weighted l e a s t s q u a r e method with weights p r o p o r t i o n a l t o t h e number of s i t e - p a i r s and inversely p r o p o r t i o n a l t o d i s t a n c e h . Typical exam- p l e s of t h i s fitting a r e p r e s e n t e d in Figure 2 . I t i s difficult t o e v a l u a t e t h e good- n e s s of fitting b e c a u s e t h e i n v e r s e values of weights were not plotted. However, i t seems t h a t t h e f i t i s n o t v e r y good. Besides t h e l i n e a r approximation d o e s n o t re- f l e c t t h e f a c t t h a t t h e o b s e r v a t i o n s from t h e mutually remote s i t e s h a v e n o t t o b e c o r r e l a t e d and lim y ( h )

=

c o n s t , i . e . , y(h ), h a s to a p p r o a c h s a t u r a t i o n (compare

h +-

with t h e p r e v i o u s example and with t h e definition of a semivariogram).

T h e r e are some o t h e r points t h a t c a n b e criticized:

(a) Use of t h e l e a s t s q u a r e method to remove t r e n d s and subsequent application t o kriging i s not c o n s i s t e n t with t h e o r y : o n e h a s to u s e at l e a s t universal kriging in- s t e a d of t h e s e t w o s t e p s . Only in t h i s case are t h e estimates optimal in t h e s e n s e of (3) o r at l e a s t approximately optimal if t h e estimates f o r C ( h ) and subsequently f o r C1, a n d Cll a r e sufficiently p r e c i s e . I t seems t h a t t h e use of c o v a r i a n c e s (if t h e y e x i s t ) i s m o r e convenient both from t h e t h e o r e t i c a l and t h e computational points of view. In what follows, C ( h ) o r C ( z , z '), o r C1, ,Cll will b e used without comments.

With r e s p e c t t o r e s i d u a l s u i , t h e a u t h o r s of t h e r e p o r t did n o t notice t h a t t h e i r variance-covariance matrix i s singular. T h e r e f o r e a l l "kriging" formulae ( s e e , f o r instance, (9), (15), (16)) c a n n o t be % s e d d i r e c t l y ( t h e solution will n o t b e unique). P r o b a b l y , t h e use of some estimate C l l instead of Cll will r e g u l a r i z e com- putations. But t h i s "regularization" simultaneously means t h e loss of optimality of t h e p r o g n o s e s ( z ) d u e t o t h e p o o r estimation of Cll.

The singularity of C l l c a n b e easily verified.

Assume t h a t y = F T $ + & ( o r ~i

= f

T(zi )*+ci w h e r e F

=

(f(zi) ,

. . .

, f ( z n ) ) . Then t h e l e a s t s q u a r e e s t i m a t o r

3

is defined by t h e f o r -

mula ( s e e , f o r i n s t a n c e , Anderson, 1971):

-

I9 = ( w T ) - I F y , t h e v e c t o r of r e s i d u a l s e q u a l s

u

=

y

- F T S

= [ I - F ~ ( F F ~ ) - ~ F ] E and t h e v a r i a n c e - c o v a r i a n c e matrix of t h e r e s i d u a l s

Ell =

[I-F~(IT~)-~F]C,~[I-F~(IF~)-~F].

The p ~ o j e c t i o n matrix I

-

F T ( I T T ) - l F h a s r a n k (n

-

m ) , w h e r e m i s t h e di- mension of I9. T h e r e f o r e r a n k CI1

=

n

-

m , i.e. Cll i s singular (

I

Cll

1 =

0).

(b) The method of semivariogram estimation c a n b e improved (from t h e s t a t i s t i c a l point of view) almost without a n i n c r e a s e of computations.

F o r t h e s a k e of simplicity l e t u s assume t h a t o b s e r v e d values (i.e., o r d i n a t e s in Figure 2 ) are normally d i s t r i b u t e d . Then (see, for instance, S e b e r , 1977, Ch.

