• Keine Ergebnisse gefunden

composites observed by computed tomography Fatigue and fatigue after impact behaviour of Thin- and Thick-Ply Composites Part C: Open Access

N/A
N/A
Protected

Academic year: 2022

Aktie "composites observed by computed tomography Fatigue and fatigue after impact behaviour of Thin- and Thick-Ply Composites Part C: Open Access"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Composites Part C: Open Access

journalhomepage:www.elsevier.com/locate/jcomc

Fatigue and fatigue after impact behaviour of Thin- and Thick-Ply composites observed by computed tomography

Benedikt Kötter

a,

, Janina Endres

a

, Johann Körbelin

a

, Florian Bittner

b

, Hans-Josef Endres

b

, Bodo Fiedler

a

aHamburg University of Technology, Institute of Polymer and Composites, Denickestraße 15, Hamburg 21073, Germany

bLeibniz University Hannover, Institute of Plastics and Circular Economy (IKK), An der Universität 2, Garbsen 30823, Germany

a r t i c le i n f o

Keywords:

Low-velocity impact Delamination Damage progression Load ratio Constant-life diagram

a b s t r a ct

This study investigates theinfluence of loadratio andimpactdamage on the fatiguebehaviour of high- performancecarbonfibrereinforcedpolymers(CFRP)witharealfibreweightsbetween30gsmand360gsm.For undamagedsamples,theultimatetensileandcompressivestrength,aswellasthefatigueproperties,areevaluated withregardtotheirlayerthicknesses.Thefatiguetestswereperformedundertension-tension(R=0.1),tension- compression(R=-0.5)andcompression-compression(R=10)regime.Theresultsareillustratedasaconstant-life diagram,andapiecewiselinearinterpolationexaminesafirstprediction.Theresultsshowthatstaticandfa- tigueperformanceimproveswithdecreasinglayerthickness.Particularlyundertension-compressionloading, significantimprovementsareobserved,duetothesuppressionofmatrixcracksanddelaminationswiththinner layers.Inaddition,theeffectoflow-energyimpactonthefatiguebehaviourofThin-andThick-Plylaminatesis investigated.Thetestsdemonstratethatalthoughthedelaminationareaislarger,Thin-Plylaminatescansustain higherstressesandstillreachthesamenumberofloadcyclesincontrasttoThick-Plylaminates.Computedto- mographymeasurementsvisualize3-dimensionalthedamageprogressionaftervariouscyclesandprovethatthe Thin-Plycompositesshownoincreaseinthedamagedareaduringfatigue.Theinterlaminarstressatthedelami- nationisnotsufficientforexpansion.Incontrast,inthecaseofthickerlayers,thedamagegrowthsprogressively throughoutthewholesamplewithincreasingnumberofcycles.

1. Introduction

Fatigueandimpacttestsareofparticularinterestinthedesignpro- cessofstructuralcomponents.Fatiguetestsareutilisedtodeterminethe lifetimeofamaterialunderdifferentloadratios,andlow-velocityim- pacttestsrepresentcriticaldamagetothestructure[1].Defectsinlami- natedcompositestructureslikevoidsandimpactdamageshaveamajor influenceonthefatiguebehaviour[2,3].Duetotheirlightweightper- formance,carbonfibrereinforcedpolymersareincreasinglyused.How- ever,theirimpacttolerance,lifetimeandfailurebehaviourdifferssig- nificantlyfromconventionalconstructionmaterialssuchasmetals[4]. Thebehaviouroffibrereinforcedpolymers(FRP)iscomplex.Forexam- ple,theimpactcausesinter-fibrefractures,delaminationsand,depend- ingontheenergyapplied,fibrebreakages.Thedefectsaredistributed withinthematerial,wherebythedamagepattern’ssizeandshapede- pendonseveralfactors.Theseinclude,forexample,thepropertiesofthe samplestobetested,suchasstiffnessandlayerstructure,theclamping systemusedandtheappliedimpactenergy.Thedetectionofsuchdam- ageisdifficult.Here,methodssuchasultrasonicexamination,active

Correspondingauthor.

E-mailaddress:benedikt.koetter@tuhh.de(B.Kötter).

thermographyorcomputedtomographyareused[2,5–8].Studiesshow thatimpactdamagecanreducetheload-bearingcapabilityofCFRPby upto50%undertensileload[9].Fibrecompositesalsoexhibitcomplex failurebehaviourundercyclicload.Incontrast tometals,whereone criticalcrackforms,growsandleadstofinalfailure,FRPshaveacom- plexdelaminationdominantfailurebehaviour.Atalowstresslevelor numbersofloadcycles,therelativelylowstrengthofthematrixleads tointer-fibrefractures,whichforminthe90layerperpendiculartothe loaddirection.Delaminationsareinitiatedwiththeincreasinglengthof thecracksandtheassociatedhighstressesatthecracktip.Earlierstud- iesshowedthatthedamageprogressionisassociatedwithadecrease inYoung’smodulus[10–13].Thematerialfailsprematurelybelowthe nominalelongationofthefibres.Thefullpotentialofthefibrescan- notbeexploited.Prematurefailureleadstoaconservativecomponent design[14].Defectsinlaminatedcompositestructureslikevoidsand impactdamageshaveamajorinfluenceonthefatiguebehaviour[15].

OneapproachtoincreasetheperformanceofFRPsistoreducethe layerthickness.StudiesbyKawabeetal.andSihnetal.[16,17]describe arovingspreadingprocess,allowingconventionalrovingstobeusedfor

https://doi.org/10.1016/j.jcomc.2021.100139

Received4February2021;Receivedinrevisedform22March2021;Accepted22March2021

2666-6820/© 2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

(2)

thinlayerthicknessesofupto20μm.Usually,layerthicknessesbelow 60μmaredescribedasThin-Plymaterials.Usingthinnerlayers,theman- ufacturingofthinnerlaminatesispossible,andthefreedomindesign ofthelay-up isincreased[18–21]. Regardingthemechanicalfailure behaviour,thefailuremechanismsofundamagedsampleschangefrom complexdelaminationdominatedtobrittle failureandpre-damageis reducedwithdecreasinglayerthickness.Duetothesuppressionofpre- damage,thestiffnessof thespecimensdoesnotdecrease underload [22].Yokozekietal.[23]showedbyacousticemissionteststhatthe initiationofdamageshiftstohigherstrainsandthus higherstresses.

Furthermore,thenumberofinter-fibrefracturesatlowerstressesde- creaseswithdecreasinglayerthicknessandcanbeexplainedbytheso- called”in-situstrength”,wherebythetransversestrengthofthematrix increaseswithdecreasinglayerthickness.Thein-situstrengthhasbeen investigatedindetailinmanystudies[24–26].Saitoetal.[27]showed thattheenergyatthecracktipishighestatalengthof75%ofthelayer thicknessbecausetheneighbouringlayerssuppressthecrack-opening.

Theenergyofshortercracksisnotsufficienttoinitiatedelaminations, andtherefore,theyaresuppressed.Evenundercompressiveload,the strengthis improved.Laminatequality, lay-upandfailurebehaviour haveapositiveinfluenceonthecompressivestrength.Resin-richregions andvoidsaresmaller,andthefibresaremorehomogeneousdistributed duetothespreadingprocess[18,20].Accordingtotheliterature,six parametersaremost importantforinvestigatingfatiguebehaviourof fibrereinforcedcomposites.Theseincludetheloadingpattern,thecon- trolmode,thestressratio,strainrate,waveformandthetemperature [28].InthecaseofThin-Plysamples,aseventhfactor,thelayerthick- ness, isacknowledged.Sihn etal. andYamaguchiet al.investigated Thin-Plylaminatesunderfatigueloading(tension-tension).Thesam- plesperformedasifunderstatictensileload.Theyshowedanincreased lifetime,asmallerdecreaseinstiffnessreductionandexhibitabrittle failure[17,29].

