• Keine Ergebnisse gefunden

How to do 3x2pt analysis of SZ and galaxies

N/A
N/A
Protected

Academic year: 2022

Aktie "How to do 3x2pt analysis of SZ and galaxies"

Copied!
106
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

How to do 3x2pt analysis of

SZ and galaxies

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

“Methods for Statistical Inference”, Institut Henri Poincaré October 25, 2018

Ando, Benoit-Lévy, EK (2018)

Bolliet, Comis, EK, Macias-Pérez (2018)

Makiya, Ando, EK (2018)

2MASS Auto SZ Auto

SZ-2MASS Cross

(2)

How to do 3x2pt analysis of

SZ and galaxies

How to remove

CMB foregrounds with spatially varying spectra

If I had some time left towards the end, I would also talk about:

Ichiki et al., to be submitted on November 9

This paper was completed during this trimester program:

Merci beaucoup for hospitality!

(3)

Auto 2-point Correlation

TCMB(1) x TCMB(2)

ngal(1) x ngal(2) CMB

LSS

Cosmology

Cosmology

“Joint Constraints”

1 2

1 2

3

(4)

H u b b le c o n s t. H

0

[k m /s /Mp c ]

Dark Matter Density, Ω c h 2

CMB+LSS CMB

+Supernova

CMB Only WMAP, final result

4

(5)

TCMB(1) x TCMB(2)

ngal(1) x ngal(2) CMB

LSS

TCMB(1) x ngal(2) ngal(1) x TCMB(2)

Why cross-correlation?

1 2

1 2

Cross 2-point Correlation

5

(6)

Joint Analysis

Joint analysis including all cross-correlations

between, e.g., CMB, spectroscopic LSS, and imaging LSS

let us write the posterior of cosmological parameters, given the data, as P(parameters | data)

Usually done: P(parameters|data) = P1(parameters|CMB) x P2(parameters|specLSS) x P3(parameters|imagingLSS)

What needs to be done: P(parameters | data)

= P(parameters | CMB, specLSS, imagingLSS)

6

(7)

What creates

cross-correlations?

CMB

Lensed CMB ISW

Thermal SZ Kinetic SZ SpecLSS

3D galaxy map Velocity fields

ImagingLSS Matter density

P(param.|data) = P(param. | CMB, specLSS, imagingLSS)

P(param.|data) = P1(param.|CMB) x P2(param.|specLSS) x P3(param.|imagingLSS)

7

(8)

3x2pt

The term popularised by the Dark Energy Survey (DES) collaboration (of which I am not a part)

Auto correlation of weak lensing

Auto correlation of galaxies

Cross correlation of galaxies-lensing

If you have two tracers of the same underlying matter density field, you should do all three!

Prat, Sanchez, et al. (2018) Troxel, et al. (2018)

Elvin-Poole, et al. (2018)

Krause, Eifler, et al. (2018)

8

First step toward the goal:

(9)

DES Collaboration

Lens auto

Galaxies auto + Gal-lens Cross

9

(10)

Why Cross-correlation?

Two Signal-to-Noise Regimes

Consider that we correlate tracers X and Y, both probing the same underlying matter distribution

3x2pt: <XX>, <YY>, and <XY>

1. When

X has a high signal-to-noise

, but Y

has a low signal-to-noise

Then <XY> is always more powerful than <YY>

10

(11)

X: CMB Temperature Y: CMB Polarisation

<XX>:

Temperature Auto

11

(12)

X: CMB Temperature Y: CMB Polarisation

<YY>:

Polarisation Auto

12

(13)

X: CMB Temperature Y: CMB Polarisation

<XY>:

Cross!

13

(14)

Proof

Variance of the temperature(T)-polarisation(E) correlation:

When T is signal dominated but E is noise dominated:

Thus, (Signal-to-noise)2 of <TE> vs <EE>:

14

(15)

Proof

Variance of the temperature(T)-polarisation(E) correlation:

When T is signal dominated but E is noise dominated:

Thus, (Signal-to-noise)2 of <TE> vs <EE>:

15

(16)

Proof

Variance of the temperature(T)-polarisation(E) correlation:

When T is signal dominated but E is noise dominated:

Thus, (Signal-to-noise)2 of <TE> vs <EE>:

cross-correlation coefficient

16

(17)

Proof

Variance of the temperature(T)-polarisation(E) correlation:

When T is signal dominated but E is noise dominated:

Thus, (Signal-to-noise)2 of <TE> vs <EE>:

cross-correlation coefficient

>> 1!

