• Keine Ergebnisse gefunden

Extension of the Class of Markov Models

N/A
N/A
Protected

Academic year: 2022

Aktie "Extension of the Class of Markov Models"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

EX'JXNSION O F T H E C L A S S O F MARKOV MODELS

V . I . Arkin

C P - 8 4 - 8 March 1 9 8 4

C o l l a b o r a t i v e Papers r e p o r t work which h a s n o t been p e r f o r m e d s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s and which h a s r e c e i v e d o n l y l i m i t e d review. V i e w s o r o p i n i o n s e x p r e s s e d h e r e i n do n o t n e c e s s a r i l y r e p r e s e n t t h o s e o f t h e I n s t i t u t e , i t s N a t i o n a l Member O r g a n i z a t i o n s , o r o t h e r o r g a n i - z a t i o n s s u p p o r t i n g t h e work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

A-2361 Laxenburg, A u s t r i a

(2)
(3)

PREFACE

I n a r e c e n t book, t h e a u t h o r proposed a new method o f s o l v i n g s t o c h a s t i c c o n t r o l problems, which, u n l i k e t h e t r a d i t i o n a l approach, i s n o t based on dynamic programming t e c h n i q u e s . The main f e a t u r e s o f t h e new method a r e t h e e x t e n s i o n o f t h e Markov c o n t r o l s and t h e u s e of non-Markov c o n t r o l s which de- pend on t h e complete h i s t o r y o f t h e p r o c e s s .

I n t h i s extended c o n t r o l domain t h e o p t i m a l c o n t r o l problem becomes a mathematical programming problem i n t h e space o f f u n c t i o n s and c a n be s t u d i e d u s i n g convex a n a l y s i s . The a u t h o r f i r s t g e n e r a l i z e s t h e Markov c o n t r o l ex- t e n s i o n theorem f o r problems w i t h c o n s t r a i n t s which depend on f u t u r e t i m e , and t h e n o b t a i n s a method f o r f i n d i n g t h e o p t i m a l c o n t r o l i n convex problems t h r o u g h t h e s o l u t i o n of t h e ' a u x i l i a r y m a t h e m a t i c a l programming problem.

(4)
(5)

EXTENSION OF THE CLASS OF MARKOV CONTROLS

V . I . Arkin

C e n t r a l Economics and Mathematics I n s t i t u t e ( C E M I ) , Moscow, USSR

INTRODUCTION

I n c o n t r o l t h e o r y , f o r example when d e r i v i n g e x i s t e n c e theorems o r o p t i m a l i t y c r i t e r i a , it i s o f t e n n e c e s s a r y t o extend t h e c l a s s of c o n t r o l s w i t h o u t changing t h e v a l u e of t h e problem. There a r e a number of well-known methods f o r doing t h i s which a r e based on t h e convexity of i n t e g r a l s of measurable m u l t i f u n c t i o n s and which a r e r e l a t e d t o randomized and r e l a x e d c o n t r o l s .

T h i s paper i s devoted t o some new theorems of t h i s kind f o r c o n t r o l problems i n v o l v i n g s t o c h a s t i c d i f f e r e n c e e q u a t i o n s w i t h mixed c o n s t r a i n t s on phase c o o r d i n a t e s and c o n t r o l s .

The r e s u l t s p r e s e n t e d h e r e a r e g e n e r a l i z a t i o n s and e x t e n s i o n s of e a r l i e r r e s u l t s o b t a i n e d by t h e a u t h o r [ l ]

.

1. STATEMENT OF THE PROBLEM

Let s be a Markov p r o c e s s d e f i n e d on a measurable s p a c e t

( s , E ) .

Assume

t h a t s has t r a n s i t i o n f u n c t i o n P (s

t t l d S t + l ) , t = 0,1,

...

and i n i t i a l d i s t r i - t

b u t i o n P ( d s 1.

0 0

Consider t h e f o l l o w i n g problem:

(6)

s u b j e c t t o

and

f o r some m e a s u r a b l e f u n c t i o n V ( s , y ) , i . e . , u i s a Markov c o n t r o l . Rela-

t t

t i o n s ( 2 ) - ( 5 ) h o l d a l m o s t s u r e l y ( a . s. )

.