Toestimatetheinfluenceofdifferentloadratiosonthefatiguelife- timeofamaterialforwhichnoexperimentaldataisavailable,constant- lifediagrams(CLD) area fastandpowerful tool.Especiallyinfields wherefewfatigueinvestigationshavebeencarriedout,asisthecase withThin-PlyCFRPmaterialsandthesamplesexpensivetomanufac- ture,CLDsrepresentanexcellentfirstapproximation.Themainparam- etersdefiningaCLDarethemeancyclicstress,thecyclicstressampli- tudeandtheloadratio(R-ratio)asthequotientbetweentheminimum andmaximumcyclicstress.Dependingonthematerialbehaviour,dif- ferentinterpolationapproachescanbechosen.Thesimplesttypeofin- terpolationisthelinearCLDmodel,whichonlyrequiresoneS-Ncurve resp.Wöhlercurve,butassumesthatthematerialbehaves thesame undertensileandcompressiveloads[28].Differentapproacheswere proposed,whichcanbeuseddependingontheexaminedmaterialbe- haviour.Themostcommonlyusednon-linearinterpolationapproaches includeHarris’sCLD[30],Kawai’sCLD[31],Boerstra’sCLD[32],and Kassapoglou’sCLD[33].Withinthisstudy,thepiecewiselinearinterpo- lation[34]isused.Thepiecewiselinearinterpolationmodelrequiresa limitednumberofS-Ncurvesandtheultimatetensileandcompressive strength.Formostofthecompositestudies,thepredictionsbasedon piecewiselinearinterpolationarethemostaccurate[28].

Philippidisetal.proposedananalyticaldescriptionofthepiecewise linearinterpolationmethodfortheindividualregionsoftheCLD,en- ablingunknown loadratios(𝑅)tobecalculated[34].If𝑅isinthe tensile-tensileregionandbetween𝑅=1andthefirstknownmeasured value(𝑅1TT)counterclockwise,formula1applies.

𝜎a= 𝑈𝑇𝑆

𝑈𝑇 𝑆

𝜎a,1TT+𝑟𝑟1TT

(1)

𝜎adisplaystheinterpolatedand𝜎a,1TTtheexperimentaldetermined amplitudestressesand𝑈𝑇𝑆theultimatetensilestrength.Thefurther parametersarecalculatedaccordingby𝑟i=(1+𝑅i)∕(1−𝑅i)and𝑟= (1+𝑅)∕(1−𝑅).Inthefirstcase,𝑅i=𝑅1TTapplies.

If𝑅isbetweentwoknownR-ratios,𝑅iand𝑅i+1,formula2applies.

𝜎a= 𝜎a,i⋅(𝑟i𝑟i+1) (𝑟i𝑟)⋅𝜎𝜎a,i

a,i+1+(𝑟𝑟i+1) (2)

If𝑅isincompressive-compressiveregionandclockwisebetween 𝑅=1andthefirstmeasuredvalueincompressiveregion,𝑅1CC,formula 3applies.𝑈𝐶𝑆representtheultimatecompressivestrength.

𝜎a= 𝑈𝐶𝑆

𝑈𝐶𝑆

𝜎a,1CC𝑟+𝑟1CC

(3)

InthecaseofThick-PlyFRPs,severalstudieshaveinvestigatedthe fatigueafterimpact(FAI)behaviour.Delaminationssignificantlyreduce thelifetime[35–37]. Atthesametime,studiesonimpactdamageof Thin-Plyshowthatthedelaminationareasincreasewiththinnerlayers [18,38].Incombinationwiththelargerdelaminationarea,theimpact behaviour couldbe alimitingfactorusingThin-Plystructures. How- ever,previousstudiesshowthatundertensileandcompressiveloading ofundamagedsamples,lessdamageisinitiatedwithdecreasinglayer thicknessandexistingdamagegrowsmoreslowly[17,18,39].Thiscan havepositiveeffectsonthecyclicperformanceofstructuresdamaged byanimpact.Forthisreason,thecyclicbehaviourofimpactedsamples isinvestigatedasafunctionofthelayerthickness.

2. Materialsandandmethods 2.1. Materialsandspecimenpreparation

The materialused in thisstudyis a CFRPunidirectional prepreg systemproducedbyNTPT(NorthThinPlyTechnology,Switzerland), whichiscomposedofNTPT’sepoxyresinTP402andT700Scarbonfi- bresfromTorayCarbonFibersAmerica,Inc.Thetargetforthefibrevol- umecontentoftheprepregswas55%.Theproducedfibreareaweights are30gsm,60gsmand120gsm.Higherfibreareaweightssuchas240 gsmand360gsmwereproducedbyblock-scalinganaccordingtothe numberofsame-orientedlayers.TheprepregswerecutbyCNCcutter (AristomatTL1625fromARISTOGraphicSystemeGmbH&Co.KGi.I., Germany)andmanufacturedbyhandlay-up.Thelayersweredebulked byavacuumbageveryfourthlayer.Table1showstheusedlay-ups.

Thecuringofthelaminateswasaccordingtotheprocesssuggestedby themanufacturer NTPT.Themaximum temperaturewas160C,and thedifferentialpressurewas7bar.Thecuredlaminatesweresawnus- ingATM’sBrilliant265precisionsawwithacorundumbladeatafeed rateof1.5mm/s.Dependingonthetestmethod,tabswerebondedon thesamplesbeforecutting,toreducestressconcentrationsintheload introductionareaandthuspreventprematurefailure.Inthecaseoften- silesamplesandthefatiguesamples,whichareloadedundertension- tension(R=0.1),acombinationof±45lay-up,1mmthickGFRPand 1mmthickaluminiumtabswereused.Forthecompressiontestsandfa- tiguecompression-compression(R=10)tests,theusedtabmaterialwas a±45lay-upGFRPlaminatewithathicknessof2mm.Inbothcases, thetabsarebondedat80CwiththeepoxyresinadhesiveUHUEndfest plus300fromUHUGmbH&Co.KG,Germany.Thespecimendimen- sionsofthetensileandcompressiontestscorrespondtotheASTMstan- dardsused.Thefatiguetestssamplesundertensile-tensileload(R=0.1) havethesamegeometryasthesamplesforthestatictensiletests.An exceptionisthe30gsmsamples.Duetothestressconcentrationsinload introductionareainconnectionwiththedamagesuppressionbehaviour ofthethinlayers,non-standardfailuresoccurintheareaoftheload introduction.Toachieveastandard-conformingfailure,aCNCmilling machine(IselEuroModMP30fromiselGermanyAG,Germany)milled thesamplestotheshape ofadogbone.Thegauge lengthis 130mm andthegaugewidth21mm.Thespecimensforthecyclictestsunder tensile-compressiveloadalsocorrespondtothegeometryofthestatic tensiletests.Dependingonthebucklingsupportused,tabsareusedor not.Thebucklingsupportsareexplainedinmoredetailinthefollowing

(3)

Table1 Laminatelay-ups.

Fibre areal weight in gsm

Test Method 30 60 120 240 (2x120) 360 (3x120)

Tension [45∕90∕ 45∕0] 12s [45∕90∕ 45∕0] 6s [45∕90∕ 45∕0] 3s [45 245 2∕90 2∕0 2] s [45 3∕90 345 3∕0 3] s

Compression [45∕90∕ 45∕0] 22s [45∕90∕ 45∕0] 11s [45∕90∕ 45∕0] 6s [45 2∕90 245 2∕0 2] 3s [45 3∕90 345 3∕0 3] 2s

Fatigue [45∕90∕ 45∕0] 12s [45∕90∕ 45∕0] 6s [45∕90∕ 45∕0] 3s [45 3∕90 345 3∕0 3] s

FAI [45∕90∕ 45∕0] 12s [45∕90∕ 45∕0] 6s [45∕90∕ 45∕0] 3s [45 3∕90 345 3∕0 3] s

Table2

TestMethods andspecimen dimensions(Tension-Compression30 gsm no tabs,

Tension-Tension30gsm).