14):

(12)

F i g u r e 2: Empirical a n d f i t t e d semivariogram functions, Endlich et a1 (1986).

(13)

where h i s t h e distance between observation points. In t h e case of o t h e r distribu- tions, t h i s formula is more complicated.

The method of t h e i t e r a t i v e l e a s t squares:

n

19,

+, =

Arg min C st [yt -y(ht ,19)12/ y2(ht , 9 , ) ,

4 =

lim IJ, ,

d i =1 s

--

gives asymptotically ( n --) optimal estimates f o r I9 and y ( h ,19) , i.e., t h e method minimizes v a r (19) and v a r y[(h ,6)], see Malyutov (1982). In (18) ri i s t h e number of observations f o r e v e r y hi , I9 s t a n d s f o r unknown p a r a m e t e r s . In p r a c t i c e usu- ally t h e i t e r a t i v e p r o c e d u r e (18) i s terminated a f t e r 3,4 s t e p s .

(c) F o r all f o u r f i t t e d lines in Figure 2, t h e i n t e r c e p t ( i.e., i s significantly g r e a t e r 0 . I t means t h a t t h e r e e x i s t s a so-called n u g g e t e f f e c t (see, f o r instance, Gilbert and Simpson (1984)), i.e., a discontinuity of t h e c o v a r i a n c e function C ( z ,z'). This could probably o c c u r in geostatistics when o n e analyses t h e deposi- tion of some o r e minerals, but in t h e analysis of pollutants in fluids or atmospheric contamination, i t seems unreal. This i s also confirmed by t h e e x i s t e n c e in e a c h p a r t of Figure 2 of observation points located close t o t h e origin. Presumably, only observations with h r 3 f 4 still satisfy t h e kriging assumptions a n d more distant observations are e i t h e r violated by t r e n d s and anisotropy, o r t h e c o v a r i a n c e func- tion i s negative f o r h r 4 . The r e s u l t s p r e s e n t e d in Figure 3 ( t h e model

~ ( h )

=

+19~z')/ ( l + ' l ~ ~ z ~ ) , z =e -h -1, w a s f i t t e d t o t h e d a t a with t h e help of i t e r a t i v e u s e of BMDP AR program, 1983) are a good confirmation of t h i s a s s e r t i o n .

The above c r i t i q u e leads to t h e same conclusion as in t h e previous example.

3. S u l f u r d e p o s i t i o n model e v a l u a t i o n .

One of t h e main goals of t h e r e p o r t by Clark et a1 (1986), w a s t h e comparison of t h e s e v e r a l models c u r r e n t l y used f o r computing of s u l f u r deposition in North America. Roughly, t h e s t r a t e g y consists of t h e following s t e p s :

-

observations from i r r e g u l a r l y located observation s t a t i o n s are used t o esti- mate values at r e g u l a r g r i d points with t h e help of kriging,

-

model predictions o v e r some g r i d are used to obtain gridpoint values with t h e help of kriging,

-

both sets of r e s u l t s are compared by p r o c e d u r e s mainly based on methods of mathematical statistics.

In t h i s a p p r o a c h , f o r instance, "a confidence interval" f o r t h e d i f f e r e n c e in o b s e r v e d and p r e d i c t e d values w a s c o n s t r u c t e d as follows:

where

vPmd

=

kriging estimate f o r model prediction at t h e g r i d point, yobs

=

kriging estimate f o r t h e observed d a t a at t h e g r i d point, V a r (.)

=

kriging v a r i a n c e estimate.

If t h e deviation of k r i g e d values from t r u e values t h a t they estimate h a v e normal (Gaussian) distribution, t h e n (19) defines 95% confidence interval. S e e Clark et a1 (1986), p. 5.12.

