• Keine Ergebnisse gefunden

Materialinnovationen für die Solarenergie

N/A
N/A
Protected

Academic year: 2022

Aktie "Materialinnovationen für die Solarenergie"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

©Fraunhofer ISE/Foto: Guido Kirsch

Materialinnovationen für die Solarenergie

Impulsvortrag

Andreas W. Bett

Fraunhofer Institute für Solare Energiesysteme ISE

Materials for the European Green Deal Online, 9. September 2021

www.ise.fraunhofer.de

(2)

© Fraunhofer ISE

2

1,5*10

18

kWh/Jahr

10.000 times the global energy demand

Solarthermal

Photovoltaics

(3)

Transformation of the Global Energy Supply to be CO

2

-free in 2050 Market: Photovoltaic is Needed in Huge Quantities!

10 TW

18 TW

31 TW

43 TW

63 TW

EU: 9 TW G: ~ 0.5 TW Photovoltaics

Wind Fossil Oil

Fossil Gas Fossil Coal

2021: 0.65 TW

(4)

© Fraunhofer ISE

4

The Need of Huge Quantities Materials and Resources

10 TW

18 TW

Quelle: SMA

Needs enormous resources:

~ 300.000 km² area

~ 3.000.000.000 metric tons material (glass, silicon, silver, polymers…) Circular Economy is mandatory!

High efficiency is mandatory!

(5)

Innovation: New Production Technology for Materials and Materials for Record Cell Efficiencies and

 Today: 80 % Passivated Emitter and Rear Cell (PERC) and 15 % Al-BSF solar cells in the world market; all made of Silicon material

 Recent Laboratory Records

(tandems needs additionals materials)

Si-TOPCon: 26.0 % (Europe) BJ-HJT: 26.7% (Japan)

Pero/Si-Tandem: 29.5% (Europe) III-V/Si-Tandem: 34.5% (Europe)

Industrial values

(6)

© Fraunhofer ISE

6

Innovation Material Production Silicon Wafer – Today´s Process

Ref: NexWafe GmbH, Freiburg Germany

(7)

Innovation Material Production Silicon Wafer – A New Process

Si pre-wafer

Si pre-wafer

3 - Si Epitaxy

Si pre-wafer

4 - Removal

re-use of pre-wafer

1 µm

1 – Electrochemical etching

Si pre-wafer

Si pre-wafer

2 - Reorganisation

1 µm

(8)

© Fraunhofer ISE

8

Innovation Material Production Silicon Wafer – New Process

Ref: NexWafe GmbH, Freiburg Germany

(9)

Innovation: Going Beyond the Limit Using one Material Build a Tandem Solar Cell

 The sun has a wide spectrum of colours / wavelengths

 Only one wavelength can be used efficiently by one solar cell type

 Two solar cell materials can split up the spectrum

 Monolithic

Tandem solar cells -2-1 Intensity[W mnm] -

+

UV Visible Infrared

(10)

© Fraunhofer ISE

10

Tandem PV

Perovskites on Silicon

Silicon

-

+

Perovskite Silicon

(11)

Tandem PV

Perovskites on Silicon

Perovskite

Silicon Silicon

Solar Cell Perovskite Solar Cell

-

+

Perovskite Silicon

(12)

© Fraunhofer ISE

12

Tandem PV

III-V-Semiconductor on Silicon: Wafer-Bonded

 Three materials: GaInP, AlGaAs, Si

 Very high voltage > 3 V

Si pn-junction

Si solar GaInP solar cell AlGaAs solar cell

~ 5 µm200 µm

R. Cariou et al., Nature Energy 2018

(13)

Wafer-Bonded Solar Cell

Si solar Si pn-junction

Si solar GaInP solar cell AlGaAs solar cell

~ 5 µm200 µm

Inverted grown dual junction solar cell

Si pn-junction

GaAs substrate GaInP solar cell AlGaAs solar cell

Si solar

Sipn -junc

tion bstra GaAssu

te

GaInP so lar cell

AlGaAss olar cell

(14)

© Fraunhofer ISE

14

Tandem PV

III-V-Semiconductor on Silicon

 Three materials: GaInP, AlGaAs, Si

 Very high voltage > 3 V

Si pn-junction

Si solar GaInP solar cell AlGaAs solar cell

~ 5 µm200 µm

R. Cariou et al., Nature Energy 2018

(15)

Technology Status 2-Terminal III-V/Si Tandem Direct Epitaxy Growth on Silicon

5.4 5.5 5.6 5.7

0.5 1.0 1.5 2.0

2.5 AlP

AlAs

Si

Ge GaP

GaAs

0.3 0.2 0.1

0.8 0.7 0.6 0.5 0.4 0.3

Ga0.51In0.49P

Bandgap [eV]

Lattice constant [Å]

5E7 cm-²

< 1E5 cm-²

2015

2018

(16)

© Fraunhofer ISE

16

Conclusions

 Innovations in material science are of utmost importance for solar energy

 Recyclability towards circular economy

 Sustainability in respect to material availability and process flow

 Innovations on component and system level mandatory

 Cell, module, inverter, installation……..

(17)

Fraunhofer Institut for Solar Energy Systems ISE

Prof. Andreas W. Bett

www.ise.fraunhofer.de

andreas.bett@ise.fraunhofer.de

Thank You for Your Attention

Referenzen

ÄHNLICHE DOKUMENTE

We used microwave-detected photoconductance decay (μPCD), with an illuminated spot size &lt;1 mm for measurement in low injection conditions. After removing metal contacts

With reflectance and spatially resolved laser beam induced current (LBIC) measurements (50 μm steps) IQE maps can be computed. To ensure that the whole bulk is taken into account

$IWHU FRILULQJ LQ GLIIHUHQW JU SHDN WHPSHUDWXUH WKH FHOOV DUH HY ZDYHOHQJWKLQWHUQDOTXDQWXPHIILFLH ,W FDQ EH VHHQ IURP )LJ WKDW YHORFLW\ RI DQ $O 2 SDVVLYDWHG UHD ,Q WKH

Besides the improved PhosTop solar cell, which is representing the reference, the Al-LARE solar cell featuring a passivated n-type bulk and locally alloyed emitter is

The series resistance losses, R S [ Ω cm 2 ] can be dominant for the reduced solar cell performance by limiting the output power of the solar cell device. The total R S is given by

Furthermore we present solar cell results of all screen printed large area n-type Cz-Si solar cells with an aluminum rear emitter and a selective etch-back FSF passivated by

Therewith, three relevant approaches for solar cell processing, in particular for rear side passivated solar cells can be merged: the parasitic emitter etching, the increase of

3.4 Solar cells with Al 2 O 3 rear surface passivation To demonstrate the observed promising passivation properties not only on lifetime level but on solar cell level as well, 2