Specimen Dimension Tension Compression Fatigue after Impact ASTM D3039-00 ASTM D3410-03

Overall length in mm 250 140 250

Width in mm 25 25 36

Thickness in mm 2.88 5.28 2.88

Tab length in mm 50 65

Free test length in mm 150 10 250

Gage length in mm 150

Gage width in mm 21

section.Inthecaseoftheimpactedsamples,thewidthwasincreased to36mmsothatthedamageoftheimpactdoesnotreachtheedges of thesamplesandgrowthof thedamagecan be determinedin the furtherinvestigations.Supposetheimpactalreadyreachestheedgeof thespecimen.Inthatcase,therewillbeinteractionsbetweentheedge ofthesampleandtheimpactdamage,whichwouldnotcorrespondto thecomponent’sstructuralbehaviour.Thefatiguesamples,whichare testedundercompression-compression,correspondtothegeometrical dimensionsofthesamplesofthestaticcompressivetests,exceptthat thethicknesshasbeenreducedto2.88mm(seeTable2).Aftersawing, theedgesofthesamplewerefinallygroundedwithabrasivepaper(grid size600and1200)toreduceedgeeffectscausedbypreparationsteps before.Theusedstandardsandsampledimensionsaresummarizedin Table2.

2.2. Experimentalmethods

Thestatictensiletests werecarriedoutinaccordancewithASTM DD3039-00[40].Theclampingpressureoftheservo-hydraulicclamp- ingjawsamounted140bar.ThetestswereperformedonaZwickRoell universaltestingmachineZ100andstrainswererecordedusingMulti- XtensExtensometerfromZwickRoell.Inthecaseofthethickestlayer thickness(360gsm),thecrossheaddisplacementhadtobeusedforthe strainmeasurement,duetoearlydelaminationoftheouterlayers.The compressiontestswerecarriedoutinaccordancewithASTMD6641- 16[41]performedusingaZwickRoellZ400universaltestingmachine.

IMADresdendevelopedtheusedclampingsystem(HCCF)forcompres- siontestsoffibrereinforcedcompositesathighcompressiveloads.The hydraulicpressurefortheclampingjawswas80bar.VishayPrecision Group(USA)straingaugeswitha resistanceof 350Ωmeasuredthe strains.Thefatiguetestswereperformedonservo-hydraulictestingma- chinesfromInstron.Threedifferentloadconditionsweretestedtoinves- tigatepossibleinfluencesofthelayerthicknessonthefailurebehaviour.

AloadratioofR=0.1waschosenfortensile-tensiletests.Thesam- plesweretestedonanInstron8800H2470understresscontrolmodeat 5Hzwithamaximumforceof100kNandservo-hydraulicclamps.The clampingpressurewas80bar.Thedisplacementofthecylinderrecorded thestrainsofthespecimens.Whenasampledidnotfailafterbeingsub- jectedto(106cycles),thetestmachinestopped.

AloadratioofR=0.5waschosenforthetension-compressiontests.

Thetensileloadsaretwiceashighasthecompressiveloads.Assuming thatfibrecompositematerialsaregenerallydesignedfortensileloads andthereforeaccountforthemainportionofoperationalstresses,there-

Fig.1. Bucklingsupportsforfatiguetests.

forealoadratioof R=0.5isanapplication-basedapproach. Thehy- draulicuniversaltestingmachinefortension-compressiontestswasthe Instron8800H2470understresscontrolmodeat5Hzwithamaximum forceof100kNandtheInstron8802L2741understresscontrolmode at3Hzwithamaximumforceof250kN.Inbothcases,servo-hydraulic jawswithaclampingpressureof80barclampedthespecimens.Dueto theappliedcompressiveforcesandspecimengeometry,twodifferent bucklingsupportsareutilised(seeFig.1).Forthickerlayers,thebuck- lingdevicesupportsthetestlengthbetweenthetabs(Fig.1,left).How- ever,thiswasnotpossiblewiththethinnestlayerthickness(30gsm), becauseabucklingfailureoccurredinthesupport-freesectionbetween theclampingofthespecimenandthebucklingsupport.Thenewbuck- lingsupportwasdesignedaftertheOpenHoleCompression(ASTMD 6484-04[42])testjig,withthedifferencethattheloadisintroducedvia shearforces.Thebucklingsupporthastheadvantagethatthesampleis supportedalongitsentirelength,thuspreventinglocalbuckling,and transversecontractionisnothindered.Thesamesetupisusedforthe fatigueafterimpacttestswithaloadratioofR=0.5.

TheR-ratioofthecompression-compressiontestswaschosentobe R=10.Duetothegaugelengthof10mmandthethicknessof2.88mm, nobucklingsupportwasnecessary.Thespecimensweretestedonthe Instron8800H2470servo-hydraulictestingmachineunderstresscon- trolmodeat5Hzwithamaximumforceof100kNandservo-hydraulic jawsat120barclampingpressure.Thedisplacementofthecylinderde- terminedthestrain.

TheimpacttestingmachinewastheFWPrimus1700PlusfromCo- esfeldMaterialtest,Germany.Theimpacts wereapplied byusingan

(4)

Fig.2. Clampingdeviceforimpacttests.

Table3

Numberoftestedsamplesforeachplythickness andloadcase.

Fibre areal weight in gsm 30 60 120 240 360

Tension 7 6 6 6 5

Compression 6 6 6 6 5 Fatigue R = 0.1 20 10 10 9 Fatigue R = 0.5 19 7 7 14 Fatigue R = 10 10 13 10 7 FAI R = 0.5 8 6 8 5

impacterwithadiameterof16±0.1mm,ahardnessbetween60and 62HCRandweightof5.34kgandareboundapparatuspreventedmul- tipleimpacts.Themaximumimpactenergywas8J.Preliminarytests haveshownthatimpactenergyofover8Jleadstodelaminationupto theedgesofthesampleandduetotheimpactsystem,lowerenergies werenotpossible.Theclampingdesignofthesupportstructure was basedontheASTMD7136-05(Standardtestmethodformeasuringthe damageresistanceofafibre-reinforcedpolymermatrixcompositetoa drop-weightimpactevent[43])withcut-outdimensionsof27×60mm.

Theratiooflengthandwidthisidenticaltothestandard.Fourrubber tipsrestrainthespecimenduringimpactwithaminimumholdingca- pacityof1100N.Mechanicalendstopsalignedthesamples(seeFig.2).

Toanalysetheoccurringdamageandpossiblegrowth,sampleswere stoppedat0,5⋅104,3⋅105and8⋅105cyclesandexaminedusingcom- putedtomography.ThesystemusedisaCT-AlphadevicefromProconX- Ray,Germany.Themeasurementsofthedamagedsampleregionswere takeninaxialandhelicalmodewithanx-raytubevoltageof65kVand avoxelsizeof27.3and24.3𝜇m,respectively.Thehelicalscanmode wasappliedtosamples(forexample360gsm)withalargeestimated damageareatocapturethecompletedamagedareawhilemaintaining asmallvoxelsize.Thevisualizationofthevolumedata,i.e.evaluation andgraphicalrepresentationofimpactdamageaswellasthedamage progressionaccordingtotherespectiveloadcycleswasdonewiththe VolumeGraphicsVGSTUDIOMAX3.3software.

3. Resultsanddiscussion 3.1. Tensiletests

TheresultsofthestatictensiletestsareshowninFig.3.Atleastfive samplesweretestedforeachconfiguration.Table3showsthenumberof testedsamplesforeachplythicknessandloadcase.Thetensilestrength increasessignificantlywithdecreasinglayerthicknessintherangebe- tween360gsmand60gsm.Evenlowerlayerthicknesses,30gsm,show

nofurtherimprovementcomparedtothe60gsmsamples.However,the strengthdoublesbetweenthe360gsmand30gsmor60gsmsamples.