(14)

(b) Total paipitation pr y e n

u-

1.6 4 t

.6 4 0 t

? 0 0

- 0

d

-

1

0 0 1.2 4 0 t

- P 0 a-

?

t

0

0 .80 4

. 3 4 0

0 0

, 4 0 4 : 0 0 0 0 0

- P

-0 -P

0. t t -0

... ... . . . ... ... ... ...

. + . . t . . . t . ... . t . . + . .+.. . + . . . . . . .

. . . ... .... ... ... .... t + 1 + + t t

2 . 6 . 10 I4 2 . 6 . 10 14

. t ... 4 ... t ... t ... t ... t . . .

6 . 10 I4

DISTANCE 1 1 YAP UNIT

-

170 K Y )

~~~l u* -itson pa vem lhDm IhbomoV pH) 4

3 5 ;

f

t

t - P

.21 4 0 t

0

P

pt

q

-

- $ . l I I t 4

.

P 0 0

2

-

0- 0 0 0 0

-0 # P P * P P i P P

i:

t 0

. 0 9 4 0 0 t

-P

4 0-

.... ... 4 ... t . . . .... 1 ... t ... t ,,...,. t ..,.. . . t . , ...

2 . 6. 10 14

DISTANCE I 1 MA? UNIT

-

170 KMI

F i g u r e 3: Fitted semivariogram y ( h )

=

(.IPlz +.IP2z ') / (1 +I@ '), z =e -1, v e r t i c a l l i n e s s t a n d f o r t h e s t a n d a r d e r r o r of p r o g n o s e s .

(15)

From t h e p r e v i o u s considerations ( s e e t h e concluding p a r t of section I1 a n d t h e f i r s t two examples) i t i s c l e a r t h a t t h e v a r i a n c e s computed by substitution of t r u e values of C ( z ) a n d C ( ( z , z ') ( o r y ( z , z ')) by t h e i r estimates (which are usually v e r y p o o r ) h a v e a v e r y remote r e l a t i o n with r e a l i t y . T h e r e f o r e , o n e c a n u s e (19), keeping in mind a number of "ifs" d u e t o t h e violation of assumptions a b o u t "pure kriging" a n d d u e to t h e assumption o n t h e normality of d i s t r i b u t i o n s of yPd a n d Yobs

Together with t h i s t e c h n i c a l r e m a r k t h e r e i s o n e more g e n e r a l comment. The s t r a t e g y of model comparison with d a t a c a n b e d e s c r i b e d by t h e scheme p r e s e n t e d in Figure 4. I t i s c l e a r from t h i s scheme t h a t one compares d i s t o r t e d images of t w o objects. In p r i n c i p l e t h e distortion d u e to p r o j e c t i o n I c a n b e v e r y small be- c a u s e a u s e r c a n continue computing until h i s models give good r e s u l t s o n any given g r i d . Then t h e whole p r o c e d u r e of comparison c a n b e d e s c r i b e d as comparison of t h e given set of models with o n e v e r y simple model which i s defined by t h e kriging method assumption ( s e e Section 11). Implicitly t h e a u t h o r s believe t h a t t h i s model i s b e t t e r t h a n a n y o t h e r c o n s i d e r e d in t h e i r r e p o r t .

P r o b a b l y t h e a p p r o a c h schematically p r e s e n t e d in Figure 4 would b e more f r u i t f u l .

IV.

Some Alternatives to Kriging

G e n e r a l i z e d l e a s t s q u a r e s (g.1.s.) e s t i m a t o r . In t h i s subsection t h e links between t h e kriging a p p r o a c h a n d t h e old-fashion l e a s t s q u a r e s e s t i m a t o r s will b e illuminated.

Let similarly to (b') from s e c t i o n I1

y f = J T ( ~ f )+

+

cf , i = l,n , where f ( z ) i s t h e v e c t o r of known b a s i c functions,

E [ q ]

=

0 , E [ c f E~

'1 =

Cll,ffd , o r in t h e matrix p r e s e n t a t i o n

y = F ~ + + E , E [ E E ~ ] = c ~ ~

.

(21)

To estimate t h e value of t h e r e s p o n s e y ( z ) at a given point z , o n e c a n follow t h e t w o s t e p s p r o c e d u r e :