H e r e st = (so, sl,

. . . ,

s ) i s t h e " h i s t o r y " o f t h e p r o c e s s s up t o t i m e

t t

t and U ( s ) i s a m e a s u r a b l e m u l t i f u n c t i o n w i t h v a l u e s i n a P o l i s h s p a c e U t t

w i t h Bore1 + a l g e b r a

B

s u c h t h a t g r a p h G r U ( s ) E

B

x

E,

y E R n , g t E Rm,

t t t

and

Ot,

f

t ,

g t a r e m e a s u r a b l e . C o n t r o l s which have t h e form u = u ( s t ) w e

t t

c a l l

non-anticipatory.

T -1

THEOREM 1 ( S u f f i c i e n c y o f Markov c o n t r o l s )

. Let

{6t}o

be a non-anticipatory controt and

{qt};-l

a t r a j e c t o r y such t h a t constraints

f 2 / - ( 4 )

are s a t i s f i e d . Then there e x i s t s a Markov controt

{u

t o lT-l and a trajectory

{Yt};

uhich

s a t i s f y both c o n s t r a i n t s

f2)-(5)

and t h e foEZowing inequality:

I n o t h e r words, i t i s s u f f i c i e n t t o c o n s i d e r o n l y t h e c l a s s o f Markov c o n t r o l s when s e a r c h i n g f o r a s o l u t i o n o f problem ( 1 ) - ( 4 ) . Thus t h e problems

(1)

-

( 4 ) and (1)

-

( 5 ) a r e e q u i v a l e n t .

2 . APPLICATIONS

( 1 ) - ( 4 ) i s a m a t h e m a t i c a l programming problem i n the s p a c e o f v a r i a b l e s t t t = T - 1

{ut ( s , y t ( 5

.

Under c e r t a i n a s s u m p t i o n s , b o t h a'maximuhl p r i n - c i p l e and a n e x i s t e n c e theorem c a n b e d e r i v e d f o r t h i s problem ( s e e , e . g . ,

[ l ]

.

By c o n t r a s t , (1)

-

( 5 ) i s a dynamic programming problem which c a n b e

(7)

s o l v e d o n l y by a p p l y i n g B e l l m a n ' s e q u a t i o n , and t h i s c a n b e v e r y c o m p l i c a t e d . The theorem g i v e n above s t a t e s t h a t a l l r e s u l t s o b t a i n e d f o r problem ( 1 ) - ( 4 ) a r e a l s o v a l i d f o r problem (1)

-

( 5 )

.

3 . PRELIMINARY RESULTS

The f o l l o w i n g m e a s u r a b l e s e l e c t i o n theorem w i l l b e u s e d i n t h e proof o f Theorem 1.

THEOREM 2 (Sant-Bev)

. Let (x, 8 ) be a Polish space w i t h Bore2 a-algebra and

($2,

F) be an a r b i t r a r y measurable space. Then for each r

E

F

x

23 t h e r e e x i s t s an F-measurable s e l e c t i o n <

(w)

(such t h a t

( w , c (w) ) E

r), where f i s t h e uni- versaL completion of F.

The f o l l o w i n g c o r o l l a r y i s a l s o h e l p f u l .

COROLLARY.

The projection of r on

$2

i s such t h a t

P r o j n

r

E

F.

LEMMA 1.

Let

u

be a Markov control and

ut E

u t ( s t )

( a . s . ) .

Then there ex-

t

i s t s an ( F x 23)-measurable v

( s l y )

such t h a t :

t

u =

v

( S , y ( a . s . 1

t t t t

PROOF. S i n c e u i s a Markov c o n t r o l , t h e n t h e r e e x i s t s a V ( s , y ) w i t h prop-

t t

e r t y ( i ) . W e d e f i n e t h e s e t

D

a s f o l l o w s :

D

i s m e a s u r a b l e , s i n c e

0

= { ( s , y ) :

( s , v t

( s l y ) ) E G r

u t ( s ) 1 .

L e t

2

b e t h e image o f t h e measure P i n t h e s p a c e S x Rn under t h e mapping s t + ( s t , y t ) Then

2(D)

= 1, P r o j

D

E ( t h e u n i v e r s a l c o m p l e t i o n o f

E) ,

and

%

( P r o j

0)

= 1, where

%

i s t h e p r o j e c t i o n o f measure S on S.

S

From t h e m e a s u r a b l e s e l e c t i o n theorem, t h e r e e x i s t s a m e a s u r a b l e f u n c - t i o n G (s) E Ut ( s ) (i&-a.s.)

.

The f u n c t i o n

(8)

then s a t i s f i e s c o n d i t i o n s ( i ) and (ii) of t h e lemma.