Incase ofthe360gsmsamples, theouter±45and90 layersfully delaminateatlowstrains,andthereforetheloadismainlytransferred bythemiddle0layers,whichsignificantlyreducethestrength.This behaviourisnotobservedatlowerlayerthicknesses.Fig.3showson theright-handsidethestress-straincurvesofthetensiletests.Itcanbe seen thatall configurationshavethesamestiffnessatlow strains,as thisismainlydependentonthefibresandtheirorientation.However, withincreasingload,initialdamageoccurs,andadecreaseinstiffness isrecordedforthickerlayers.Further,sampleswiththinnerlayers(30 and60gsm)donotshowanydamageuntilfinalfailure,andtherefore nodecreaseinstiffnesscanbedetermined.The30and60gsmspeci- mens’fracturepatternsshowabrittlefailurebehaviourandexhibitno oralmostnodelaminations.Inbothcases,theenergyatthecracktipas wellastheinterlaminarshearstressesaretoolowtoinitiatedelamina- tion.Asaresult,thefailurebehaviourisfibre-dominatedinbothcases, andthusnodifferencesbetweenthelayerthicknessescanbeobserved.

Althoughtheoreticallythestrengthofthe90layersshouldincreaseex- ponentiallywithdecreasinglayerthicknessduetotheinsitueffect,the influenceistoosmallcomparedtotheinfluenceofthefibresin0to measureasignificantchange.Thelayerthicknessatwhichdelamina- tioniscompletelysuppresseddependsonthematerialsusedandtheir properties,suchasthetoughnessofthematrix.Detailedinvestigations onthiscanbefoundinastudybyCugnonietal.[44].Withincreas- inglayerthickness,amoredelamination-dominatedfailurebehaviour occurs.Asaresult,itcanbeconcludedthatunderstatictensileload,a layerthicknessof60gsmincombinationwiththefibreandresinsystem usedinthisstudyalreadyshowsthemaximumachievablestrengthand areductionofthelayerthicknessdoesnotofferanyfurtheradvantage tothemechanicalpropertiesinvestigated.Thefreedomofdesigndueto thehighernumberoflayersisstillanadvantage.

3.2. Compressivetests

Theresultsofthecompressivetestsshowasignificantincreasein strengthwithdecreasinglayerthicknessfrom360gsmto30gsm.Each configurationwastestedwithaminimumoffivesamples(seeTable3).

Diagrams in Fig.4 show thecompressive strengthsand stress-strain curves.Thecurvecharacteristicsshowthatprogressivefailureoccurs withlowlayerthicknesses.Initialdamageorfirstlocalbucklingdoes notleadtofinalfailureasforthickerlayersundercompressiveload.

Due tothehighamount offibres andthedistributionofthe0 lay- ers,thesampleshavearelativelyhighbendingstiffnessafterfirstdam- age,which leadstoadecrease instiffness butnottoafinal failure.

Afurtheradvantageregardingthebehaviourundercompressiveload is in the laminate quality. As already investigated in other studies, laminatequalityimproveswiththinnerlayerthicknesses[18,23].Fi- bre spreadingresults inamore homogeneousfibrearrangement and smallerresin-richregions.Inthecaseofthickerlayers,initialdamage alreadyleadstofinalfailure,asthebendingstiffnessissignificantlyre- duced.Defectsandresin-richregionsactasinitiatorsforpossibleinitial damage.

3.3. Fatiguetests

3.3.1. Tension– Tension

Theresultsofthetension-tensiontestsareshowninFig.5.Thedi- agramontheleft-handsiderepresentstheS-Ncurve(Wöhlercurve), heretheamplitudestressisplottedagainstthenumberofcyclestofail- ureonalogarithmicscale.Eachconfigurationwastestedwithatleast ninesamples.Duetothenon-standardfailureofthe30gsmsamplesat higherstresses,20samplesweretestedinthiscase.Thenon-filledpoints representsampleswhichhavereachedtherun-outcriterionof106cy- cles.Solidlinesshowthecalculatedfailureprobabilitythat50%ofthe specimenswillfailatthisnumberofcyclesataspecificstressamplitude.

(5)

Fig.3. Tensilestrength(left)andtensilestress-straincurves(right)dependingonthelayerthickness.

Fig.4. Compressivestrength(left)andcompressivestress-straincurves(right)dependingonthelayerthickness.

The50%probabilityoffailureofthe360gsmsamplesissignificantly lowerthanthatoftheothersamples,althoughthecurveisrelatively flat.Duetothehighlayerthickness,all0layersareinthemiddleof thelay-up.Theouterlayersfullydelaminateatlownumbersofcycles, resultinginatypeofunidirectionalsample.Still,theresultingunidi- rectionalload-bearinglayersresultsinaflatS-Ncurvesincethefatigue propertiesareessentiallydependentonthe0carbonfibres.Thebe- haviourisalsoapparentinthestiffnessdegradationcurve.Ontheright- handsideistherelativestiffness,whichisthequotientofthestiffnessat cyclenandtheinitialstiffnessofthefirstcycle.Inthisstudy,stiffnessis definedastheslopeofthetangentofthestress-straincurve(hysteresis) at5%and50%ofthemaximumstressofeachhysteresisrecorded.The typicalshapeofaS-Ncurveconsistsofthreephases.Anearlydecrease instiffnesscombinedwithinitialdamagesuchasinter-fibrefractures, arelativelyconstantplateauonwhichthedamagegrows,andaslight butcontinuousdecreaseinstiffnessoccurs,andfinallyaconsiderable reductioninstiffnessandultimatefailure.Inthecaseofthe360gsm samples,afourthphasehasoccurred,aplateauwithconstantstiffness.

Inthisphase,allouterlayersarealreadydelaminated,andonlythe0 layersinthemiddleofthespecimensareloaded.

Thereisasignificantimprovementinthefatiguestressofthe60gsm and120gsmcomparedtothe360gsmsamples.The50%probabilities offailureareshiftedtohigherstressamplitudes,andbothS-Ncurves aresteeperthanthecurveofthe360gsmsamples,wherethe60gsm specimenscanhandleevenhigherstresses.Bothlayerthicknesseshave

asimilarslopeoftheS-Ncurveandareequallysensitivetofailurebe- haviour.However,therelativestiffnessshowalsodifferencesbetween them. Thecurveofthe120gsm sampleshaveafourthphase,asdo the360gsmsamples,whichinturnisduetotherelativelythicksub- laminateinthemiddleofthelay-up.The60gsmsamplesdonotshow thisfourthphaseanymore.Theseconddecrease instiffnessleadsto finalfailure;itcanalsobeseeninthefracturepatterns.The120gsm samplesshowafailurebehaviourdominatedbydelaminations,whereas the60gsmsamplesfailrelativelybrittle,andonlyafewdelaminations arevisible.Asthestatictensiletestshavealreadyshown,theformation of delaminationsis suppressed,andbrittlefailureoccurs.Thefailure behaviourundertensile-tensileloadissimilartothefailurebehaviour understatictensileload.

Asdescribedinthesectionmaterialsandspecimenpreparation,the 30gsmsampleshadtobetestedwiththeshapeofadogbonesample.

Withoutthisgeometrychange,allspecimensfailintheloadintroduc- tionareaandthereforenotconformingtothestandard.Duetothebrit- tlepropertiesofthematerialandthesuppressionofdamage,highlocal stressconcentrationsoccurintheloadintroductionarea,whichleadsto prematurefailure.Amacheretal.investigatedfatigueopenholetensile (OHT)testsandobservedthatathigherstresses,thinnerlayerthick- nessesleadtoearlyfailurebecausenostressescanbedissipatedordi- vertedduetopre-damageintheareaofthestressconcentration.Below acertainstressamplitude,nodamageoccurs,andthefatigueproperties improvesignificantly[18].

(6)

Fig.5. S-NcurvesofthefatigueresultswithaloadratioofR=0.1(left)andrelativereductionofthespecimenstiffness(right).