17

(18)

Successful Examples

Noisy CMB polarisation data buried in noise, cross- correlated with high S/N temperature data

Noisy Integrated Sachs-Wolfe (ISW) effect buried in the primary CMB, cross-correlated with high S/N

galaxy maps

Noisy 21cm intensity mapping buried in noise and junk, cross-correlated with high S/N galaxy maps

Etc. If you have noisy data (e.g., stochastic

gravitational waves!), cross-correlating is the way to go until you have higher S/N!

18

(19)

Why Cross-correlation?

Two Signal-to-Noise Regimes

Consider that we correlate tracers X and Y, both probing the same underlying matter distribution

3x2pt: <XX>, <YY>, and <XY>

2. When both X and Y have high signal-to-noise

• Then the statistical constraining power of <XY> is usually lower than that of <XX> and <YY>, but

<XY> is often useful for breaking degeneracy with nuisance parameters affecting X or Y alone

“Constraining known unknowns” (Licia Verde) 19

(20)

Why Cross-correlation?

Redshift Tomography!

Consider that a map Y contains astrophysical signals integrated over all redshifts

And we have a number of other maps, Xi, which contain objects within a known redshift range

zmin,i < z < zmax,i

Then cross-correlating them <XiY> allows to

measure the signals in Y as a function redshift:

Redshift Tomography

In this talk, I present the way to do this for Y = SZ map

20

(21)

Why Cross-correlation?

Mass Tomography!

Consider that a map Y contains astrophysical signals integrated over all masses

And we have a number of other maps, Xi, which contain objects within a known mass range

Mmin,i < M < Mmax,i

Then cross-correlating them <XiY> allows to measure the signals in Y as a function mass:

Mass Tomography

And you can do this for any other quantities you wish, as long as you

have appropriate tracers

21

(22)

An Intuitive Example

You have N galaxies in your galaxy catalog with known redshifts (or masses or anything else)

3-dimensional positions of N galaxies

You have an SZ map (“Y”). Then you stack signals of Y at the locations of galaxies

remove the mean

22

(23)

An Intuitive Example

You have N galaxies in your galaxy catalog with known redshifts (or masses or anything else)

3-dimensional positions of N galaxies

You have an SZ map (“Y”). Then you stack signals of Y at the locations of galaxies

remove the mean

A fancier way of writing it…

23

(24)

An Intuitive Example

You have N galaxies in your galaxy catalog with known redshifts (or masses or anything else)

3-dimensional positions of N galaxies

You have an SZ map (“Y”). Then you stack signals of Y at the locations of galaxies

A fancier way of writing it… continuous limit

24

(25)

An Intuitive Example

You have N galaxies in your galaxy catalog with known redshifts (or masses or anything else)

3-dimensional positions of N galaxies

You have an SZ map (“Y”). Then you stack signals of Y at the locations of galaxies

A fancier way of writing it… continuous limit

Ω

cross corr. function

25

(26)

An Intuitive Example

You have N galaxies in your galaxy catalog with known redshifts (or masses or anything else)

3-dimensional positions of N galaxies

You have an SZ map (“Y”). Then you stack signals of Y at the locations of galaxies

Ω

cross corr. function

cross power spectrum

26

(27)

Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

27

(28)

Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

28

(29)

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

Subaru

29

(30)

Hubble image of RXJ1347-1145 (Bradac et al. 2008)

Hubble

30

(31)

Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012)

Chandra

31

(32)

Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012)

ALMA Band-3 Image of the

Sunyaev-Zel’dovich effect at 92 GHz (Kitayama et al. 2016)

ALMA!

5” resolution

32

1σ=17 μJy/beam

=120 μKCMB

T. Kitayama

(33)

33

(34)

Multi-wavelength Data

Optical:

•102–3 galaxies

•velocity dispersion

•gravitational lensing

X-ray:

•hot gas (107–8 K)

•spectroscopic TX

•Intensity ~ ne2L

IX = Z

dl n2e⇤(TX)

SZ [microwave]:

•hot gas (107-8 K)

•electron pressure

•Intensity ~ neTeL

ISZ = g T kB mec2

Z

dl neTe projected thermal epressure

(35)

Full-sky Thermal Pressure Map

North Galactic Pole South Galactic Pole

Planck Collaboration 35

(36)

SZ map = Detected sources + undetected sources

+ diffuse emission 36

(37)

You can count objects; but you can also do

intensity mapping! [see Eric Switzer’s talk] 37

(38)

You can count objects; but you can also do

intensity mapping! 38

But no redshift

information from SZ alone

(39)

2MASS Redshift Survey

~40K galaxies with the median redshift of 0.02

Huchra et al. (2012)

39

(40)

2MASS Redshift Survey

~40K galaxies with the median redshift of 0.02

Huchra et al. (2012)

40

Cross-correlation extracts SZ signals at z<0.1

(41)

Cross-power!