LEMMA 2 . Let

( R , F , P )

be

a

p r o b a b i l i t y space w i t h o - a l g e b r a

Fo -

C

F and (u,B)

be

a

P o l i s h

space.

Take O(w,u) t o be (Fox B)-measurable

and l e t

w + T ( w ) be

a multifunction

w i t h g r a p h

r

= {w,u:u E

T

(w)

1

E

Fo

x

B. Asswne

t h a t

U ( W ) E

T ( w )

( a . s . )

and that

u(w)

i s

F-measurabze, El@(w,u(w)l

1 .

Then

t h e r e

exists a n

Fo-measurable f u n c t i o n v (w) E

r

( w ) ( a . s. )

,

such t h a t

PROOF. L e t Y ( w ) = E[@ ( w , ~ ( w ) )

I Fol

a d Set

s o t h a t A E

F

X

B.

Denote

D

= P r o j A E

f

where

- Fo

i s t h e u n i v e r s a l com-

0

R

0

'

p l e t i o n of

F

L e t u s show t h a t

P ( D )

= 1.

0 -

I f t h i s i s n o t t r u e , t h e n

and s i n c e @ (w,u) < Y ( w ) f o r each w E

8,

we have E X

8

@(w,u (w)) < E

X B

Y (w)

,

which c o n t r a d i c t s t h e d e f i n i t i o n of Y ( w )

.

From t h e measurable s e l e c t i o n theorem t h e r e e x i s t s a n -measurable 0

f u n c t i o n v(w)

,

fw,v(wl) E A. T h i s means t h a t v(w) E

r ( w )

( a . s . ) and

4. PROOF OF THEOREM 1

The proof w i l l be d i v i d e d i n t o t h r e e p a r t s and c a r r i e d o u t by i n d u c t i o n .

4.1. I n d u c t i v e asswnptions. Assume t h a t we have c o n s t r u c t e d random v e c t o r s

k k

Y k + l

'

. . . , y and measurable f u n c t i o n s V ( s , y ) ,

...,

V ( s , y ) with t h e f o l l o w i n g

T k T - 1

p r o p e r t i e s :

(9)

The theorem w i l l b e proved i f it c a n b e e s t a b l i s h e d t h a t k c a n b e re- p l a c e d by k-1 i n t h e s e f o u r r e l a t i o n s .

4.2.

Preziminaries.

L e t Y ( u ) ( k < t < T ) b e a s e q u e n c e o f random v a r i a b l e s

t

- -

which depend on t h e p a r a m e t e r u E U k - l ( ~ k - l ) :

Y k ( u ) = f k ( s k - l l s k l ~ k - l l u )

.

I t i s e a s i l y s e e n t h a t t h e Y ( u ) a r e m e a s u r a b l e w i t h r e s p e c t t o t h e

t K

a - a l g e b r a

F

-, x

8

a n d t h a t Y

(i

) = Y t

s k - l ' m -a I S ' y t k-1

t k-1

P u t

and c o n s i d e r t h e sets

where I T ( S ~ - ~ ~ ~ S ~ ~ . . . ~ ~ S i s t h e c o n d i t i o n a l d i s t r i b u t i o n of random p a r a m e t e r s t

Sk1

.

I St, g i v e n s k-1

(10)

S i n c e

t t

G~

-

= min (G ,O)

,

w e h a v e

r

E

F

S

-

x B .

k-1'Yk-1 D e f i n e :

4 . 3 . Use of L e m 2 . L e t u s a p p l y Lemma 2 t o t h e s e t T ( w ) = {u: (w,u) E d e f i n e d by ( 7 ) , t o t h e f u n c t i o n @ d e f i n e d by ( 9 ) , and t o t h e 0 - a l g e b r a

F

0 =

Fs - .

T h i s shows t h a t t h e r e e x i s t s a m e a s u r a b l e f u n c t i o n V ( s , y ) k-1 'Yk-1

s u c h t h a t

a n d w i t h p r o b a b i l i t y 1:

T h i s l a s t r e l a t i o n is e q u i v a l e n t t o

(11)

4 . 4 . Completion of the proof. From Lemma 1, t h e r e e x i s t s a m e a s u r a b l e f u n c t i o n V ( s t y ) s u c h t h a t

k-1

I t i s c l e a r t h a t t h e r e l a t i o n s ( 1 0 ) - ( 1 3 ) remain v a l i d i f we r e p l a c e V by vk-l '

Now d e f i n e

n o t i n g t h a t

Then from (13) w e o b t a i n

and from (8) w e g e t

u s i n g t h e i n d u c t i v e a s s u m p t i o n s . T h i s c o m p l e t e s t h e p r o o f .