Fig.6.S-NcurvesofthefatigueresultswithaloadratioofR=-0.5(left)andrelativereductionofthespecimenstiffness(right).

Despitethechangeinspecimengeometry,thespecimensfailednear theloadintroductionareaathighstresses(seeFig.5,open-symbols).

Thefracturepatternsofthetestedspecimensinthisstudyshowanin- creasedfailurein theareaof loadintroductionforthesampleswith highstresses(half-filledsquares)despitethesamplegeometry.Atlower stresses,thespecimensfailaccordingtothestandardwithinthesmaller cross-sectionarea. Thestressconcentrationsin theloadintroduction areaarebelowtheapparentlycriticalstress.Inthedevelopmentofthe stiffness decrease,brittle material behaviour can be recognized.The knowledgeofthesuppressionofpre-damageandtheresultsofAmacher etal.regardingstressconcentrations,suggeststhatthin-layerlaminates haveimprovedfatiguepropertiesatlowstressesandhighnumbersof cycles.Toinvestigatethefatiguebehaviourunderhigherstresses,the loadintroductionareaorthesamplegeometrymustbefurthermodified sothattheloadintroductionisnotthecriticalarea.

3.3.2. Tension-Compression

ThefatigueresultswithaloadratioofR=-0.5(Fig.6)showsimilar behaviourtothetension-tensiontests.Atleastsevenspecimenswere testedforeachconfiguration.However,asthe30gsmspecimensfailed inanon-standardwayathigherstresses,20specimensweretestedhere.

Ingeneral,thefatiguepropertiesimprovewithdecreasinglayerthick- ness.Inthecaseofthe60,120and360gsmsamples,nochangeinthe slopeoftheS-Ncurvesisapparent.Thecurvesareshiftedinheight.

OnlytheS-Ncurveofthe30gsmsamplesshowsalowergradientas undertension-tension.Heretheintersectionofthe30gsmandthe60 gsmS-Ncurveisatabout40,100cyclesandastresslevelof370MPa.

Also, inthis case,stressconcentrationsat thinlayerthicknesseswill lead topremature failureathigher stresses in theload introduction area.Inthetensile-tensiletests,specimensfailedatamplitudestressof about258MPanearthetabs,whichcorrespondstoamaximumstress of572MPa.Thetensile-compressivesamplesfailintheareaofthetabs atamplitudestressofabout381MPa,whichcorrespondstoamaximum stressof508MPa.However,thetwostressesarenotdirectlycompara- blesincethestressofthetensile-tensilespecimensreferstoasmaller cross-sectionareaduetothespecimendesignofadogbone.However, thetabsofthesampleshavethesamegeometricdimensionsand,when theforcepermmofspecimenthicknessiscalculated,thecriticalload is12.03kN/mmforthetensile-tensilespecimensand12.70kN/mmfor thetensile-compressivespecimens.Thusthesameproblemsariseun- dertensile-compressiveloadasundertensile-tensileload.Nevertheless, thinnerlayersdisplaysuperiorfatiguebehaviourathigherloadcycles, astheyoccurinindustrialapplications.

TherightdiagramofFig.6showsthatthestiffnessdecreasesoverthe numberofcycles.Thecurvesdonotshowatypicalhorizontalplateau asundertension-tension,butaregionwithaconstantstiffnessdecrease.

Thestiffnessdegradationofthe30,60and120gsmsampleslooksvery

(7)

Fig.7. Hysteresisofdifferentlayerthicknesses(upperleft:30gsm,upperright:60gsm,lowerleft:120gsmandlowerright:360gsm)at101,102,103,104and 105cycles.

similar.Noticeableisthestrongdecreaseofthe360gsmsampleinthe rangebetween1000and10,000cycles.Todescribethisreductionin stiffnessinmoredetail,Fig.7showsthehysteresisofthesamples.The diagramsshowthehysteresesof101,102,103,104and105cycles.The hysteresisofa30gsmsampleisintheupperleft,ofa60gsmsample intheupperright,ofa120gsmsampleinthelowerleftanda360gsm sampleinthelowerrightcorner.Withincreasinglayerthickness,the angularoffsetconcerningthefirstcyclesincreasesandtheareaofthe hysteresis(energypercycle)decreaseswithdecreasinglayerthickness.

Aflatterhysteresisexhibitsalowerstiffnessduetodamagelikeinter- fibrefracturesanddelaminations.Inthecaseofthe360gsmsamples (bottomright),thefirst1000hysteresisaresimilarlysuperimposed,but theangleofthehysteresisathighernumbersofcycleschangestrongly.

Thisisduetotheformationofdelaminationsbetweentheouterlayers andthe0layersinthemiddleofthesamples.Thesmallopeningofthe hysteresisofthe360gsmsampleatahighnumberofcycles,indicates thatonlythe0layersareloaded,andnoenergyisdissipateddueto openandcloseofinter-fibrefracturesordelaminations.Itcanbeseen thatthedeviationbetween thehysteresisissmallerwithlowerlayer thicknesses,whichindicatesaconstantmaterialbehaviourindependent ofthenumberofcycles.Asinthestatic,abrittlematerialbehaviourof thethinlayerthicknessescanbeseen.

3.3.3. Compression– Compression

Fig.8showstheS-Ncurvesofthefatiguetestsundercompressive- compressiveload(R=10).Foreachconfiguration,atleastsevensam- plesweretested.Theresultsdemonstrateanimprovementofthefatigue propertieswithdecreasinglayerthickness.Duetothetestsetupandthe

Fig.8. S-NcurvesofthefatigueresultswithaloadratioofR=10.

failurebehaviouroffibrecompositesundercompression,thereisasig- nificantscatterwithintheresults.Still,thegradientoftheS-Ncurves showsdifferences.Theslopesofthe30and60gsmsamplesaremuch steeper.FracturepatternsoftestedspecimensinFig.9showachang- ingfailuremechanism,ascanalsobefoundunderstaticcompressive loadingofquasi-isotropicsamples.Themicrographsrepresentfracture

(8)

Fig.9.FracturepatternofthefatiguetestedsampleswithaloadRatioofR=10 (compression-compression).

patternsoffourspecimensthathavebeenloadedaboutahalfamil- lioncyclestofailure.Inthecaseofthe360gsmspecimens,theouter layersdelaminatedatalow numberofcycles.Thefailurebehaviour isacombinationofthrough-thickness(0 layer),andbrooming[45]. Duetotheabsenceofsupportinglayers,themiddle0layersstarted tobend,andthefinalfailureoccurred.The60gsmand120gsmsam- plesshowasimilarfailurepattern.Inbothcases,broomingoccurs,and delaminationsandsub-laminateshaveformed.Inthecaseofthe120 gsmsamples,thesub-laminatesusuallyconsistoffourlayerswithone 0layerontheoutside,sothatthesub-laminatesarefragileagainst buckling.Incontrast,thesub-laminatesofthe60gsmsamplesconsist ofmorethanfourlayersand0 layersarenotonlyattheoutsideof thesub-laminates.Theselayerssignificantlyincreasethebendingstiff- nessofthesub-laminatesandimprovethemechanicalpropertiesunder compressiveload.Furthermore,thematerialsinthisstudy,aswellas previousstudiesbyotherlaboratories([16–18]),showthatthequality ofthelaminatesorprepregsimproveswithdecreasinglayerthickness.

Thehighermaterialqualitieshaveapositiveeffectonthebehaviourun- dercompression.Thefracturepatternofthe30gsmsamplediffersfrom theothersamples.Delaminationoccursinasmallarea,andthefracture patternsshownobucklingoftheouterlayersorsub-laminates.Thefrac- turepatternshowsalongitudinalsplitting,andthelayersslidetogether morelikeacomb.Thestopcriterionofthefatiguestress-controlledtests wassetwithamaximumdisplacement.The30 gsmsamplesshow a residualcompressivestrengthevenafterstoppingthetests.Bypushing thelayersorsub-laminatestogether,relativelyhighbendingstiffnessis stillpresent.However,duetothedisplacementoftheupperandlower partofthespecimen,thetesthadtobestopped.Forindustrialapplica- tions,thefailurebehaviourimpliesahighsafetyfactorconcerningthe useofThin-Plyundercycliccompressiveload.Despitedamage,thereis arelativelyhighresidualstiffnessandstrength.