-

compute t h e p a r a m e t e r s estimates

$,

-

p r e d i c t y ( z ) using t h e l i n e a r estimator

G(z) =

f T ( z ) 4 + A & ,

where u i s t h e v e c t o r of r e s i d u a l s , i.e. u

-=

y

-

F ~ + .

Vector Xo i s defined as a solution of t h e following optimization problem A , = A r g m p E [ u ( z ) - f T ( z ) a - X ~ ( ~ - F ~ $ ) ] ~ ,

(16)

F i g u r e 4: Comparison of model o u t p u t s with d a t a .

(17)

I t i s known (see, f o r i n s t a n c e , S e b e r , 1977) t h a t t h e g e n e r a l i z e d l e a s t s q u a r e e s t i m a t o r (which i s t h e b e s t l i n e a r unbiased e s t i m a t o r )

8 =

Arg min ( y - F ~ I ~ ) ~ c G ' ( y -FT 19)

d

c a n b e c a l c u l a t e d implicitly:

5

= ~ - l ~ c , i l y , M =FC,-~FT

.

Formally (22) coincides with (3) a n d at f i r s t g l a n c e all c o n s i d e r a t i o n s f r o m s e c t i o n I1 c a n b e applied to (23). Nevertheless. t h e r e e x i s t some s p e c i f i c f e a t u r e s of (22):

-

I t i s not n e c e s s a r y to impose a n y c o n s t r a i n t s o n h t o g e t a n unbiased estime- tor, b e c a u s e E[u (z)] = 0 a n d E [ u ]

=

0, d u e to t h e unbiased n a t u r e of I9, EL91

=

9 , .

-

The c o v a r i a n c e s t r u c t u r e of v e c t o r u is s i n g u l a r , i.e. IDl1

1 =

0, w h e r e Dll

=

E [UU T]. T h e r e f o r e t h e majority of formulae from s e c t i o n I1 c a n n o t b e used. The s t r a i g h t f o r w a r d calculations give:

Unfortunately o n e c a n n o t u s e (I?), w h e r e h = 0fi1lI1,, b e c a u s e Dll i s s i n g u l a r ( s e e a l s o comments in Example 2 ) a n d o n e must find a way to s o l v e t h e s i n g u l a r l i n e a r system:

(c,,-F~M-~F)A =

c,,

- F ~ M - ~ F C , - , ~ C , , (25) One of t h e simplest solutions of (25) is:

ho

= c,~~c,,

,

(CI1 assumed t o b e r e g u l a r ) .

I t h a s to b e s t r e s s e d t h a t Cll i s t h e v a r i a n c e - c o v a r i a n c e m a t r i z of t h e vec- t o r E b u t n o t t h e v e c t o r of r e s i d u a l s u! sombining (24) a n d (26) o n e finds t h a t t h e v a r i a n c e of t h e e s t i m a t o r y^(x )

=

f T ( z ) 9

+

C, l ~ $ u i s e q u a l to

If t h e e s t i m a t o r t ( z ) = f T(x

)a

i s used, t h e n

E [ y ( x ) - F ( z ) I

=

C, + ~ ~ l z ) ~ - ~ 3 ( 2 : )

.

The same r e s u l t will b e o b t a i n e d if Ci, = 0 ( o b s e r v a t i o n at point x i s u n c o r r e l a t e d with o t h e r o b s e r v a t i o n s ) .

E x p r e s s i o n (27) coincides with (16). i.e. t h e u n i v e r s a l k r i g i n g c a n be con- s i d e r e d as a p a r t i c u l a r a p p l i c a t i o n

03

t h e g e n e r a l i z e d l e a s t s q u a r e method.

Application to t h e least s q u a r e method allows o n e to trace a common t a k e in a number of applied s t u d i e s ( s e e examples) viz., t h e e s t i m a t e s of Dll a n d Dzl are used to c a l c u l a t e ho ( o r &); see a l s o (24).

(18)

