• Keine Ergebnisse gefunden

11.1 (2+4 points) Let B be a standard d-dimensional Brownian motion.

N/A
N/A
Protected

Academic year: 2021

Aktie "11.1 (2+4 points) Let B be a standard d-dimensional Brownian motion."

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Stochastic Processes II Summer term 2008 (Stochastische Analysis)

Prof. Dr. Uwe K¨ uchler Dr. Irina Penner

Exercises, 25th June

11.1 (2+4 points) Let B be a standard d-dimensional Brownian motion.

a) Prove the “0-1-law” for the “tail” σ-field F ˆ := \

t≥0

σ(X s , s ≥ t),

i.e. show that P [A] ∈ {0, 1} for every A ∈ F ˆ .

b) Use a) to prove the Liouville’s Theorem: All bounded harmonic functions on R d are constant. (A function h is called harmonic if the Laplace-operator ∆h = 0.)

11.2 (1+5 points) Let B be a standard Brownian motion on the Wiener space, and let X t = B t + αt (t ∈ [0, T ]) be the corresponding Brownian motion with drift α ∈ R and start in X 0 = 0. Show that:

a) The distribution P α of X is equivalent to the Wiener measure P with the density function

dP α

dP = exp

αB T − 1 2 α 2 T

.

b) The distribution of the maximum M T = max

0≤t≤T X t

under P resp. the distribution of max 0≤t≤T B t under P α is given by P [M T ≤ c] = Φ

c − αT

√ T

− e 2αc Φ

−c − αT

√ T

, c ≥ 0.

Hint: Use the “reflection principle” for the joint distribution of B T

and max 0≤t≤T B t under P : P [ max

t∈[0,T ] B t ≥ m, B T ≤ m − x] = P [B T ≥ m + x] for m, x ≥ 0.

(2)

11.3 (4 points) Let A, T : [0, ∞) → [0, ∞) be two continuous increasing func- tions. We consider A as a distribution function of a positive measure dA on [0, ∞) and interprete T as time change. Prove the following formula:

Z T

t

T

0

f(s)dA s = Z t

0

f (T s )dA T

s

for all measurable functions f : [0, ∞) → [0, ∞).

11.4 (4 extra points) Let B x be a 3-dimensional Brownian motion starting at 0 6= x ∈ R 3 , i.e. B x = x + B, where B is a standard 3-dimensional Brownian motion. Let further

M t := 1

|B t x | , t ≥ 0.

Show that

a) M solves dM t = M t 2 dB t and thus is a local martingale.

b) M is bounded in L 2 , i.e. sup t≥0 E[M t 2 ] < ∞, and hence M is uni- formly integrable.

c) We have lim t→∞ E[M t ] = 0. In particular M is not a “real” mar- tingale.

Problems 11.1 -11.3 should be solved at home and delivered at Wednesday, the

2nd July, before the beginning of the tutorial. Problem 11.4 is additional.

Referenzen

ÄHNLICHE DOKUMENTE

should be solved at home and delivered at Wednesday, the 12th December, before the beginning of

Homeworks: about every other week; half of the homework points necessary to qualify for the final exam Exam: take-home exam; date to be determined..

[r]

niedriger fleht als das eigentliche Relief und die Schnitzerei, um ihre Einfachheit und Natürlichkeit willen uralt; , wann fie entftanden, ift darum wohl fchwer zu

nicht wenig zahl- reich zu fehen und ebenfo die Schalen und fonftiges Geräth tragenden Eichbäume, Palmen, Farren und anderes Gewächs.. Die franzöfifche

Die chinelifchen Bronzen, zum grofsen Theil dem Go~esdienft gewidmet und daher meHl: von den baro- ckeften Formen, können lich mit ihren Vorgängern nicht meffen,

• analyze the connection between transport variations in the western boundary current system of the tropical South Atlantic (warm and cold water route) and the variability of

[r]