(12)

REMARK. The case of independent st. L e t t h e random e l e m e n t s s t = 0.1..

.

t+ 1 t

'

b e i n d e p e n d e n t and assume t h a t t h e mappings

ot.

f

,

U t r gt+l d o n o t depend on s

.

Then f o r e a c h n o n - a n t i c i p a t o r y c o n t r o l o n e c a n c h o o s e a s p e c i a l k i n d

t

o f Markov c o n t r o l which depends o n l y o n t h e v a l u e s y o f t h e c o n t r o l l e d pro- t

c e s s

T h i s i m p l i e s t h e Blackwell-Strauch-Ry11-Nardzewski theorem o n t h e s u f f i c i e n c y o f s i m p l e s t r a t e g i e s f o r c o n t r o l l e d Markov p r o c e s s e s .

5. CONSTRUCTION OF MARKOV CONTROLS

5.1. PreZiminaries. Suppose now t h a t t h e c o n v e x i t y c o n d i t i o n s s t a t e d below a r e s a t i s f i e d f o r problem ( 1 ) - ( 5 ) . I n t h i s c a s e , it i s p o s s i b l e t o c o n s t r u c t

( q u i t e e f f i c i e n t l y ) t h e m a j o r i z i n g Markov p a i r ( y , u ) f o r e v e r y non- t t

a n t i c i p a t o r y p a i r ($ 1 which s a t i s f i e s c o n s t r a i n t s ( 2 )

-

( 4 )

.

(Note t h a t t' ut

t h e t i m e moment T i s n o t n e c e s s a r i l y f i n i t e . )

1 2 1 2

CONVEXITY CONDITIONS. FOP any co t tection ( s t 1 y I Y I U I u

,a)

y11y2 E R ~ , u1,u2 E

u t ( s t ) , o -

<

a -

< 1. there exists a u E

u

( s such that the fottowing

t t conditions are satisfied ~ ~ ( s ~ . d s ~ + ~ ) - a . s . :

I n o r d e r t o s i m p l i f y t h e proof we s h a l l a l s o assume t h a t t h e s e t s U ( s )

t £ t t t t

a r e compact and t h a t t h e f u n c t i o n s

Q ,

, g a r e b o t h c o n t i n u o u s w i t h r e s p e c t t o ( y , u ) and bounded w i t h r e s p e c t t o y o n any bounded s e t C - C R n :

(13)

l $ t ~ +

1ftl + 1gtl

5

KC# y E

c

for some constant KC > 0. Assume also that y (S ) is a bounded function.

0 0

THEOREM 3.

1.

Let sequences {ii 1. {Gt} s a t i s f y the conditions of Theorem I . Then there

t

e x i s t s a Markov pair

{ut},

iYt) which s a t i s f i e s constraints

( 2 )

-

( 5 )

and i s such t h a t the process

y

i s defined by the following equations:

t

and

t+l t+l t+l 2.

I f the elements

st

are independent and the mappings

$

.

f

,

g

,

ut do not depend on

st,

then i t i s possible t o choose Markov controls of t h e form

u t = u (y t t),

where t h e process

y t

i s defined by the process

yt

- as fol-

lows

:

The pair

{ut}.

iytI s a t i s f i e s both

(2) - ( 5 )

and inequality

(19)

.

We shall now formulate two auxiliary results which will be used in the proof of Theorem 3.

LEMMA 3.

Let u be a Polish space,

u(st)

be a measurable funetion defined on

U , a(s t

be another measurable function, and

IT(S ,a,du)

be the conditional

t t

d i s t r i b u t i o n of

u(s

for fixed

st

and

a(st).

Then for any measurable func- t i o n

f3 ist .sttl.u)

such t h a t the function f3

(st, ,U (S t ) )

i s surrunable, t h e following equality i s s a t i s f i e d :

-

Let U be a metric compact set, Y be a compact set in R n

,

S be a measur-

able space with probabilistic measure V, and function $(y,u,s) be continuous with respect to (y,u), measurable with respect to s, and with values in finite-dimensional space.