Makiya, Ando & EK (2018)

41

R. Makiya (Kavli IPMU)

(42)

Cross-power!

Makiya, Ando & EK (2018)

42

R. Makiya (Kavli IPMU)

But, what do we learn from this?

We need auto power spectra.

We need 3x2pt!

(43)

2MRS Auto Power

Ando, Benoit-Lévy & EK (2018)

43

S. Ando

(GRAPPA, U. Amsterdam)

(44)

2MRS Auto Power

~40,000 galaxies over full sky, but a lot of power on all scales, indicating extremely strong clustering

• Far

from Gaussian. We need to include non- Gaussian error bars [connected trispectrum]

Many “nuisance” parameters [nuisance for cosmologists but not necessarily for others]

44

(45)

Nuisance parameters, or:

How galaxies populate halos?

Halo model (Seljak 2000)

Projecting 3-d galaxy power spectrum onto 2-d:

45

(46)

Halo model (Seljak 2000)

5 nuisance parameters (just for galaxies)

46

(47)

47

Nasty degeneracy among nuisance parameters…

But who cares,

we just marginalise

(48)

Dominated by 1-halo term in most of the angular scales => Good for cross-correlation with SZ clusters

Ando, Benoit-Lévy & EK (2018)

48

(49)

Why should we believe this?

Nuisance parameters - too phenomenological? And horrible posterior… How do we know that these

numbers make any sense?

Uniqueness of a low-z survey like 2MASS: we actually

see

these parameters in the sky,

because we resolve all galaxy clusters/groups!

49

(50)

Satellite galaxy radial pr ofiles

Ando, Benoit-Lévy & EK (2018)

(51)

Number of satellites per halo

Ando, Benoit-Lévy & EK (2018)

51

(52)

SZ Auto Power

• Far

from Gaussian.

We need to include non- Gaussian error bars

[connected trispectrum]

When fitting, the Planck team used Gaussian covariance

ignoring the non-Gaussian term

We also have a bunch of nuisance parameters

Bolliet, Comis, EK, Macias-Pérez (2018)

with non-Gaussian error without

52

B. Bolliet

Planck Collaboration (2016)

Foregrounds = Nuisance Parameters

(53)

Interpreting Planck’s SZ Power Spectrum

Planck Collaboration (2015)

Ignored trispectrum; Nuisance parameters marginalised over

Horowitz & Seljak (2017); Salvati et al. (2018)

Included trispectrum; Nuisance parameters not marginalised over

Hurier & Lacasa (2017)

Included trispectrum; Nuisance parameters not

marginalised over but performed cleaning in Cl space

53

(54)

Interpreting Planck’s SZ Power Spectrum

Planck Collaboration (2015)

Ignored trispectrum; Nuisance parameters marginalised over

Horowitz & Seljak (2017); Salvati et al. (2018)

Included trispectrum; Nuisance parameters not marginalised over

Hurier & Lacasa (2017)

Included trispectrum; Nuisance parameters not

marginalised over but performed cleaning in Cl space

We vary/marginalise over everything:

• SZ model parameters

• All relevant cosmological parameters

• Nuisance parameters

with the trispectrum that depends also on the SZ+cosmological parameters

54

(55)

SZ power is lower than Planck

Bolliet, Comis, EK, Macias-Pérez (2018)

with

trispectrum without

55

(56)

Simple Interpretation

Randomly-distributed point sources

= Poisson spectrum = ∑i(fluxi)2 / 4π

multipole Cl [not “l2 Cl”]

56

EK, Kitayama (1999); EK, Seljak (2002)

(57)

Simple Interpretation

Extended sources = the power

spectrum reflects intensity profiles

multipole Cl [not “l2 Cl”]

57

EK, Kitayama (1999); EK, Seljak (2002)

(58)

Multipole l(l+1)C l /2 π [ μ K 2 ]

>2x1015 Msun

>1015 Msun

>5x1014 Msun

>5x1013 Msun

Adding smaller clusters

58

(59)

Planck Mass Bias

The key ingredient of the power spectrum is a profile of thermal pressure of electrons

C ` =

Z

dz dV dz

Z

dM dn

dM | y ` (M, z ) | 2

M ˜ 500c = M 500c,true /B

<latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit>

59

(60)

Inferred SZ Amplitude

Bolliet, Comis, EK, Macias-Pérez (2018)

2.6% measurement!