In s p i t e of t h e t h e o r e t i c a l c l a r i t y of t h e generalized l e a s t s q u a r e method, i t s applicability to r e a l e m p i r i c a l s i t u a t i o n s i s v e r y p r o b l e m a t i c b e c a u s e of t h e neces- s i t y to know m a t r i c e s Cll a n d C1, a n d o n e c a n r e p e a t h e r e a l l c o n s i d e r a t i o n s f r o m s e c t i o n I1 r e l a t e d t o t h e case with a n unknown mean-covariance s t r u c t u r e .

Moving l e a s t s q u a r e s e s t i m a t o r . In t h e majority of a p p l i c a t i o n s ( s e e s e c t i o n 111) t h e c o r r e l a t e d o b s e r v a t i o n a l errors are used t o simulate t h e deviations of real p r o c e s s e s from a comparatively simple t r e n d approximation. Example 2 i s a good example. Unfortunately, t h e model (i.e., deviations which are random values with c o v a r i a n c e s t r u c t u r e C, , C1,, Cli) c o n t a i n s t o o many unknown p a r a m e t e r s to p r o - vide good prognoses. The u s e of kriging-related a p p r o a c h e s w h e r e C,, C1,, CI1 are s u b s t i t u t e d by t h e i r r o u g h e s t i m a t e s (and sometimes wrongly c o n s t r u c t e d t h e o r e t i c a l l y ) misleads r e a d e r s (and p r o b a b l y a u t h o r s a l s o ) in t h e evaluation of t h e p r e c i s i o n of prognoses.

I t seems t h a t in t h e examples c o n s i d e r e d , t h e moving a v e r a g e o r i t s slightly modified v e r s i o n - m o v i n g Least s q u a r e s e s t i m a t o r c a n give b e t t e r r e s u l t s a n d c l e a r e r a n d more d i r e c t understanding of t h e bounds of admissibility of t h e as- sump tions used.

Let z b e a point w h e r e t h e p r o g n o s i s h a s t o b e made, a n d zi

=

z

+

ui b e loca- tions of o b s e r v a t i o n points. Assume t h a t :

( a ) I n t h e vicinity of point z t h e following approximation i s valid

w h e r e y i i s t h e r e s u l t of o b s e r v a t i o n at point xi

=

z

+

ui,'lPO(z) a n d $ ( z ) a r e p a r a m e t e r s t o b e estimated, E~ ( z ) i s t h e o b s e r v a t i o n (and approximation) er- ror,

p

( u , Z ) i s a v e c t o r of given functions vanishing when u -, 0 .

The e s t i m a t o r c a n b e defined a s

n

f $ o ( z ) , $ ( ~ ) j

=

Arg min X ( u i , z ) [ y i -'lPO-'lPT~(~i , 2 ) l 2

.

G ( z )

=

(29) dose i =1

Function X(u ,z ) h a s to r e f l e c t t h e confidence in using approximation (28) a t point u. Normally X(u , Z ) i s a unimodal function and

h(O,z)

=

max X(u , z ) , lim X(u , z )

=

0 ,

U u +-

Using d i f f e r e n t h ( u , z ) o n e c a n easily v a r y t h e smoothness

5

( z ) . Due to (30), t h e a p p r o a c h e s similar t o (29) are f r e q u e n t l y a d d r e s s e d by t h e d i s t a n c e - w e i g h t e d Least s q u a r e s m e t h o d ( s e e Ripley, 1981, Ch. 37). In t h e c a s e when t h e r e i s n o p r i - or "physical" information a b o u t y ( z ) ( o r j ' ( u , z ) ) , o n e c a n c o n s i d e r (28) as t h e Taylor approximation of t h e r e s p o n s e y ( z ). F o r t h e second o r d e r Taylor a p p r o x i - mation, o n e will h a v e in t h e two-dimensional case:

w h e r e ei ( z ) is t h e r e m a i n d e r t e r m at point z

-

ut

.

F o r a sufficiently d e n s e o b s e r - vation network, approximation (31) usually s e r v e s r e l i a b l y . In more g e n e r a l case o n e c a n u s e any r e a s o n a b l e ( b e t t e r if s u p p o r t e d by some physical c o n s i d e r a t i o n s ) f ( u , z ) vanishing when u -, 0 .