3.3.4. Constant-lifediagram

Theconstant-lifediagraminFig.10summarizedthefatigueresults obtained.Themeanstressisplottedontheabscissaandtheamplitude stressontheordinate.Eachpointrepresentstheratiobetweenmean stressandamplitudestressasafunctionoftheloadratioat5⋅105cycles.

Thetheoreticalinterpolationsbetweenthemeasuredvaluesarecalcu- latedaccordingtothepiecewiselinearinterpolationofPhilippidisetal.

[34].Areductionofthelayerthicknessresultsinanimprovementofthe fatiguepropertiesandhighernumberofloadcyclescanbetoleratedat thesamestresslevel.Onlytensile-tensileloading(R=0.1),the30gsm achievednosignificantimprovementcomparedtothe60gsmsamples.

However,aspreviouslypresented,thereducedlayerthicknessesunder highloadsinthetensileareaofthehysteresisresultedindamage in theareaofloadintroduction.Athighernumbersofloadcycles,thethin layerthicknesseswithinthisstudyshowadvantages.Itisalsonotice- ablethatespeciallyundertensile-compressiveloading(R=0.5)thethin layerthicknesseshaveasignificantimprovement.Duetothedamage suppression,nopre-damageinitiatesundertensionload,leadingtoa significantstiffnessreductionundercompressiveload.Especiallyinthe alternatingloadrange,theadvantagesofthinlayerthicknessesbecome apparent.

Fig.10. Constant-lifediagramforn=5⋅105cycles,piecewiselinearinterpola- tion.

Furthermore,evenifthestatictensileandcompressivetestsshow onlyminorimprovementsofthe30gsmcomparedtothe60gsmspec- imen,theimprovementishigherunderfatigueloading(R=0.5).The resultsshowthattheloadcaseshouldbetakenintoaccountiftheper- formanceoffibrecompositesistobeimprovedbyreducingthelayer thickness.Inareaswithalternatingloads,itisreasonabletousethinner layers.Nevertheless,thefailurebehaviourshouldbetakenintoaccount.

Inthecaseoftensileloads,brittlefailureoccurs,especiallywiththin layers,whichisadisadvantageinpracticalapplications.Inthecaseof compressiveloads,ontheotherhand,aprogressivefailureoccurswith thethinnerlayers,whichistobeevaluatedpositivelyundercertaincon- ditions.Insummary,theresultsshowthattheuseofthinlayerscanbe useful.Still,ithastobeconsideredcarefullydependingontheapplied stressesandfailurebehaviour.

3.4. Fatigueafterimpact

3.4.1. Impact

Fig.11showsrepresentativeultrasonicimagesandmicrographsof theoccurringimpactdamage.Theultrasonicimagesillustratethede- fectdepthofthedamage.Theultrasoundimagesillustratethedefect depthofthedamage,andanapproximationofthedepthisvisualized bydifferentcolours.Ifthereareseveraldamagesontopofeachother, onlytheuppermostdamagecouldbedetected.Theultrasonicimages demonstratethattheextentofthedamagedareaandthedamagepattern dependsonthelayerthickness.The360gsmsamplesshowatypicalfail- urebehaviourforfibrereinforcedcomposites.Inter-fibrefracturesand delaminationsarevisible,whichincreasewiththedepthofthesample.

Dependingonthefibreorientation,thedamagespreadoutinadifferent direction.Numerousstudieshavedescribedthefailurebehaviouroffi- brereinforcedcompositestructuresunderimpactloadsothatreference willbemadetothemhere[4,46].Withdecreasinglayerthickness,the failurepatternofthesampleschanges.Thenumberandlengthofinter- fibrefracturesdecreaseuntiltheyareentirelysuppressedinthecaseof the30gsmsample,ashasalsobeenshownbyArteiroetal.andSaito etal.[20,27].The60gsmsamplesshowfewerinter-fibrefracturesbut manydelaminations.Sub-laminatesareformed,whichhaveathickness offourlayers,240𝜇m.Thehighnumberofdelaminationsisuntypical forCAIsamples(ASTMD7137-05[47])withthinlayers.However,the untypicalfracturepatternresultsfromthesmallerclampingdeviceused inthisstudy.

IncontrasttothelargerCAIspecimens,lessmaterialcanabsorben- ergyandlocallythedamageisincreased.Duetothesmalldeformations

(9)

Fig.11. UltrasonicC-Scanimages(left)andmicrographs (right)oftheimpactforapotentialimpactenergyof8J, fromtoptobottom:360gsm,120gsm,60gsmand30gsm.

andthesuppressionofinter-fibrefractures,lessenergycanbedissipated elastically,andhighshearstressesareapplied,whichinitiatedelamina- tions.Theshapeofthedelaminationshaschangedfromapeanuttoa circularshape.Inthecaseofthe30gsmsample,threelargecircular delaminationsoccurred.Thefirstdelaminationdevelops betweenthe middlelayers,thehighestshearstressarea,andtwosub-laminatesare formed.Afurtherloadincreasestheshearstresseswithinthetwosub- laminates.Iftheshearstressesalsoexceedthecriticalstressinthesub- laminatesbetweenthenewmiddlelayers,furtherdelaminationsoccur.

Theshearstressesbetweentheotherlayersarenotsufficienttoinitiate furtherdelaminationsaswiththe60gsmsamples.About50%ofthe30 gsmsamplesshowthisfailurepattern.Theother50%showasimilar failurepatterntothe60gsmsamples.Itappearsthatthetestsetupis atatippingpointbetweenthetwofailuremodes.Itwasnotpossibleto increasetheenergybecausehigherenergiescausedfibrebreaksonthe backsideofthespecimen.Lowerenergieswerenotpossiblebecauseof thetestsetupandmachineused.

3.4.2. Fatigueafterimpact

Fig.12showstheS-Ncurvesofthepre-damagedsamples.Atotal of27samplesweretested.8sampleseachwithafibrearealweightof 30and120gsm,6with60gsmand5with360gsm(seeTable3).The solidlinescorrespondtotheS-Ncurvesofthepre-damagedsamples andthedashedlinestotheS-Ncurvesofthesampleswithoutimpact damage.Asexpected,thelifetimeofthepre-damagedsamplesisshorter thanthatoftheundamagedsamples.However,thedifferencebetween thepre-damagedandnon-damagedspecimensvariesbetweenthelayer thicknesses.Consideredat105cycles,the60gsmand360gsmsam- plesshowthehighestdecreaseoffatiguestresswith31.9%and28.1%

respectively.

Asseenin themicrographs,thesampleswithalayerthicknessof 360gsmshowlargedelaminationsandmatrixcracks(seeFig.11).The growthofdamagewithanincreasingnumberof loadcyclesreduces thefatiguestrength.Acomputedtomographysystemexaminedthepre- damagedsamplesafteracertainnumberofcyclesandcomparedthe

Fig.12. S-NcurvesofthefatigueafterimpactresultswithaloadratioofR=-0.5 andanpotentialimpactenergyof8J.

damagepatterns.Thesampleswerestoppedandanalysedafter0,5⋅104, 3⋅105and8⋅105cycles.Fig.13presentsrepresentativetomographyim- agesofthe30gsmand360gsmpre-damagedsamplesafterloading.