Essentially cosmological model-independent

60

(61)

Inferred SZ Amplitude

Bolliet, Comis, EK, Macias-Pérez (2018)

61

M ˜ 500c = M 500c,true /B

<latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit><latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">AAACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82llZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoIICJdQiBcz3JFS9/sWwXr0DpUUY3OAggqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JJpXXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xxTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit>

Mass Bias [B=(1–b) –1 ]

(62)

Joint Analysis

2MASS Auto

Makiya, Ando & EK (2018)

62

(63)

Joint Analysis

SZ Auto

Makiya, Ando & EK (2018)

(64)

Joint Analysis

Cross!

Makiya, Ando & EK (2018)

(65)

Full covariance including the trispectrum term

65

(66)

Marignalise over EVERYTHING!

66

(67)

[for Planck TT+lowP+lensing]

67

Makiya, Ando & EK (2018)

SZ Auto

SZ-2MASS Cross + 2MASS Auto

No obvious systematics for B from the SZ auto power spectrum alone

Mass-bias Consistency

B = 1.54 ± 0.098

(68)

[for Planck TT+lowP+lensing]

68

Makiya, Ando & EK (2018)

SZ Auto

SZ-2MASS Cross + 2MASS Auto

Mass-bias Consistency

B = 1.54 ± 0.098

1–b =B–1= 0.649 ± 0.041

Similar value was inferred from the SZ cluster number counts:

additional consistency

(69)

Mass Dependence of SZ Auto

69

Makiya, Ando & EK (2018)

Mass Tomography

(70)

Mass Dependence of Cross

Cross is sensitive to less massive halos: We can use this to explore the mass bias as a function of mass!

70

Makiya, Ando & EK (2018)

Mass Tomography

(71)

Mass Tomography

Makiya, Ando & EK (2018)

71

Pressure ~ (M/B)

2/3+αp

(72)

Summary, Part I

If you have two data sets, do 3x2pt

Not just auto alone, or cross alone. Many people do just autos or cross

3x2pt analysis requires good knowledge of both data sets. Challenging but rewarding! Can your machine learn to do this too?

Novelty in our 3x2pt of SZ and galaxies

Parameter-dependent trispectrum in the full covariance

Marginalised over everything; deeper understanding of 2MASS auto and SZ auto spectra

Joint analysis revealed mass-(in)dependent of mass bias; and consistency of mass bias inferred from auto and cross

Useful (and rewarding)! 72

(73)

To be submitted on November 9 Do I have 5 more minutes?

73

(74)

“Internal Template” Cleaning

CMB = [ Map(140GHz) – α x Map(other freq) ] / [1– α]

Jean-François said this method does not assume anything about foregrounds, but it does:

It assumes that the spectral property of foreground does not depend on sky directions 74

(75)

Example: Synchrotron

Power-law index: δTsynch ~ νβ

from WMAP 23 GHz and Haslam 408 MHz

75

(76)

“T ensor -to-scalar Ratio” Parameter , r

Bias of r~2x10–3

if β is assumed constant

Katayama, EK (2011)

76

(77)

“T ensor -to-scalar Ratio” Parameter , r

Bias of r~2x10–3

if β is assumed constant

Katayama, EK (2011)

My first reaction:

Ah, not bad at al!

77

(78)

ESA

2025– [proposed]

JAXA

LiteBIRD

2027– [proposed]

Target: δr<0.001 (68%CL) +

possible participations

from USA, Canada, Europe

(79)

ESA

2025– [proposed]

JAXA

LiteBIRD

2027– [proposed]

Target: δr<0.001 (68%CL) +

possible participations

from USA, Canada, Europe

Gosh, we need to do better

(80)

Delta-map Method

Foreground spectrum varies spatially due to spatially varying spectral parameters p (e.g., β)

Inference on p(n)? Time consuming/non-linear…

Spectral variations are actually not so large. (Bias in the tensor-to- scalar ratio parameter is only of order r~O(10–3))

Let’s Taylor-expand!

Ichiki, Kanai, Katayama, EK (to be submitted)

observed polarisation

foreground emission at frequency ν*

foreground spectrum

[pI: Ith parameter]

(81)

Key: the fluctuation part simply acts as an additional foreground component with

spatially-uniform

coefficients, Dν,I

We can then form a linear combination of frequencies to remove both [Qf,Uf] and δp[Qf,Uf]. Easy!