(19)

The s t a n d a r d l e a s t s q u a r e s technique provides simple algorithms a n d formulae f o r t h e calculation of y^(z)

=

Go(") ( s e e , f o r instance, Golub and Van Loan (1983), S e b e r (1977)). F o r t h e o r e t i c a l analysis, i t i s convenient t o u s e t h e following f o r - mulae:

where

The e s t i m a t o r (29)-(32) c a n b e considered as some approximation scheme which c a n b e used i n both deterministic a n d s t o c h a s t i c a p p r o a c h e s . Usually in t h e s t o c h a s t i c case, i t i s e a s i e r t o e v a l u a t e t h e d i s c r e p a n c y between ( z ) and t h e t r u e value y (I), of c o u r s e paying f o r t h a t by t h e additional a n d p r a c t i c a l l y nonverified assumption:

(b) The o b s e r v a t i o n e r r o r s e i ( z ) are random values with E [ c i ( x ) ] = 0, ECci(z)cf (z)],

=

x-'(u~ , z ) b i i .

If (b) holds a n d f ( 0 , z )

=

0 (it i s q u i t e a usual case, c o m p a r e with (31)) then:

One h a s t o notice t h a t t h e o b s e r v e d value y

=

y ( z i )

+

e i ( z ) . In many appli- c a t i o n s i t i s r e a s o n a b l e t o c h o o s e x-'(u , x )

=

a )r

+

b ( u , I ) , w h e r e cr2 i s t h e v a r i - a n c e of a n o b s e r v a t i o n e r r o r , 6 ( u , x ) comprises local s t o c h a s t i c fluctuations and d ( 0 , z )

=

0 , lim 6 ( u

,z) =

=. The estimation scheme (29)-(33) c a n b e generalized

u +-

in t h e case of c o r r e l a t e d o b s e r v a t i o n s . Application to t h i s case seems n o t t o b e useful b e c a u s e d u e to t h e local c h a r a c t e r of (28), t h e model a l r e a d y t a k e s into ac- count local t e n d e n c i e s a n d c h a n g e s while in t h e kriging ( o r similar) a p p r o a c h e s t h e y are handled via t h e c o r r e l a t i o n s t r u c t u r e of a n o b s e r v e d field.

The cautious r e a d e r will notice t h a t proposed e s t i m a t o r demands a r a t h e r tedious calculation necessitating inversion of matrix M ( z ) f o r e v e r y z t a k e n into consideration.

A t f i r s t glance, o n e c a n easily avoid t h i s by using to models d e s c r i b i n g t h e ob- s e r v e d field in t h e vicinity of f i z e d point x O:

(20)

a n d using subsequently t h e simplified v e r s i o n (Clltii.

=

dii. h-'(ui )) of t h e t e c h - nique discussed in t h e p r e v i o u s s u b s e c t i o n , when

I t i s c l e a r t h a t f o r a l l z , w h e r e < ( z ) h a s to b e c a l c u l a t e d , o n e h a s to s o l v e t h e l e a s t s q u a r e s problem only o n c e . Unfortunately, i t i s n e c e s s a r y to pay f o r t h i s simplification (which d o e s n o t seem to b e v e r y c r u c i a l in o u r computerized a g e ) by:

( a ) E s t i m a t o r (32) i s smooth (continuous, d i f f e r e n t i a b l e ) if f u n c t i o n s A(u , z ) a n d f ( u , z ) are smooth. E s t i m a t o r (35) will "jump" when z o will b e c h a n g e d ( i t i s c h a n g e d d i s c r e t e l y ) . To avoid discontinuities, o n e n e e d s to a d d r e s s to t h e least s q u a r e method merging t o g e t h e r p r o g n o s e s b a s e d o n d i f f e r e n t zo. But t h e merging p r o c e d u r e removei t h e simplicity of (35).