Thedamagepatternsofthe360gsmspecimenshowlarge,orientation- drivendelaminations.Thedamagedareaincreasessignificantlywiththe increasingnumberofcycles.Thedelaminationsreachtheedgeofthe sampleafteronly5⋅104cycles,andcracksarevisibleonthetopsur- faceafter3⋅105cycles.Fromtherecordeddata,sectionalimagesofthe respectivesamplesweremade,whichshowthecurrentstateof dam- ageperpendiculartotheload,seeFig.14.Thedamageofthe360gsm

(10)

Fig.13. Computedtomographyimagesoftheimpactdamageofthe30gsm(top)andthe360gsmsample(bottom).Thelefttwoimagesshowtheinitialstateafter theimpact,thethreerightimagesshowthedamagepatternaftercyclicloadingof5⋅104,3⋅105and8⋅105cycles.Coloursarechosenarbitraryandindicatelayers ofdamageatdifferentdepths.

Fig.14. Crosssectionsoftheimpactedspecimens(left30gsmandright360gsm)after0,5⋅104and8⋅105cycles.Coloursarechosenarbitraryandindicatelayers ofdamageatdifferentdepths.

samplegrowthperpendiculartothetensiledirection.Duetothefatigue loading,furtherinter-fibrefractureshaveformed,whichleadtodelami- nationsandexistingdelaminationsgrowduetohighinterlaminarshear stresses.Slightbucklingofthespecimen,ascausedbytheimpact(asym- metricdamage),increasesthestresseswithinthecracktipofdelamina- tion,which supportsdamage growth.Themicrographofthe60 gsm samplealsoshowsahighnumberofdelaminations.Eachsub-laminate consistsoffourlayersandthushasathicknessofabout240𝜇m.The individualdelaminationsarearrangedcircularlyaroundtheimpact(see Fig.11).Thisgeometricarrangementweakensthematerialinallspatial directionsandfavoursabucklingofthesampleorthelayers,resulting inprematurefailure.Additionally,theindividualsub-laminateshavea lowbendingstiffness;therespective0layerislocatedontheoutside atthesub-laminatesandisnotsupportedagainstbuckling.

Asalreadydescribedinthepreviouspart,the30gsmsamplesshow twodifferentfailurepatterns.Somesamplesshowfewbutverylarge delaminations (Fig. 11), and other samples show more andsmaller delaminations like the 60 gsm samples. The computed tomography measurementsallowanon-destructively3-dimensionalvisualisationof thedamagepattern.Fig.14showscross-sectionsof theimpactsfrom

Fig.13perpendiculartotheloadingdirection.Thedelaminationsare highlighted,andthecoloursarechosenarbitraryandindicatedamageat differentdepths.Inadditiontothecross-sections,detailedimagesfrom therespectiveimpactareaareshown,andthethicknessesofthesub- laminatesaremeasured.TheCT-cross-sectionsrevealthatthethinnest sub-laminatesareapprox.220𝜇mthickandhaveatleasteightCFRP layers.However,thickersub-laminatesarealsovisibleupto720𝜇m.

DuetothehighernumberofCFRPlayersandthesupportofthein- ner0layersagainstbuckling,thesub-laminateshaveahigherbending stiffnessthanthesub-laminatesofthe60gsmsamples.Aswiththe60 gsmsamples,acirculararrangementofthedelaminationscanbefound, whichwouldindicatealargereductioninfatigueproperties.However, thespecimenslifetimedecreasedbyonly20.3%.Thetomographycross- sectionsdemonstratethatwithanincreasingnumberofcycles,thedam- agedoesnotgrowanyfurtherandastaticstateofdamageisachieved.

Thelaminateexhibitnomatrixcracks,andtheformationofdelamina- tionsissuppressed.Theinterlaminarshearstressesarenotsufficientfor thegrowthofdelaminations.Duetothelargenumberoflayersandthe associatedhighnumberofinterfaces,theinterlaminarshearstressesare lowerbetweenthelayers.Thecross-sectionsofthetomographyscansof

(11)

the360gsmsamplesshowadamageprogression(greenandreddelam- ination)andalsonewdamagessuchasinter-fibrefracturesanddelami- nations(yellowdelaminations)withanincreasingnumberofcycles.As aresult,thelifetimeisreduced.

The120gsmsamplesexhibitthesmallestreductioninfatigueper- formance.Contrarytothistrend,themicrographsinFig.11showinter- fibrefracturesanddelaminations.Concerningtheresidualstiffnessof thesub-laminates,thedelaminationsarebetweenthe0and45layers.

Thedifferencesbetweenthe120gsmandsampleswiththinnerlayers (30and60gsm)canbeseenintheultrasoundimagesinFig.11.The delaminationsarenotcircularbuthavetheshapeof apeanut.Thus, althoughlargerdelaminationsarepresent,theyspreadpreferentiallyin thedirectionofthefibreorientationinthelayer.Thedelaminationareas aresmallintransversedirectiontothepreferreddelaminationorienta- tion,leadingtoahighlocalresidualstiffness.

4. Conclusion

Thefatiguebehaviourofundamagedandimpactedsamplesofquasi- isotropichigh-performancecompositeswasinvestigatedinthisstudy.

Statictensileandcompressivetests,aswellasfatiguetestsunderdif- ferentloadratiosandlayerthicknesseswerecarried out,andapre- dictionoffatiguebehaviourisgivenbyalinearinterpolationmethod.

Theundamagedtestresultsshow thatthestaticandfatiguestrength increasewithdecreasinglayerthicknessanddependsontheloadra- tio.Inthetensile-compressive loadrange(R=-0.5) inparticular,sig- nificantimprovements canbeachievedusingthinlayers.Theforma- tionofinter-fibrefracturesanddelaminationsaresuppressedunderten- sileload,leadingtolowerdamagegrowthundercompressiveloadand higherlifetimes.The30gsmspecimensexhibita58.94%improvement inlifetimeatamaximumstressof50%ofthetensilestrengthcompared tothe60gsmsamples.Thereductionoflayerthicknessisleadingtoa largerloadingspace.

Althoughtheimpactdamagesofthe30 gsmsampleshavesignifi- cantlylargerprojecteddelaminationareas,theyhavelessinfluenceon thefatiguebehaviour ofthesamples. Computed tomographyimages showthatthedamagedoesnot spreadwithintheThin-Plylayers.In thecaseofthe360gsmsamples,thedelaminationsalreadygrowatlow numbersofcyclesandreachtheedgeofthesampleafter5⋅104cycles andleadtofinalfailure.Inadditiontodelaminationgrowth,theshape ofdelaminationsandlayerstructureofthesub-laminatesalsohaveasig- nificantinfluenceonthelifetime.Localhigherbendingstiffness,asin thecaseofpeanut-shapeddelaminationsorsub-laminateswithinternal 0layers,leadtoanimprovementinlifetime.

Fromtheresultsobtainedfromthisstudy,itcanbeconcludedthat fatiguebehaviourofundamagedandimpactedsamplesissuperiorwith thinnerlayerthicknesses.Still,forindustrialapplications,thetrade-off betweenperformanceandcostshastobedone,i.e.thesuitablelayer thicknessdependsonloadratioandeffortofproduction.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Supplementarymaterial

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,at10.1016/j.jcomc.2021.100139

References

[1] M. Mitrovic, Effect of loading parameters on the fatigue behavior of impact dam- aged composite laminates, Compos. Sci. Technol. 59 (14) (1999) 2059–2078, doi: 10.1016/S0266-3538(99)00061-5 .

[2] H. Schmutzler, M. Alder, N. Kosmann, H. Wittich, K. Schulte, Degradation monitoring of impact damaged carbon fibre reinforced polymers under fatigue loading with pulse phase thermography, Compos. Part B 59 (2014) 221–229, doi: 10.1016/j.compositesb.2013.12.010 .

[3] N. Kosmann, B.T. Riecken, H. Schmutzler, J.B. Knoll, K. Schulte, B. Fiedler, Evalua- tion of a critical impact energy in GFRP under fatigue loading, Compos. Sci. Technol.

102 (2014) 28–34, doi: 10.1016/j.compscitech.2014.07.010 .

[4] W.J. Cantwell , J. Morton , The impact resistance of composite materials – a review, Composites 22 (1991) 347–362 .