Long story short: this eliminates bias in r to negligible level. But…

Ichiki, Kanai, Katayama, EK (to be submitted)

foreground

contribution mean spectrum fluctuation

Delta-map Method

81

(82)

What am I doing?

This sounds a bit ad hoc

Sure, maybe it is unbiased, but is it minimum- variance?

What is the Bayesian foundation for this method?

I can answer that

82

(83)

CMB Solutions

Simplest: Uniform spectral index. We need at least two frequencies to remove it. The CMB solution is

This is nothing but the simplest template cleaning Bottom-up

83

(84)

CMB Solutions

Spatially-varying power law. We need at least

three frequencies to remove it. The CMB solution is Bottom-up

84

(85)

Now, likelihood

m: Data (maps)

D: “mixing matrix” (frequency dependence of stuff in the sky) This depends on foreground parameters

s: Signal (CMB and foregrounds)

N: Noise covariance of data

(we expand this to first order in perturbation)

Top-down

85

(86)

Maximum Likelihood

When we have a uniform spectral index and two frequencies, this gives the internal template solution:

Top-down

86

(87)

Expanding D to 1st order

Top-down

87

(88)

Expanding D to 1st order

Top-down

When we have a spatially-varying power law and three frequencies, this gives what we saw already:

88

(89)

Posterior

OK, these cleaned maps are ML solutions when the number of frequencies is equal to the number of

components. Sweet.

What about the posterior?

Let’s derive it in a heuristic way

89

(90)

Posterior [Simplest]

Bottom-up

Square and average to get covariance and plug it into a Gaussian…

–2ln(posterior[r,β|m]) =

90

(91)

Likelihood:

Prior:

[Flat on the mixing matrix]

Top-down. We do it better now.

Marginalise over sCMB because

all we care is its signal covariance SCMB

91

(92)

Top-down

Now what?

What you do from now on will decide which foreground-removal method you are using.

(Almost?) all foreground removal methods in the literature can be categorised by the way you go

from here. (Flavien Vansyngel’s thesis, 2014) 92

(93)

Top-down

Now what?

We take the ML estimate of sf:

93

(94)

Top-down

Now what?

We take the ML estimate of sf:

And plug it into the top: 94

(95)

Top-down

We take the ML estimate of sf:

And plug it into the top:

Looks terrible. However… actually… when we have, e.g., a uniform spectral index and two frequencies…

95

(96)

Top-down

Looks terrible. However… actually… when we have, e.g., a uniform spectral index and two frequencies…

where

96

(97)

That’s it! Summary:

We can account for spatially-varying foreground spectra and estimate the tensor-to-scalar ratio by

I talked only about a power-law synchrotron, but you can use this for any number of other components. All you need is the derivative of emission law as a function of spectral

parameters.

For example…

Ichiki, Kanai, Katayama, EK (to be submitted)

97

(98)
(99)

And, we figured out how to account for polarised

anomalous microwave emission (AME; spinning dust) and frequency decorrelation due to a superposition of

varying spectra. If you are interested, wait for November!

(100)

Back-up Slides

(101)

Ando, Benoit-Lévy & EK (2018)

101

(102)
(103)

Redshift Dependence

103

Makiya, Ando & EK (2018)

(104)

Redshift Dependence

High-ell data of Compton-Y auto is the key.

But…

foreground contamination

104

Makiya, Ando & EK (2018)

(105)

Z-dependence Poorly Constrained

105

Makiya, Ando & EK (2018)

(106)

1-point PDF fits!!

Dolag, EK, Sunyaev (2016)

106

Referenzen

ÄHNLICHE DOKUMENTE

• Space-time distance, ds 4 , is modified by the presence of gravitational fields. : Newton’s

The solid circles with 1σ errors in the inset show the power spectrum ratioed to a smooth model (calculated using a cubic spline fit as described in Percival et al.. 2006) compared

• Amplitude of the E-mode polarization from gravitational potential: s [which we wish to marginalize over]. • Amplitude of synchrotron: α Synch [which we wish to

• The next goal: unambiguous measurement of the primordial B-mode polarisation power spectrum. • Err[n t ]~0.01 possible only with

The same quantum fluctuations could also generate gravitational waves, and we wish to find them..

• The WMAP and Planck’s temperature data provide strong evidence for the quantum origin of. structures in

• Space-time distance, ds 4 , is modified by the presence of gravitational fields. : Newton’s

• Is the plane of linear polarisation rotated by the genuine cosmic birefringence effect, or. simply because the polarisation-sensitive directions of detectors are rotated with respect