(b) Model (28) p r o v i d e s t h e b e s t approximation at point z , which i s of i n t e r e s t , while (34) is o r i e n t e d to some fixed point z o which c a n b e q u i t e remote f r o m t h e moving z

.

In conclusion, i t i s worthwhile to n o t e t h a t in t h e majority of a p p l i e d s t u d i e s in fluid flows, in meteorology or t h e a t m o s p h e r i c pollution s t u d i e s , in c o n t r a s t to geo- logical a p p l i c a t i o n s , o n e h a s t e m p o r a l as well as s p a t i a l information: see Example 2 . The methods d i s c u s s e d in t h i s s e c t i o n c a n easily i n c o r p o r a t e t e m p o r a l d a t a e x - plicitly expanding m a t r i x

F

by adding a time dimension in g e n e r a l i z e d l e a s t s q u a r e s c a s e o r in (29)-(32) t h e summation h a s to b e t a k e n o v e r s p a c e a n d time. In t h e k r i g i n g a p p r o a c h , t e m p o r a l information c a n b e implicitly used t h r o u g h improve- ment of t h e e s t i m a t e s f o r Cll a n d C1,.

References

Akima, H. (1975) Comments o n "Optimal c o n t o u r mapping using u n i v e r s a l kriging" by R i c a r d o A. Olea J o u r n a l o f G e o p h y s i c a 1 R e s e a r c h , 80, pp. 832-836.

Armstrong, M . (1984) P r o b l e m s with u n i v e r s a l kriging. M a t h e m a t i c a l Geology, 16, p p . 101-108.

B a r n e s , M.G. (1980) The u s e of k r i g i n g f o r estimating t h e s p a t i a l d i s t r i b u t i o n of ta- dionuclides a n d o t h e r s p a t i a l phenomena. Battelle Memorial I n s t i t u t e , P a c i f i c Northwest L a b o r a t o r y , Richland, Washington, PNL-SA-9051, p p . 20.

Bell, G.D. a n d R e e v e s , M. (1979) Kriging a n d g e o s t a t i s t i c s : a r e v i e w of t h e l i t e r a - t u r e a v a i l a b l e in English, P r o c . Australas. Ins. Min. Metal. N o . 269, pp. 17-27.

BMDP (1983) Biomedical Computer P r o g r a m s , University of California P r e s s . C l a r k , T.L., Voldner, E.C., Olson, M.P., Seilkop, S.K. a n d Alvo, M. (1986) I n t e r n a -

t i o n a l s u l f u r deposition model evaluation (ISDME), R e p o r t .

Dennis, R.L. a n d Seilkop, S.K. (1986) The u s e of s p a t i a l p a t t e r n s a n d t h e i r u n c e r - t a i n t y e s t i m a t e s in t h e m o d e l s evaluation p r o c e s s . AMS/APCA Conf., p p . x x x . D e r Megreditchan, G. (1979) Optimization d e s r d s e a u x d ' o b s e r v a t i o n d e s champs

m6t6urologiques, L a Meteorologie, 17, p p . 51-66.

Endlich, R.M., Eynon, B.P., F e r e k , R.J., Valdes, A.D. a n d Maxwell, C. (1986) S t a t i s t i - c a l Analysis of P r e c i p i t a t i o n Chemistry Measurements Over t h e Ecosystem Un- i t e d S t a t e s , UAPSP-112, EPRI, P a l o Alto, California.

(21)

Finkelstein, P.L. and Seilkop, S.K. (1981) Interpolation error and t h e s p a t i a l v a r i - ability of a c i d p r e c i p i t a t i o n . P r o c . of t h e 7 t h Conference on Probability a n d S t a t i s t i c s in Atmospheric S c i e n c e s of AMS, AMS, Boston, pp. 206-212.