[5] M. Capriotti, H.E. Kim, F.L. Di Scalea, H. Kim, Detection of major impact damage to composite aerospace structures by ultrasonic guided waves and statistical signal pro- cessing, Procedia Eng. 199 (2017) 1550–1555, doi: 10.1016/j.proeng.2017.09.505 . [6] C. Garnier, M.-L. Pastor, F. Eyma, B. Lorrain, The detection of aeronautical defects in situ on composite structures using non destructive testing, Compos. Struct. 93 (5) (2011) 1328–1336, doi: 10.1016/j.compstruct.2010.10.017 .

[7] M.A. Omar, Y. Zhou, A quantitative review of three flash thermogra- phy processing routines, Infrared Phys. Technol. 51 (4) (2008) 300–306, doi: 10.1016/j.infrared.2007.09.006 .

[8] M. Alemi-Ardakani, A.S. Milani, S. Yannacopoulos, L. Bichler, D. Trudel-Boucher, G. Shokouhi, H. Borazghi, Microtomographic analysis of impact damage in FRP- composite laminates: a comparative study, Adv. Mater. Sci. Eng. 2013 (2013) 1–10, doi: 10.1155/2013/521860 .

[9] W. Cantwell, P. Curtis, J. Morton, Post-impact fatigue performance of carbon fibre laminates with non-woven and mixed-woven layers, Composites 14 (3) (1983) 301–

305, doi: 10.1016/0010-4361(83)90020-4 .

[10] T.K. O’Brien , Characterization of Delamination Onset and Growth in a Composite Laminate, NASA Technical Memorandum, 1981 .

[11] S.L. Ogin, P.A. Smith, P. Beaumont, Matrix cracking and stiffness reduction during the fatigue of a (0/90)s GFRP laminate, Compos. Sci. Technol. 22 (1) (1985) 23–31, doi: 10.1016/0266-3538(85)90088-0 .

[12] R. Talreja, Stiffness properties of composite laminates with matrix crack- ing and interior delamination, Eng. Fract. Mech. 25 (5–6) (1986) 751–762, doi: 10.1016/0013-7944(86)90038-X .

[13] N. Kosmann, J.M. Karsten, M. Schuett, K. Schulte, B. Fiedler, Determin- ing the effect of voids in GFRP on the damage behaviour under compres- sion loading using acoustic emission, Compos. Part B 70 (2015) 184–188, doi: 10.1016/j.compositesb.2014.11.010 .

[14] K. Senthilnathan, C.P. Hiremath, N.K. Naik, A. Guha, A. Tewari, Mi- crostructural damage dependent stiffness prediction of unidirectional CFRP composite under cyclic loading, Compos. Part A 100 (2017) 118–127, doi: 10.1016/j.compositesa.2017.05.010 .

[15] R. Protz, N. Kosmann, D. Fritsch, P. Fey, W. Essig, K. Dietrich, M. Gude, P. Horst, M. Kreutzbruck, K. Schulte, G. Busse, W. Hufenbach, B. Fiedler, Influence of voids and impact damage on the fatigue behaviour of large scale composites, Materwiss Werksttech 47 (11) (2016) 1058–1071, doi: 10.1002/mawe.201600631 . [16] K. Kawabe , S. Tomoda , T. Matsuo , A pneumatic process for spreading reinforcing

fiber tow, in: 42nd International SAMPE Symposium, 1997, pp. 65–76 .

[17] S. Sihn, R. Kim, K. Kawabe, S. Tsai, Experimental studies of thin-ply laminated composites, Compos. Sci. Technol. 67 (6) (2007) 996–1008, doi: 10.1016/j.compscitech.2006.06.008 .

[18] R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, C. Dransfeld, Thin ply composites: experimental characterization and modeling of size-effects, Compos. Sci.

Technol. 101 (101) (2014) 121–132, doi: 10.1016/j.compscitech.2014.06.027 . [19] A. Arteiro, G. Catalanotti, A.R. Melro, P. Linde, P.P. Camanho, Micro-mechanical

analysis of the in situ effect in polymer composite laminates, Compos. Struct. 2014 (116) (2014) 827–840, doi: 10.1016/j.compstruct.2014.06.014 .

[20] A. Arteiro, C. Furtado, G. Catalanotti, P. Linde, P.P. Camanho, Thin-ply poly- mer composite materials: a review, Compos. Part A 132 (2020) 105777, doi: 10.1016/j.compositesa.2020.105777 .

[21] B. Kötter, K. Yamada, J. Körbelin, K. Kawabe, M. Nishikawa, M. Hojo, B. Fiedler, Steel foil reinforcement for high performance bearing strength in thin–ply compos- ites, Compos. Part C 4 (2021) 100085, doi: 10.1016/j.jcomc.2020.100085 . [22] B. Kötter, J. Karsten, J. Körbelin, B. Fiedler, CFRP thin-ply fibre metal laminates:

influences of ply thickness and metal layers on open hole tension and compression properties, Materials (2020), doi: 10.3390/ma13040910 .

[23] T. Yokozeki, Y. Aoki, T. Ogasawara, Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates, Compos. Struct. 82 (3) (2008) 382–389, doi: 10.1016/j.compstruct.2007.01.015 . [24] A. Arteiro, G. Catalanotti, J. Xavier, P.P. Camanho, Notched response of non-crimp

fabric thin-ply laminates: analysis methods, Compos. Sci. Technol. 88 (2013) 165–

171, doi: 10.1016/j.compscitech.2013.09.003 .

[25] P.P. Camanho, C.G. Dávila, S.T. Pinho, L. Iannucci, P. Robinson, Predic- tion of in situ strengths and matrix cracking in composites under trans- verse tension and in-plane shear, Compos. Part A 2006 (37) (2006) 165–176, doi: 10.1016/j.compositesa.2005.04.023 .

[26] M.J. Laffan, S.T. Pinho, P. Robinson, L. Iannucci, Measurement of the in situ ply fracture toughness associated with mode i fibre tensile failure in FRP. Part I: data reduction, Compos. Sci. Technol. 70 (4) (2010) 606–613, doi: 10.1016/j.compscitech.2009.12.016 .

[27] H. Saito, M. Morita, K. Kawabe, M. Kanesaki, H. Takeuchi, M. Tanaka, I. Kimpara, Effect of ply-thickness on impact damage morphology in CFRP laminates, J. Reinf.

Plast. Compos. 30 (13) (2011) 1097–1106, doi: 10.1177/0731684411416532 . [28] A.P. Vassilopoulos, B.D. Manshadi, T. Keller, Influence of the constant life diagram

formulation on the fatigue life prediction of composite materials, Int. J. Fatigue 32 (4) (2010) 659–669, doi: 10.1016/j.ijfatigue.2009.09.008 .

[29] K. Yamaguchi , T. Hahn , The improved ply cracking resistance of thin-ply lami-

Referenzen

ÄHNLICHE DOKUMENTE

The mechanism of fatigue crack initiation and growth in laser-welded Ti-6Al-4V alloy shall be comprehensively studied with respect to the effects of weld microstructure,

Since the information on addi- tional pathology besides the lacrimal pathway, such as sinusitis, septal deviation, or nasal polyposis, is useful prior to surgery and can be

With ball bearings (Fig. 1b), the contact area can be idealized by a point contact. Due to the elastic material behavior under the influence of an external force F,

How much of the increase during the first 3,000 cycles is caused by the increase of inner friction due to an increase of the fatigue damage, and how much is caused by the

For the two datasets investigated here, the findings from the different approaches used to match the reconstructed values of absorption coefficients, together with the comparison

The fibre failure occurring at elevated temperatures on the impacted side has no significant influence on the residual com- pressive strength, but the tensile properties change,

To quanti- fy the eye volume, a package of commercial image processing soft- ware (Disect Systems Ltd., UK) was applied to analyse the data received by the

To have a more ecologically valid insight into the effect of mental fatigue on long-term endurance performance, the main aim of the current study was to test the hypothesis that