(14)

Assume t h a t t h e f o l l o w i n g c o n v e x i t y c o n d i t i o n i s s a t i s f i e d :

for a l l

y11y2 E Y

,

u l I u 2 E

u . o -

<

a -

< 1

t h e r e e x i s t s a

u E

u such t h a t

v - a . s .

LEMMA 4 .

For any p r o b a b i l i s t i c measure

p

on

Y x

u t h e r e e x i s t s a

u E

u

such t h a t

J

$ ( y J u I s )

u

(dy x d u )

5

$ (

J

y p ( d y ,X ~ U ~ U ' S ) ) ( v - a . s . 1

.

YxU YXU

The proof o f t h e s e s i m p l e r e s u l t s c a n b e found i n [ l ] .

5 . 2 .

Proof o f Theorem

3 . W e s h a l l p r o v e o n l y t h e f i r s t p a r t of t h e theorem s i n c e t h e proof of t h e second p a r t i s a n a l o g o u s t o t h a t of t h e f i r s t . W e s h a l l f i r s t v e r i f y t h a t t h e r e e x i s t s a m e a s u r a b l e f u n c t i o n

u

t = - u t ( s t - l r s t ' yt

-

1) s u c h t h a t t h e f o l l o w i n g r e l a t i o n s a r e s a t i s f i e d :

We s h a l l d e n o t e by 'lT(s

-

t-1' s t ' Y t - l , d y x d u ) t h e c o n d i t i o n a l d i s t r i b u t i o n of t h e e l e m e n t

(qt.it)

f o r f i x e d v a l u e s of t h e e l e m e n t ( s s Take

t-1' t t-1).

(15)

The e q u a l i t i e s ( 2 5 ) - ( 2 7 ) a r e d u e t o Lemma 3 . Lemma 4 and t h e c o n v e x i t y c o n d i t i o n imply t h a t f o r e v e r y v a l u e of p a r a m e t e r s ( s s , y ) t h e r e ex-

t-1' t t-1

i s t s a n e l e m e n t u E U ( s ) s u c h t h a t t h e f o l l o w i n g r e l a t i o n s a r e s a t i s f i e d t t

P t ( s t , d s t + l ) - a . s . :

According t o t h e m e a s u r a b l e s e l e c t i o n theorem t h e r e e x i s t s a m e a s u r a b l e func- -

-

t i o n u = u ( s s , y ) f o r which (28) - ( 3 0 ) a r e s a t i s f i e d . R e l a t i o n s t t t - l ' t t-1

(28)

-

(30) immediately l e a d t o ( 2 1 ) - (24)

.

The second p a r t of t h e proof i s s i m i l a r t o t h e f i r s t . I t i s n e c e s s a r y o n l y t o t a k e t h e c o n d i t i o n a l m a t h e m a t i c a l e x p e c t a t i o n w i t h r e s p e c t t o ( s

t ' s , y i n ( 2 1 ) - ( 2 4 ) and a p p l y Lemmas 3 and 4 , and t h e m e a s u r a b l e s e l e c t i o n

t + l t

theorem, making u s e of t h e f a c t t h a t yt depends measurably o n ( s t-1 , s , y t t-1 )

( s e e (16) )

.

REFERENCE

[ l J V . I . A r k i n and I . V . E v s t i g n e e v . Stochastic Models of Control

and

Economic Dynamics. Nauka, Moscow, 1978.

Referenzen

ÄHNLICHE DOKUMENTE

Specification and Solution of the !?ode1 3 Relative Growth of the Urban and Rural Populations 6 The Sources of Population Growth in the Urban Region 8 Evolution of the Rural

Let Nα t denote the number of individuals of type α present in the population at time t note that in the varying population size model we actually need to keep track of both values

Also, the problem of determining the minimum number of mutually non overlapping con- gruent copies of a given disk which can form a limited snake is very complicated.. The only

Boris Odehnal studierte von 1994 bis 1999 an der Technischen Universit¨at Wien die Lehramtsf¨acher Mathematik und Darstellende Geometrie.. Im Anschluß daran arbei- tete er

In areas endemic for Plasmodium falciparum malaria, many people are subjected to fre- quent re-infection; thus they develop partial immunity that leads to control of parasite

We have obtained the probability of number of newly infected COVID-19 individuals in any system (say,.. shopping mall or public transportation or restaurant), when infected

By doing that for all final products and considering net imports or net exports of wood as well as the available residues, a potential demand quantity for each

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... Mum f o r his constructive criticism and recommendations, whlch were extremely helpful in