G i l b e r t , R.O. a n d Simpson, J.C. (1984) Kriging f o r estimating s p a t i a l p a t t e r n of con- taminants: potential and problems. E n v i r o n m e n t Monitoring a n d Assess- m e n t , 9, pp. 113-135.

Golub, G.H. and Van Loan, Ch. F. (1983) Matrix computations. The J o h n s Hopkins University Press, Baltimore, pp. 476.

Huijbregts, C. and Matheron, G . (1971) Universal kriging (an optimal method f o r estimating and contouring in t r e n d s u r f a c e analysis). Decision making in t h e mineral industry. Can. I n s t . M i n . Met. *ec., Vol. 12, pp. 159-169.

J o u r n e l , A.G. and Hui j b r e g t s , Ch. J . (1978) Mining geostatistics. Academic P r e s s . NY, pp. xxx.

Katkovnik, V.Y. (1985) On p a r a m e t r i c identification and d a t a smoothing. Nauka, Moscow, pp. 336.

Malyutov, M.B. (1982) Asymptotical p r o p e r t i e s and applications of t h e IRGINA- e s t i m a t o r of p a r a m e t e r s of generalized r e g r e s s i o n model. In "Stochastic p r o c e s s e s and applications", Moscow, pp. 144-158.

McBratney, A.B. a n d Webster, R. (1981) The design of optimal sampling schemes f o r l o c a l estimation a n d mapping of regionalized variables-11. Computers a n d Ceosciences, 7 , pp. 335-365.

Miccheli, C.A. a n d Wahba, G . (1981) Design problems f o r optimal s u r f a c e interpola- tion, Approximation Theory and Applications, Academic P r e s s , NY, pp.

329-349.

Ripley,

B.D.

(1981) S p a t i a l S t a t i s t i c s , Wiley, N Y , pp. 252.

S e b e r , G.A.F. (1977) Linear r e g r e s s i o n analysis, Wiley, NY, p p . 456.

Thiebaux, H.J. and P e d d l e r , M.A. (1987) S p a t i a l o b j e c t i v e analysis with applications in a t m o s p h e r i c s c i e n c e . Academic P r e s s , NY, pp.

Warner, J . J . (1986) Sensitivity analysis f o r universal kriging, MathematicaL Geolo- g y , 18, pp. 653-676.

Referenzen

ÄHNLICHE DOKUMENTE

46 As can be seen, in this case, the principle of good faith performed the classical role of a source of obligation: there was a freedom of the French authorities to act as they

2 persons with microfilaraemia by finger prick before the first mass treatment, and 3 all persons with signs and symptoms of active infections recurrent attacks of fever

In this paper, I intend to review in particular the effect of splenectomy on two protozoal infections, piroplasmosis and malaria, including certain experimental data which have

The category of BLDs that are designed independently by Chinese schol- ars continue to emerge and serve a wide range of users, such as A Multi-func- tional Dictionary for

If the proposals made by developed countries on NAMA are approved, it will limit, we will show, the policy space of developing countries in general, will halt upgrading of

In a country like India where the stock market is undergoing significant transformation with liberalization measures, and the analysis of the nature of

&#34;the personified Wisdom of OT wisdom literature developed into the gnostic redeemer myth, especially as it identified Jesus with that redeemer, and thus understood Jesus as

t rueman (1996) pre- sented a computer-assisted phylogeny, based strictly on wing venation, very similar to Fraser’s, including Hemiphlebia as the sister taxon to the rest of